Mercurial > hg > Papers > 2021 > soto-thesis
view paper/src/AgdaTreeProof.agda @ 3:959f4b34d6f4
add final thesis
author | soto |
---|---|
date | Tue, 09 Feb 2021 18:44:53 +0900 (2021-02-09) |
parents | |
children |
line wrap: on
line source
redBlackInSomeState : { m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compare2 } putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) -> (k : ℕ) (x : ℕ) -> putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x (\ t -> getRedBlackTree t k (\ t x1 -> check2 x1 x ≡ True)) putTest1 n k x with n ... | Just n1 = lemma2 ( record { top = Nothing } ) where lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) -> putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compare2 }) k x (λ t → GetRedBlackTree.checkNode t k (λ t₁ x1 → check2 x1 x ≡ True) (root t)) lemma2 s with compare2 k (key n1) ... | EQ = lemma3 {!!} where lemma3 : compare2 k (key n1) ≡ EQ -> getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black } ) ; nodeStack = s ; compare = λ x₁ y → compare2 x₁ y } ) k ( \ t x1 -> check2 x1 x ≡ True) lemma3 eq with compare2 x x | putTest1Lemma2 x ... | EQ | refl with compare2 k (key n1) | eq ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl ... | GT = {!!} ... | LT = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compare2 x₁ y } ) k ( \ t x1 -> check2 x1 x ≡ True) lemma1 with compare2 k k | putTest1Lemma2 k ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl