Mercurial > hg > Papers > 2021 > soto-prosym
view Paper/src/RedBlackTree.agda.replaced @ 0:c59202657321
init
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Nov 2021 06:55:58 +0900 |
parents | |
children | 339fb67b4375 |
line wrap: on
line source
module RedBlackTree where open import stack open import Level hiding (zero) record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.@$\sqcup$@ n) where field putImpl : treeImpl @$\rightarrow$@ a @$\rightarrow$@ (treeImpl @$\rightarrow$@ t) @$\rightarrow$@ t getImpl : treeImpl @$\rightarrow$@ (treeImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.@$\sqcup$@ n) where field tree : treeImpl treeMethods : TreeMethods {n} {m} {a} {t} treeImpl putTree : a @$\rightarrow$@ (Tree treeImpl @$\rightarrow$@ t) @$\rightarrow$@ t putTree d next = putImpl (treeMethods ) tree d (\t1 @$\rightarrow$@ next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree treeImpl @$\rightarrow$@ Maybe a @$\rightarrow$@ t) @$\rightarrow$@ t getTree next = getImpl (treeMethods ) tree (\t1 d @$\rightarrow$@ next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree data Color {n : Level } : Set n where Red : Color Black : Color data CompareResult {n : Level } : Set n where LT : CompareResult GT : CompareResult EQ : CompareResult record Node {n : Level } (a k : Set n) : Set n where inductive field key : k value : a right : Maybe (Node a k) left : Maybe (Node a k) color : Color {n} open Node record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.@$\sqcup$@ n) where field root : Maybe (Node a k) nodeStack : SingleLinkedStack (Node a k) compare : k @$\rightarrow$@ k @$\rightarrow$@ CompareResult {n} open RedBlackTree open SingleLinkedStack -- -- put new node at parent node, and rebuild tree to the top -- {-@$\#$@ TERMINATING @$\#$@-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html replaceNode : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s ( \s parent @$\rightarrow$@ replaceNode1 s parent) where replaceNode1 : SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe ( Node a k ) @$\rightarrow$@ t replaceNode1 s Nothing = next ( record tree { root = Just (record n0 { color = Black}) } ) replaceNode1 s (Just n1) with compare tree (key n1) (key n0) ... | EQ = replaceNode tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next ... | GT = replaceNode tree s ( record n1 { left = Just n0 } ) next ... | LT = replaceNode tree s ( record n1 { right = Just n0 } ) next rotateRight : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ t) @$\rightarrow$@ t rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 @$\rightarrow$@ rotateRight1 tree s n0 parent rotateNext) where rotateRight1 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ t) @$\rightarrow$@ t rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | Nothing = rotateNext tree s Nothing n0 ... | Just n1 with parent ... | Nothing = rotateNext tree s (Just n1 ) n0 ... | Just parent1 with left parent1 ... | Nothing = rotateNext tree s (Just n1) Nothing ... | Just leftParent with compare tree (key n1) (key leftParent) ... | EQ = rotateNext tree s (Just n1) parent ... | _ = rotateNext tree s (Just n1) parent rotateLeft : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ t) @$\rightarrow$@ t rotateLeft {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 @$\rightarrow$@ rotateLeft1 tree s n0 parent rotateNext) where rotateLeft1 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ t) @$\rightarrow$@ t rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 ... | Nothing = rotateNext tree s Nothing n0 ... | Just n1 with parent ... | Nothing = rotateNext tree s (Just n1) Nothing ... | Just parent1 with right parent1 ... | Nothing = rotateNext tree s (Just n1) Nothing ... | Just rightParent with compare tree (key n1) (key rightParent) ... | EQ = rotateNext tree s (Just n1) parent ... | _ = rotateNext tree s (Just n1) parent {-@$\#$@ TERMINATING @$\#$@-} insertCase5 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent @$\rightarrow$@ insertCase51 tree s n0 parent grandParent next) where insertCase51 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t insertCase51 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with n0 ... | Nothing = next tree ... | Just n1 with parent | grandParent ... | Nothing | _ = next tree ... | _ | Nothing = next tree ... | Just parent1 | Just grandParent1 with left parent1 | left grandParent1 ... | Nothing | _ = next tree ... | _ | Nothing = next tree ... | Just leftParent1 | Just leftGrandParent1 with compare tree (key n1) (key leftParent1) | compare tree (key leftParent1) (key leftGrandParent1) ... | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent @$\rightarrow$@ insertCase5 tree s n0 parent1 grandParent1 next) ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent @$\rightarrow$@ insertCase5 tree s n0 parent1 grandParent1 next) insertCase4 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (right parent) | (left grandParent) ... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next ... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next ... | Just rightParent | Just leftGrandParent with compare tree (key n0) (key rightParent) | compare tree (key parent) (key leftGrandParent) ... | EQ | EQ = popSingleLinkedStack s (\ s n1 @$\rightarrow$@ rotateLeft tree s (left n0) (Just grandParent) (\ tree s n0 parent @$\rightarrow$@ insertCase5 tree s n0 rightParent grandParent next)) ... | _ | _ = insertCase41 tree s n0 parent grandParent next where insertCase41 : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t insertCase41 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with (left parent) | (right grandParent) ... | Nothing | _ = insertCase5 tree s (Just n0) parent grandParent next ... | _ | Nothing = insertCase5 tree s (Just n0) parent grandParent next ... | Just leftParent | Just rightGrandParent with compare tree (key n0) (key leftParent) | compare tree (key parent) (key rightGrandParent) ... | EQ | EQ = popSingleLinkedStack s (\ s n1 @$\rightarrow$@ rotateRight tree s (right n0) (Just grandParent) (\ tree s n0 parent @$\rightarrow$@ insertCase5 tree s n0 leftParent grandParent next)) ... | _ | _ = insertCase5 tree s (Just n0) parent grandParent next colorNode : {n : Level } {a k : Set n} @$\rightarrow$@ Node a k @$\rightarrow$@ Color @$\rightarrow$@ Node a k colorNode old c = record old { color = c } {-@$\#$@ TERMINATING @$\#$@-} insertNode : {n m : Level } {t : Set m } {a k : Set n} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t insertNode {n} {m} {t} {a} {k} tree s n0 next = get2SingleLinkedStack s (insertCase1 n0) where insertCase1 : Node a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ Maybe (Node a k) @$\rightarrow$@ t -- placed here to allow mutual recursion -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html insertCase3 : SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ t insertCase3 s n0 parent grandParent with left grandParent | right grandParent ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) ... | EQ = insertCase4 tree s n0 parent grandParent next ... | _ with color uncle ... | Red = pop2SingleLinkedStack s ( \s p0 p1 @$\rightarrow$@ insertCase1 ( record grandParent { color = Red ; left = Just ( record parent { color = Black } ) ; right = Just ( record uncle { color = Black } ) }) s p0 p1 ) ... | Black = insertCase4 tree s n0 parent grandParent next insertCase2 : SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ Node a k @$\rightarrow$@ t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s n0 next ... | Red = insertCase3 s n0 parent grandParent insertCase1 n0 s Nothing Nothing = next tree insertCase1 n0 s Nothing (Just grandParent) = next tree insertCase1 n0 s (Just parent) Nothing = replaceNode tree s (colorNode n0 Black) next insertCase1 n0 s (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent ---- -- find node potition to insert or to delete, the path will be in the stack -- findNode : {n m : Level } {a k : Set n} {t : Set m} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ (Node a k) @$\rightarrow$@ (Node a k) @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ SingleLinkedStack (Node a k) @$\rightarrow$@ Node a k @$\rightarrow$@ t) @$\rightarrow$@ t findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s @$\rightarrow$@ findNode1 s n1) where findNode2 : SingleLinkedStack (Node a k) @$\rightarrow$@ (Maybe (Node a k)) @$\rightarrow$@ t findNode2 s Nothing = next tree s n0 findNode2 s (Just n) = findNode tree s n0 n next findNode1 : SingleLinkedStack (Node a k) @$\rightarrow$@ (Node a k) @$\rightarrow$@ t findNode1 s n1 with (compare tree (key n0) (key n1)) ... | EQ = popSingleLinkedStack s ( \s _ @$\rightarrow$@ next tree s (record n1 { key = key n1 ; value = value n0 } ) ) ... | GT = findNode2 s (right n1) ... | LT = findNode2 s (left n1) leafNode : {n : Level } {a k : Set n} @$\rightarrow$@ k @$\rightarrow$@ a @$\rightarrow$@ Node a k leafNode k1 value = record { key = k1 ; value = value ; right = Nothing ; left = Nothing ; color = Red } putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ k @$\rightarrow$@ a @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ t) @$\rightarrow$@ t putRedBlackTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s @$\rightarrow$@ findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 @$\rightarrow$@ insertNode tree1 s n1 next)) getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} @$\rightarrow$@ RedBlackTree {n} {m} {t} a k @$\rightarrow$@ k @$\rightarrow$@ (RedBlackTree {n} {m} {t} a k @$\rightarrow$@ (Maybe (Node a k)) @$\rightarrow$@ t) @$\rightarrow$@ t getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree) module GetRedBlackTree where -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html search : Node a k @$\rightarrow$@ t checkNode : Maybe (Node a k) @$\rightarrow$@ t checkNode Nothing = cs tree Nothing checkNode (Just n) = search n search n with compare tree k1 (key n) search n | LT = checkNode (left n) search n | GT = checkNode (right n) search n | EQ = cs tree (Just n) open import Data.Nat hiding (compare) compare@$\mathbb{N}$@ : @$\mathbb{N}$@ @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ CompareResult {Level.zero} compare@$\mathbb{N}$@ x y with Data.Nat.compare x y ... | less _ _ = LT ... | equal _ = EQ ... | greater _ _ = GT compare2 : (x y : @$\mathbb{N}$@ ) @$\rightarrow$@ CompareResult {Level.zero} compare2 zero zero = EQ compare2 (suc _) zero = GT compare2 zero (suc _) = LT compare2 (suc x) (suc y) = compare2 x y createEmptyRedBlackTree@$\mathbb{N}$@ : { m : Level } (a : Set Level.zero) {t : Set m} @$\rightarrow$@ RedBlackTree {Level.zero} {m} {t} a @$\mathbb{N}$@ createEmptyRedBlackTree@$\mathbb{N}$@ {m} a {t} = record { root = Nothing ; nodeStack = emptySingleLinkedStack ; compare = compare2 }