comparison paper/src/NatAddSym.agda.replaced @ 3:959f4b34d6f4

add final thesis
author soto
date Tue, 09 Feb 2021 18:44:53 +0900
parents
children
comparison
equal deleted inserted replaced
2:2c50fd1d115e 3:959f4b34d6f4
1 open import Relation.Binary.PropositionalEquality
2 open import nat
3 open import nat_add
4 open @$\equiv$@-Reasoning
5
6 module nat_add_sym where
7
8 addSym : (n m : Nat) @$\rightarrow$@ n + m @$\equiv$@ m + n
9 addSym O O = refl
10 addSym O (S m) = cong S (addSym O m)
11 addSym (S n) O = cong S (addSym n O)
12 addSym (S n) (S m) = {!!} -- 後述