open import Level renaming (suc to succ ; zero to Zero ) module stackTest where open import stack open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat open import Function open SingleLinkedStack open Stack ---- -- -- proof of properties ( concrete cases ) -- test01 : {n : Level } {a : Set n} !$\rightarrow$! SingleLinkedStack a !$\rightarrow$! Maybe a !$\rightarrow$! Bool {n} test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False test02 : {n : Level } {a : Set n} !$\rightarrow$! SingleLinkedStack a !$\rightarrow$! Bool test02 stack = popSingleLinkedStack stack test01 test03 : {n : Level } {a : Set n} !$\rightarrow$! a !$\rightarrow$! Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 -- after a push and a pop, the stack is empty lemma : {n : Level} {A : Set n} {a : A} !$\rightarrow$! test03 a !$\equiv$! False lemma = refl testStack01 : {n m : Level } {a : Set n} !$\rightarrow$! a !$\rightarrow$! Bool {m} testStack01 v = pushStack createSingleLinkedStack v ( \s !$\rightarrow$! popStack s (\s1 d1 !$\rightarrow$! True)) -- after push 1 and 2, pop2 get 1 and 2 testStack02 : {m : Level } !$\rightarrow$! ( Stack !$\mathbb{N}$! (SingleLinkedStack !$\mathbb{N}$!) !$\rightarrow$! Bool {m} ) !$\rightarrow$! Bool {m} testStack02 cs = pushStack createSingleLinkedStack 1 ( \s !$\rightarrow$! pushStack s 2 cs) testStack031 : (d1 d2 : !$\mathbb{N}$! ) !$\rightarrow$! Bool {Zero} testStack031 2 1 = True testStack031 _ _ = False testStack032 : (d1 d2 : Maybe !$\mathbb{N}$!) !$\rightarrow$! Bool {Zero} testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False testStack03 : {m : Level } !$\rightarrow$! Stack !$\mathbb{N}$! (SingleLinkedStack !$\mathbb{N}$!) !$\rightarrow$! ((Maybe !$\mathbb{N}$!) !$\rightarrow$! (Maybe !$\mathbb{N}$!) !$\rightarrow$! Bool {m} ) !$\rightarrow$! Bool {m} testStack03 s cs = pop2Stack s ( \s d1 d2 !$\rightarrow$! cs d1 d2 ) testStack04 : Bool testStack04 = testStack02 (\s !$\rightarrow$! testStack03 s testStack032) testStack05 : testStack04 !$\equiv$! True testStack05 = refl testStack06 : {m : Level } !$\rightarrow$! Maybe (Element !$\mathbb{N}$!) testStack06 = pushStack createSingleLinkedStack 1 ( \s !$\rightarrow$! pushStack s 2 (\s !$\rightarrow$! top (stack s))) testStack07 : {m : Level } !$\rightarrow$! Maybe (Element !$\mathbb{N}$!) testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 ( \s !$\rightarrow$! pushSingleLinkedStack s 2 (\s !$\rightarrow$! top s)) testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1 $ \s !$\rightarrow$! pushSingleLinkedStack s 2 $ \s !$\rightarrow$! pushSingleLinkedStack s 3 $ \s !$\rightarrow$! pushSingleLinkedStack s 4 $ \s !$\rightarrow$! pushSingleLinkedStack s 5 $ \s !$\rightarrow$! top s ------ -- -- proof of properties with indefinite state of stack -- -- this should be proved by properties of the stack inteface, not only by the implementation, -- and the implementation have to provides the properties. -- -- we cannot write "s !$\equiv$! s3", since level of the Set does not fit , but use stack s !$\equiv$! stack s3 is ok. -- anyway some implementations may result s != s3 -- stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) !$\rightarrow$! Stack {l} {m} D {t} ( SingleLinkedStack D ) stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } push!$\rightarrow$!push!$\rightarrow$!pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) !$\rightarrow$! pushStack ( stackInSomeState s ) x ( \s1 !$\rightarrow$! pushStack s1 y ( \s2 !$\rightarrow$! pop2Stack s2 ( \s3 y1 x1 !$\rightarrow$! (Just x !$\equiv$! x1 ) !$\wedge$! (Just y !$\equiv$! y1 ) ) )) push!$\rightarrow$!push!$\rightarrow$!pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } -- id : {n : Level} {A : Set n} !$\rightarrow$! A !$\rightarrow$! A -- id a = a -- push a, n times n-push : {n : Level} {A : Set n} {a : A} !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! SingleLinkedStack A !$\rightarrow$! SingleLinkedStack A n-push zero s = s n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s !$\rightarrow$! s ) n-pop : {n : Level}{A : Set n} {a : A} !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! SingleLinkedStack A !$\rightarrow$! SingleLinkedStack A n-pop zero s = s n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ !$\rightarrow$! s ) open !$\equiv$!-Reasoning push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) !$\rightarrow$! (popSingleLinkedStack (pushSingleLinkedStack s a (\s !$\rightarrow$! s)) (\s _ !$\rightarrow$! s) ) !$\equiv$! s push-pop-equiv s = refl push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : !$\mathbb{N}$!) (s : SingleLinkedStack A) !$\rightarrow$! n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) !$\equiv$! n-pop {_} {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) !$\equiv$!!$\langle$! refl !$\rangle$! popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ !$\rightarrow$! s) !$\equiv$!!$\langle$! cong (\s !$\rightarrow$! popSingleLinkedStack s (\s _ !$\rightarrow$! s )) (push-and-n-pop n s) !$\rangle$! popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ !$\rightarrow$! s) !$\equiv$!!$\langle$! refl !$\rangle$! n-pop {_} {A} {a} (suc n) s !$\blacksquare$! n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : !$\mathbb{N}$!) (s : SingleLinkedStack A) !$\rightarrow$! (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) !$\equiv$! s n-push-pop-equiv zero s = refl n-push-pop-equiv {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc n) (n-push (suc n) s) !$\equiv$!!$\langle$! refl !$\rangle$! n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s !$\rightarrow$! s)) !$\equiv$!!$\langle$! push-and-n-pop n (n-push n s) !$\rangle$! n-pop {_} {A} {a} n (n-push n s) !$\equiv$!!$\langle$! n-push-pop-equiv n s !$\rangle$! s !$\blacksquare$! n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} !$\rightarrow$! (n : !$\mathbb{N}$!) !$\rightarrow$! n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) !$\equiv$! emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack