Mercurial > hg > Papers > 2021 > soto-prosym
diff Paper/src/RedBlackTree.agda @ 0:c59202657321
init
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Nov 2021 06:55:58 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Paper/src/RedBlackTree.agda Tue Nov 02 06:55:58 2021 +0900 @@ -0,0 +1,231 @@ +module RedBlackTree where + +open import stack +open import Level hiding (zero) +record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where + field + putImpl : treeImpl -> a -> (treeImpl -> t) -> t + getImpl : treeImpl -> (treeImpl -> Maybe a -> t) -> t +open TreeMethods + +record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where + field + tree : treeImpl + treeMethods : TreeMethods {n} {m} {a} {t} treeImpl + putTree : a -> (Tree treeImpl -> t) -> t + putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) + getTree : (Tree treeImpl -> Maybe a -> t) -> t + getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) + +open Tree + +data Color {n : Level } : Set n where + Red : Color + Black : Color + +data CompareResult {n : Level } : Set n where + LT : CompareResult + GT : CompareResult + EQ : CompareResult + +record Node {n : Level } (a k : Set n) : Set n where + inductive + field + key : k + value : a + right : Maybe (Node a k) + left : Maybe (Node a k) + color : Color {n} +open Node + +record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where + field + root : Maybe (Node a k) + nodeStack : SingleLinkedStack (Node a k) + compare : k -> k -> CompareResult {n} + +open RedBlackTree + +open SingleLinkedStack + +-- +-- put new node at parent node, and rebuild tree to the top +-- +{-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html +replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s ( + \s parent -> replaceNode1 s parent) + where + replaceNode1 : SingleLinkedStack (Node a k) -> Maybe ( Node a k ) -> t + replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } ) + replaceNode1 s (Just n1) with compare tree (key n1) (key n0) + ... | EQ = replaceNode tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next + ... | GT = replaceNode tree s ( record n1 { left = Just n0 } ) next + ... | LT = replaceNode tree s ( record n1 { right = Just n0 } ) next + + +rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t +rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateRight1 tree s n0 parent rotateNext) + where + rotateRight1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t + rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 + ... | Nothing = rotateNext tree s Nothing n0 + ... | Just n1 with parent + ... | Nothing = rotateNext tree s (Just n1 ) n0 + ... | Just parent1 with left parent1 + ... | Nothing = rotateNext tree s (Just n1) Nothing + ... | Just leftParent with compare tree (key n1) (key leftParent) + ... | EQ = rotateNext tree s (Just n1) parent + ... | _ = rotateNext tree s (Just n1) parent + + +rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t +rotateLeft {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 -> rotateLeft1 tree s n0 parent rotateNext) + where + rotateLeft1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> + (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t) -> t + rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 + ... | Nothing = rotateNext tree s Nothing n0 + ... | Just n1 with parent + ... | Nothing = rotateNext tree s (Just n1) Nothing + ... | Just parent1 with right parent1 + ... | Nothing = rotateNext tree s (Just n1) Nothing + ... | Just rightParent with compare tree (key n1) (key rightParent) + ... | EQ = rotateNext tree s (Just n1) parent + ... | _ = rotateNext tree s (Just n1) parent + +{-# TERMINATING #-} +insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent -> insertCase51 tree s n0 parent grandParent next) + where + insertCase51 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> (RedBlackTree {n} {m} {t} a k -> t) -> t + insertCase51 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with n0 + ... | Nothing = next tree + ... | Just n1 with parent | grandParent + ... | Nothing | _ = next tree + ... | _ | Nothing = next tree + ... | Just parent1 | Just grandParent1 with left parent1 | left grandParent1 + ... | Nothing | _ = next tree + ... | _ | Nothing = next tree + ... | Just leftParent1 | Just leftGrandParent1 + with compare tree (key n1) (key leftParent1) | compare tree (key leftParent1) (key leftGrandParent1) + ... | EQ | EQ = rotateRight tree s n0 parent + (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next) + ... | _ | _ = rotateLeft tree s n0 parent + (\ tree s n0 parent -> insertCase5 tree s n0 parent1 grandParent1 next) + +insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next + with (right parent) | (left grandParent) +... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next +... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next +... | Just rightParent | Just leftGrandParent with compare tree (key n0) (key rightParent) | compare tree (key parent) (key leftGrandParent) +... | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateLeft tree s (left n0) (Just grandParent) + (\ tree s n0 parent -> insertCase5 tree s n0 rightParent grandParent next)) +... | _ | _ = insertCase41 tree s n0 parent grandParent next + where + insertCase41 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t + insertCase41 {n} {m} {t} {a} {k} tree s n0 parent grandParent next + with (left parent) | (right grandParent) + ... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next + ... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next + ... | Just leftParent | Just rightGrandParent with compare tree (key n0) (key leftParent) | compare tree (key parent) (key rightGrandParent) + ... | EQ | EQ = popSingleLinkedStack s (\ s n1 -> rotateRight tree s (right n0) (Just grandParent) + (\ tree s n0 parent -> insertCase5 tree s n0 leftParent grandParent next)) + ... | _ | _ = insertCase5 tree s (Just n0) parent grandParent next + +colorNode : {n : Level } {a k : Set n} -> Node a k -> Color -> Node a k +colorNode old c = record old { color = c } + +{-# TERMINATING #-} +insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertNode {n} {m} {t} {a} {k} tree s n0 next = get2SingleLinkedStack s (insertCase1 n0) + where + insertCase1 : Node a k -> SingleLinkedStack (Node a k) -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion + -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html + insertCase3 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t + insertCase3 s n0 parent grandParent with left grandParent | right grandParent + ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next + ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next + ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) + ... | EQ = insertCase4 tree s n0 parent grandParent next + ... | _ with color uncle + ... | Red = pop2SingleLinkedStack s ( \s p0 p1 -> insertCase1 ( + record grandParent { color = Red ; left = Just ( record parent { color = Black } ) ; right = Just ( record uncle { color = Black } ) }) s p0 p1 ) + ... | Black = insertCase4 tree s n0 parent grandParent next + insertCase2 : SingleLinkedStack (Node a k) -> Node a k -> Node a k -> Node a k -> t + insertCase2 s n0 parent grandParent with color parent + ... | Black = replaceNode tree s n0 next + ... | Red = insertCase3 s n0 parent grandParent + insertCase1 n0 s Nothing Nothing = next tree + insertCase1 n0 s Nothing (Just grandParent) = next tree + insertCase1 n0 s (Just parent) Nothing = replaceNode tree s (colorNode n0 Black) next + insertCase1 n0 s (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent + +---- +-- find node potition to insert or to delete, the path will be in the stack +-- +findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t +findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s -> findNode1 s n1) + where + findNode2 : SingleLinkedStack (Node a k) -> (Maybe (Node a k)) -> t + findNode2 s Nothing = next tree s n0 + findNode2 s (Just n) = findNode tree s n0 n next + findNode1 : SingleLinkedStack (Node a k) -> (Node a k) -> t + findNode1 s n1 with (compare tree (key n0) (key n1)) + ... | EQ = popSingleLinkedStack s ( \s _ -> next tree s (record n1 { key = key n1 ; value = value n0 } ) ) + ... | GT = findNode2 s (right n1) + ... | LT = findNode2 s (left n1) + + +leafNode : {n : Level } {a k : Set n} -> k -> a -> Node a k +leafNode k1 value = record { + key = k1 ; + value = value ; + right = Nothing ; + left = Nothing ; + color = Red + } + +putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t +putRedBlackTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) +... | Nothing = next (record tree {root = Just (leafNode k1 value) }) +... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next)) + +getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree {n} {m} {t} a k -> (Maybe (Node a k)) -> t) -> t +getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree) + module GetRedBlackTree where -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html + search : Node a k -> t + checkNode : Maybe (Node a k) -> t + checkNode Nothing = cs tree Nothing + checkNode (Just n) = search n + search n with compare tree k1 (key n) + search n | LT = checkNode (left n) + search n | GT = checkNode (right n) + search n | EQ = cs tree (Just n) + +open import Data.Nat hiding (compare) + +compareℕ : ℕ → ℕ → CompareResult {Level.zero} +compareℕ x y with Data.Nat.compare x y +... | less _ _ = LT +... | equal _ = EQ +... | greater _ _ = GT + +compare2 : (x y : ℕ ) -> CompareResult {Level.zero} +compare2 zero zero = EQ +compare2 (suc _) zero = GT +compare2 zero (suc _) = LT +compare2 (suc x) (suc y) = compare2 x y + + +createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ +createEmptyRedBlackTreeℕ {m} a {t} = record { + root = Nothing + ; nodeStack = emptySingleLinkedStack + ; compare = compare2 + } +