Mercurial > hg > Papers > 2021 > soto-thesis
comparison paper/src/stackTest.agda.replaced @ 3:959f4b34d6f4
add final thesis
author | soto |
---|---|
date | Tue, 09 Feb 2021 18:44:53 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:2c50fd1d115e | 3:959f4b34d6f4 |
---|---|
1 open import Level renaming (suc to succ ; zero to Zero ) | |
2 module stackTest where | |
3 | |
4 open import stack | |
5 | |
6 open import Relation.Binary.PropositionalEquality | |
7 open import Relation.Binary.Core | |
8 open import Data.Nat | |
9 open import Function | |
10 | |
11 | |
12 open SingleLinkedStack | |
13 open Stack | |
14 | |
15 ---- | |
16 -- | |
17 -- proof of properties ( concrete cases ) | |
18 -- | |
19 | |
20 test01 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Maybe a @$\rightarrow$@ Bool {n} | |
21 test01 stack _ with (top stack) | |
22 ... | (Just _) = True | |
23 ... | Nothing = False | |
24 | |
25 | |
26 test02 : {n : Level } {a : Set n} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ Bool | |
27 test02 stack = popSingleLinkedStack stack test01 | |
28 | |
29 test03 : {n : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool | |
30 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 | |
31 | |
32 -- after a push and a pop, the stack is empty | |
33 lemma : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ test03 a @$\equiv$@ False | |
34 lemma = refl | |
35 | |
36 testStack01 : {n m : Level } {a : Set n} @$\rightarrow$@ a @$\rightarrow$@ Bool {m} | |
37 testStack01 v = pushStack createSingleLinkedStack v ( | |
38 \s @$\rightarrow$@ popStack s (\s1 d1 @$\rightarrow$@ True)) | |
39 | |
40 -- after push 1 and 2, pop2 get 1 and 2 | |
41 | |
42 testStack02 : {m : Level } @$\rightarrow$@ ( Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m} | |
43 testStack02 cs = pushStack createSingleLinkedStack 1 ( | |
44 \s @$\rightarrow$@ pushStack s 2 cs) | |
45 | |
46 | |
47 testStack031 : (d1 d2 : @$\mathbb{N}$@ ) @$\rightarrow$@ Bool {Zero} | |
48 testStack031 2 1 = True | |
49 testStack031 _ _ = False | |
50 | |
51 testStack032 : (d1 d2 : Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {Zero} | |
52 testStack032 (Just d1) (Just d2) = testStack031 d1 d2 | |
53 testStack032 _ _ = False | |
54 | |
55 testStack03 : {m : Level } @$\rightarrow$@ Stack @$\mathbb{N}$@ (SingleLinkedStack @$\mathbb{N}$@) @$\rightarrow$@ ((Maybe @$\mathbb{N}$@) @$\rightarrow$@ (Maybe @$\mathbb{N}$@) @$\rightarrow$@ Bool {m} ) @$\rightarrow$@ Bool {m} | |
56 testStack03 s cs = pop2Stack s ( | |
57 \s d1 d2 @$\rightarrow$@ cs d1 d2 ) | |
58 | |
59 testStack04 : Bool | |
60 testStack04 = testStack02 (\s @$\rightarrow$@ testStack03 s testStack032) | |
61 | |
62 testStack05 : testStack04 @$\equiv$@ True | |
63 testStack05 = refl | |
64 | |
65 testStack06 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@) | |
66 testStack06 = pushStack createSingleLinkedStack 1 ( | |
67 \s @$\rightarrow$@ pushStack s 2 (\s @$\rightarrow$@ top (stack s))) | |
68 | |
69 testStack07 : {m : Level } @$\rightarrow$@ Maybe (Element @$\mathbb{N}$@) | |
70 testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 ( | |
71 \s @$\rightarrow$@ pushSingleLinkedStack s 2 (\s @$\rightarrow$@ top s)) | |
72 | |
73 testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1 | |
74 $ \s @$\rightarrow$@ pushSingleLinkedStack s 2 | |
75 $ \s @$\rightarrow$@ pushSingleLinkedStack s 3 | |
76 $ \s @$\rightarrow$@ pushSingleLinkedStack s 4 | |
77 $ \s @$\rightarrow$@ pushSingleLinkedStack s 5 | |
78 $ \s @$\rightarrow$@ top s | |
79 | |
80 ------ | |
81 -- | |
82 -- proof of properties with indefinite state of stack | |
83 -- | |
84 -- this should be proved by properties of the stack inteface, not only by the implementation, | |
85 -- and the implementation have to provides the properties. | |
86 -- | |
87 -- we cannot write "s @$\equiv$@ s3", since level of the Set does not fit , but use stack s @$\equiv$@ stack s3 is ok. | |
88 -- anyway some implementations may result s != s3 | |
89 -- | |
90 | |
91 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) @$\rightarrow$@ Stack {l} {m} D {t} ( SingleLinkedStack D ) | |
92 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } | |
93 | |
94 push@$\rightarrow$@push@$\rightarrow$@pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) @$\rightarrow$@ | |
95 pushStack ( stackInSomeState s ) x ( \s1 @$\rightarrow$@ pushStack s1 y ( \s2 @$\rightarrow$@ pop2Stack s2 ( \s3 y1 x1 @$\rightarrow$@ (Just x @$\equiv$@ x1 ) @$\wedge$@ (Just y @$\equiv$@ y1 ) ) )) | |
96 push@$\rightarrow$@push@$\rightarrow$@pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } | |
97 | |
98 | |
99 -- id : {n : Level} {A : Set n} @$\rightarrow$@ A @$\rightarrow$@ A | |
100 -- id a = a | |
101 | |
102 -- push a, n times | |
103 | |
104 n-push : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A | |
105 n-push zero s = s | |
106 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s @$\rightarrow$@ s ) | |
107 | |
108 n-pop : {n : Level}{A : Set n} {a : A} @$\rightarrow$@ @$\mathbb{N}$@ @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A | |
109 n-pop zero s = s | |
110 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s ) | |
111 | |
112 open @$\equiv$@-Reasoning | |
113 | |
114 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ (popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) ) @$\equiv$@ s | |
115 push-pop-equiv s = refl | |
116 | |
117 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {_} {A} {a} n s | |
118 push-and-n-pop zero s = refl | |
119 push-and-n-pop {_} {A} {a} (suc n) s = begin | |
120 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) | |
121 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
122 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s) | |
123 @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s )) (push-and-n-pop n s) @$\rangle$@ | |
124 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ @$\rightarrow$@ s) | |
125 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
126 n-pop {_} {A} {a} (suc n) s | |
127 @$\blacksquare$@ | |
128 | |
129 | |
130 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : @$\mathbb{N}$@) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) @$\equiv$@ s | |
131 n-push-pop-equiv zero s = refl | |
132 n-push-pop-equiv {_} {A} {a} (suc n) s = begin | |
133 n-pop {_} {A} {a} (suc n) (n-push (suc n) s) | |
134 @$\equiv$@@$\langle$@ refl @$\rangle$@ | |
135 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s)) | |
136 @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@ | |
137 n-pop {_} {A} {a} n (n-push n s) | |
138 @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@ | |
139 s | |
140 @$\blacksquare$@ | |
141 | |
142 | |
143 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack | |
144 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack |