view paper/src/whileTestGears.agda.replaced @ 3:959f4b34d6f4

add final thesis
author soto
date Tue, 09 Feb 2021 18:44:53 +0900
parents
children
line wrap: on
line source

module whileTestGears where

open import Function
open import Data.Nat
open import Data.Bool hiding ( _@$\stackrel{?}{=}$@_ ; _@$\leq$@?_ ; _@$\leq$@_ ; _<_)
open import Data.Product
open import Level renaming ( suc to succ ; zero to Zero )
open import Relation.Nullary using (@$\neg$@_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality
open import Agda.Builtin.Unit

open import utilities
open  _@$\wedge$@_

-- original codeGear (with non terminatinng )

record Env : Set (succ Zero) where
  field
    varn : @$\mathbb{N}$@
    vari : @$\mathbb{N}$@
open Env

whileTest : {l : Level} {t : Set l}  @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t
whileTest c10 next = next (record {varn = c10 ; vari = 0 } )

{-@$\#$@ TERMINATING @$\#$@-}
whileLoop : {l : Level} {t : Set l} @$\rightarrow$@ Env @$\rightarrow$@ (Code : Env @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoop env next with lt 0 (varn env)
whileLoop env next | false = next env
whileLoop env next | true =
    whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next

test1 : Env
test1 = whileTest 10 (@$\lambda$@ env @$\rightarrow$@ whileLoop env (@$\lambda$@ env1 @$\rightarrow$@ env1 ))

proof1 : whileTest 10 (@$\lambda$@ env @$\rightarrow$@ whileLoop env (@$\lambda$@ e @$\rightarrow$@ (vari e) @$\equiv$@ 10 ))
proof1 = refl

-- codeGear with pre-condtion and post-condition
--
--                                                                              ↓PostCondition
whileTest' : {l : Level} {t : Set l} @$\rightarrow$@ {c10 :  @$\mathbb{N}$@ } @$\rightarrow$@ (Code : (env : Env )  @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t
whileTest' {_} {_}  {c10} next = next env proof2
  where
    env : Env
    env = record {vari = 0 ; varn = c10 }
    proof2 : ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10) -- PostCondition
    proof2 = record {pi1 = refl ; pi2 = refl}


open import Data.Empty
open import Data.Nat.Properties


{-@$\#$@ TERMINATING @$\#$@-} --                                                  ↓PreCondition(Invaliant)
whileLoop' : {l : Level} {t : Set l} @$\rightarrow$@ (env : Env ) @$\rightarrow$@ {c10 :  @$\mathbb{N}$@ } @$\rightarrow$@ ((varn env) + (vari env) @$\equiv$@ c10) @$\rightarrow$@ (Code : Env  @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoop' env proof next with  ( suc zero  @$\leq$@? (varn  env) )
whileLoop' env proof next | no p = next env
whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next
    where
      env1 = record env {varn = (varn  env) - 1 ; vari = (vari env) + 1}
      1<0 : 1 @$\leq$@ zero @$\rightarrow$@ @$\bot$@
      1<0 ()
      proof3 : (suc zero  @$\leq$@ (varn  env))  @$\rightarrow$@ varn env1 + vari env1 @$\equiv$@ c10
      proof3 (s@$\leq$@s lt) with varn  env
      proof3 (s@$\leq$@s z@$\leq$@n) | zero = @$\bot$@-elim (1<0 p)
      proof3 (s@$\leq$@s (z@$\leq$@n {n'}) ) | suc n =  let open @$\equiv$@-Reasoning  in
          begin
             n' + (vari env + 1)
          @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ n' + z ) ( +-sym  {vari env} {1} )  @$\rangle$@
             n' + (1 + vari env )
          @$\equiv$@@$\langle$@ sym ( +-assoc (n')  1 (vari env) ) @$\rangle$@
             (n' + 1) + vari env
          @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z + vari env )  +1@$\equiv$@suc  @$\rangle$@
             (suc n' ) + vari env
          @$\equiv$@@$\langle$@@$\rangle$@
             varn env + vari env
          @$\equiv$@@$\langle$@ proof  @$\rangle$@
             c10
          @$\blacksquare$@

-- Condition to Invariant
conversion1 : {l : Level} {t : Set l } @$\rightarrow$@ (env : Env ) @$\rightarrow$@ {c10 :  @$\mathbb{N}$@ } @$\rightarrow$@ ((vari env) @$\equiv$@ 0) @$\wedge$@ ((varn env) @$\equiv$@ c10)
               @$\rightarrow$@ (Code : (env1 : Env ) @$\rightarrow$@ (varn env1 + vari env1 @$\equiv$@ c10) @$\rightarrow$@ t) @$\rightarrow$@ t
conversion1 env {c10} p1 next = next env proof4
   where
      proof4 : varn env + vari env @$\equiv$@ c10
      proof4 = let open @$\equiv$@-Reasoning  in
          begin
            varn env + vari env
          @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ n + vari env ) (pi2 p1 ) @$\rangle$@
            c10 + vari env
          @$\equiv$@@$\langle$@ cong ( @$\lambda$@ n @$\rightarrow$@ c10 + n ) (pi1 p1 ) @$\rangle$@
            c10 + 0
          @$\equiv$@@$\langle$@ +-sym {c10} {0} @$\rangle$@
            c10
          @$\blacksquare$@

-- all proofs are connected
proofGears : {c10 :  @$\mathbb{N}$@ } @$\rightarrow$@ Set
proofGears {c10} = whileTest' {_} {_} {c10} (@$\lambda$@ n p1 @$\rightarrow$@  conversion1 n p1 (@$\lambda$@ n1 p2 @$\rightarrow$@ whileLoop' n1 p2 (@$\lambda$@ n2 @$\rightarrow$@  ( vari n2 @$\equiv$@ c10 ))))

--
-- codeGear with loop step and closed environment
--

open import Relation.Binary

record Envc : Set (succ Zero) where
  field
    c10 : @$\mathbb{N}$@
    varn : @$\mathbb{N}$@
    vari : @$\mathbb{N}$@
open Envc

whileTestP : {l : Level} {t : Set l} @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ (Code : Envc @$\rightarrow$@ t) @$\rightarrow$@ t
whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } )

whileLoopP : {l : Level} {t : Set l} @$\rightarrow$@ Envc @$\rightarrow$@ (next : Envc @$\rightarrow$@ t) @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoopP env next exit with <-cmp 0 (varn env)
whileLoopP env next exit | tri@$\thickapprox$@ @$\neg$@a b @$\neg$@c = exit env
whileLoopP env next exit | tri< a @$\neg$@b @$\neg$@c =
     next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 })

-- equivalent of whileLoopP but it looks like an induction on varn
whileLoopP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ (next : Envc @$\rightarrow$@ t) @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoopP' zero env refl _ exit = exit env
whileLoopP' (suc n) env refl next _ = next (record {c10 = (c10 env) ; varn = varn env ; vari = suc (vari env) })

-- normal loop without termination
{-@$\#$@ TERMINATING @$\#$@-}
loopP : {l : Level} {t : Set l} @$\rightarrow$@ Envc @$\rightarrow$@ (exit : Envc @$\rightarrow$@ t) @$\rightarrow$@ t
loopP env exit = whileLoopP env (@$\lambda$@ env @$\rightarrow$@ loopP env exit ) exit

whileTestPCall : (c10 :  @$\mathbb{N}$@ ) @$\rightarrow$@ Envc
whileTestPCall c10 = whileTestP {_} {_} c10 (@$\lambda$@ env @$\rightarrow$@ loopP env (@$\lambda$@ env @$\rightarrow$@  env))

--
-- codeGears with states of condition
--
data whileTestState  : Set where
  s1 : whileTestState
  s2 : whileTestState
  sf : whileTestState

whileTestStateP : whileTestState @$\rightarrow$@ Envc @$\rightarrow$@  Set
whileTestStateP s1 env = (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env)
whileTestStateP s2 env = (varn env + vari env @$\equiv$@ c10 env)
whileTestStateP sf env = (vari env @$\equiv$@ c10 env)

whileTestPwP : {l : Level} {t : Set l} @$\rightarrow$@ (c10 : @$\mathbb{N}$@) @$\rightarrow$@ ((env : Envc ) @$\rightarrow$@ whileTestStateP s1 env @$\rightarrow$@ t) @$\rightarrow$@ t
whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where
   env : Envc
   env = whileTestP c10 ( @$\lambda$@ env @$\rightarrow$@ env )

whileLoopPwP : {l : Level} {t : Set l}   @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env
    @$\rightarrow$@ (next : (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env  @$\rightarrow$@ t)
    @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env  @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoopPwP env s next exit with <-cmp 0 (varn env)
whileLoopPwP env s next exit | tri@$\thickapprox$@ @$\neg$@a b @$\neg$@c = exit env (lem (sym b) s)
  where
    lem : (varn env @$\equiv$@ 0) @$\rightarrow$@ (varn env + vari env @$\equiv$@ c10 env) @$\rightarrow$@ vari env @$\equiv$@ c10 env
    lem refl refl = refl
whileLoopPwP env s next exit | tri< a @$\neg$@b @$\neg$@c  = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a)
  where
    1<0 : 1 @$\leq$@ zero @$\rightarrow$@ @$\bot$@
    1<0 ()
    proof5 : (suc zero  @$\leq$@ (varn  env))  @$\rightarrow$@ (varn env - 1) + (vari env + 1) @$\equiv$@ c10 env
    proof5 (s@$\leq$@s lt) with varn  env
    proof5 (s@$\leq$@s z@$\leq$@n) | zero = @$\bot$@-elim (1<0 a)
    proof5 (s@$\leq$@s (z@$\leq$@n {n'}) ) | suc n = let open @$\equiv$@-Reasoning in
      begin
        n' + (vari env + 1)
      @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ n' + z ) ( +-sym  {vari env} {1} )  @$\rangle$@
        n' + (1 + vari env )
      @$\equiv$@@$\langle$@ sym ( +-assoc (n')  1 (vari env) ) @$\rangle$@
        (n' + 1) + vari env
      @$\equiv$@@$\langle$@ cong ( @$\lambda$@ z @$\rightarrow$@ z + vari env )  +1@$\equiv$@suc  @$\rangle$@
        (suc n' ) + vari env
      @$\equiv$@@$\langle$@@$\rangle$@
        varn env + vari env
      @$\equiv$@@$\langle$@ s  @$\rangle$@
         c10 env
      @$\blacksquare$@


whileLoopPwP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env
  @$\rightarrow$@ (next : (env : Envc ) @$\rightarrow$@ (pred n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env  @$\rightarrow$@ t)
  @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env  @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoopPwP' zero env refl refl next exit = exit env refl
whileLoopPwP' (suc n) env refl refl next exit = next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env))


{-@$\#$@ TERMINATING @$\#$@-}
loopPwP : {l : Level} {t : Set l} @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t
loopPwP env s exit = whileLoopPwP env s (@$\lambda$@ env s @$\rightarrow$@ loopPwP env s exit ) exit


loopPwP' : {l : Level} {t : Set l} @$\rightarrow$@ (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn env) @$\rightarrow$@ whileTestStateP s2 env @$\rightarrow$@ (exit : (env : Envc ) @$\rightarrow$@ whileTestStateP sf env @$\rightarrow$@ t) @$\rightarrow$@ t
loopPwP' zero env refl refl exit = exit env refl
loopPwP' (suc n) env refl refl exit  = whileLoopPwP' (suc n) env refl refl (@$\lambda$@ env x y @$\rightarrow$@ loopPwP' n env x y exit) exit


loopHelper : (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc ) @$\rightarrow$@ (eq : varn env @$\equiv$@ n) @$\rightarrow$@ (seq : whileTestStateP s2 env) @$\rightarrow$@ loopPwP' n env (sym eq) seq @$\lambda$@ env@$\_{1}$@ x @$\rightarrow$@ (vari env@$\_{1}$@ @$\equiv$@ c10 env@$\_{1}$@)
loopHelper zero env eq refl rewrite eq = refl
loopHelper (suc n) env eq refl rewrite eq = loopHelper n (record { c10 = suc (n + vari env) ; varn = n ; vari = suc (vari env) }) refl (+-suc n (vari env))


--  all codtions are correctly connected and required condtion is proved in the continuation
--      use required condition as t in (env @$\rightarrow$@ t) @$\rightarrow$@ t
--
whileTestPCallwP : (c :  @$\mathbb{N}$@ ) @$\rightarrow$@ Set
whileTestPCallwP c = whileTestPwP {_} {_} c ( @$\lambda$@ env s @$\rightarrow$@ loopPwP env (conv env s) ( @$\lambda$@ env s @$\rightarrow$@ vari env @$\equiv$@ c10 env )  ) where
   conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env
   conv e record { pi1 = refl ; pi2 = refl } = +zero


whileTestPCallwP' : (c :  @$\mathbb{N}$@ ) @$\rightarrow$@ Set
whileTestPCallwP' c = whileTestPwP {_} {_} c (@$\lambda$@ env s @$\rightarrow$@ loopPwP' (varn env) env refl (conv env s) ( @$\lambda$@ env s @$\rightarrow$@ vari env @$\equiv$@ c10 env )  ) where
  conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env
  conv e record { pi1 = refl ; pi2 = refl } = +zero

helperCallwP : (c : @$\mathbb{N}$@) @$\rightarrow$@ whileTestPCallwP' c
helperCallwP c = whileTestPwP {_} {_} c (@$\lambda$@ env s @$\rightarrow$@ loopHelper c (record { c10 = c ; varn = c ; vari = zero }) refl +zero)

--
-- Using imply relation to make soundness explicit
-- termination is shown by induction on varn
--

data _implies_  (A B : Set ) : Set (succ Zero) where
    proof : ( A @$\rightarrow$@ B ) @$\rightarrow$@ A implies B

whileTestPSem :  (c : @$\mathbb{N}$@) @$\rightarrow$@ whileTestP c ( @$\lambda$@ env @$\rightarrow$@ @$\top$@ implies (whileTestStateP s1 env) )
whileTestPSem c = proof ( @$\lambda$@ _ @$\rightarrow$@ record { pi1 = refl ; pi2 = refl } )

whileTestPSemSound : (c : @$\mathbb{N}$@ ) (output : Envc ) @$\rightarrow$@ output @$\equiv$@ whileTestP c (@$\lambda$@ e @$\rightarrow$@ e) @$\rightarrow$@ @$\top$@ implies ((vari output @$\equiv$@ 0) @$\wedge$@ (varn output @$\equiv$@ c))
whileTestPSemSound c output refl = whileTestPSem c


whileConvPSemSound : {l : Level} @$\rightarrow$@ (input : Envc) @$\rightarrow$@ (whileTestStateP s1 input ) implies (whileTestStateP s2 input)
whileConvPSemSound input = proof @$\lambda$@ x @$\rightarrow$@ (conv input x) where
  conv : (env : Envc ) @$\rightarrow$@ (vari env @$\equiv$@ 0) @$\wedge$@ (varn env @$\equiv$@ c10 env) @$\rightarrow$@ varn env + vari env @$\equiv$@ c10 env
  conv e record { pi1 = refl ; pi2 = refl } = +zero

loopPP : (n : @$\mathbb{N}$@) @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ (n @$\equiv$@ varn input) @$\rightarrow$@ Envc
loopPP zero input refl = input
loopPP (suc n) input refl =
    loopPP n (record input { varn = pred (varn input) ; vari = suc (vari input)}) refl

whileLoopPSem : {l : Level} {t : Set l}   @$\rightarrow$@ (input : Envc ) @$\rightarrow$@ whileTestStateP s2 input
  @$\rightarrow$@ (next : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP s2 output)  @$\rightarrow$@ t)
  @$\rightarrow$@ (exit : (output : Envc ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output)  @$\rightarrow$@ t) @$\rightarrow$@ t
whileLoopPSem env s next exit with varn env | s
... | zero | _ = exit env (proof (@$\lambda$@ z @$\rightarrow$@ z))
... | (suc varn ) | refl = next ( record env { varn = varn ; vari = suc (vari env) } ) (proof @$\lambda$@ x @$\rightarrow$@ +-suc varn (vari env) )

loopPPSem : (input output : Envc ) @$\rightarrow$@  output @$\equiv$@ loopPP (varn input)  input refl
  @$\rightarrow$@ (whileTestStateP s2 input ) @$\rightarrow$@ (whileTestStateP s2 input ) implies (whileTestStateP sf output)
loopPPSem input output refl s2p = loopPPSemInduct (varn input) input  refl refl s2p
  where
    lem : (n : @$\mathbb{N}$@) @$\rightarrow$@ (env : Envc) @$\rightarrow$@ n + suc (vari env) @$\equiv$@ suc (n + vari env)
    lem n env = +-suc (n) (vari env)
    loopPPSemInduct : (n : @$\mathbb{N}$@) @$\rightarrow$@ (current : Envc) @$\rightarrow$@ (eq : n @$\equiv$@ varn current) @$\rightarrow$@  (loopeq : output @$\equiv$@ loopPP n current eq)
      @$\rightarrow$@ (whileTestStateP s2 current ) @$\rightarrow$@ (whileTestStateP s2 current ) implies (whileTestStateP sf output)
    loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (@$\lambda$@ x @$\rightarrow$@ refl)
    loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) =
        whileLoopPSem current refl
            (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl)
            (@$\lambda$@ output x @$\rightarrow$@ loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl)

whileLoopPSemSound : {l : Level} @$\rightarrow$@ (input output : Envc )
   @$\rightarrow$@ whileTestStateP s2 input
   @$\rightarrow$@  output @$\equiv$@ loopPP (varn input) input refl
   @$\rightarrow$@ (whileTestStateP s2 input ) implies ( whileTestStateP sf output )
whileLoopPSemSound {l} input output pre eq = loopPPSem input output eq pre