Mercurial > hg > Papers > 2022 > soto-sigos
comparison Paper/src/agda/utilities.agda.replaced @ 0:14a0e409d574
ADD fast commit
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 23:13:44 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:14a0e409d574 |
---|---|
1 {-!$\#$! OPTIONS --allow-unsolved-metas !$\#$!-} | |
2 module utilities where | |
3 | |
4 open import Function | |
5 open import Data.Nat | |
6 open import Data.Product | |
7 open import Data.Bool hiding ( _≟_ ; _!$\leq$!?_) | |
8 open import Level renaming ( suc to succ ; zero to Zero ) | |
9 open import Relation.Nullary using (!$\neg$!_; Dec; yes; no) | |
10 open import Relation.Binary.PropositionalEquality | |
11 | |
12 Pred : Set !$\rightarrow$! Set!$\_{1}$! | |
13 Pred X = X !$\rightarrow$! Set | |
14 | |
15 Imply : Set !$\rightarrow$! Set !$\rightarrow$! Set | |
16 Imply X Y = X !$\rightarrow$! Y | |
17 | |
18 Iff : Set !$\rightarrow$! Set !$\rightarrow$! Set | |
19 Iff X Y = Imply X Y !$\times$! Imply Y X | |
20 | |
21 record _!$\wedge$!_ {n : Level } (a : Set n) (b : Set n): Set n where | |
22 field | |
23 pi1 : a | |
24 pi2 : b | |
25 | |
26 open _!$\wedge$!_ | |
27 | |
28 _-_ : !$\mathbb{N}$! !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! !$\mathbb{N}$! | |
29 x - zero = x | |
30 zero - _ = zero | |
31 (suc x) - (suc y) = x - y | |
32 | |
33 +zero : { y : !$\mathbb{N}$! } !$\rightarrow$! y + zero !$\equiv$! y | |
34 +zero {zero} = refl | |
35 +zero {suc y} = cong ( !$\lambda$! x !$\rightarrow$! suc x ) ( +zero {y} ) | |
36 | |
37 | |
38 +-sym : { x y : !$\mathbb{N}$! } !$\rightarrow$! x + y !$\equiv$! y + x | |
39 +-sym {zero} {zero} = refl | |
40 +-sym {zero} {suc y} = let open !$\equiv$!-Reasoning in | |
41 begin | |
42 zero + suc y | |
43 !$\equiv$!!$\langle$!!$\rangle$! | |
44 suc y | |
45 !$\equiv$!!$\langle$! sym +zero !$\rangle$! | |
46 suc y + zero | |
47 !$\blacksquare$! | |
48 +-sym {suc x} {zero} = let open !$\equiv$!-Reasoning in | |
49 begin | |
50 suc x + zero | |
51 !$\equiv$!!$\langle$! +zero !$\rangle$! | |
52 suc x | |
53 !$\equiv$!!$\langle$!!$\rangle$! | |
54 zero + suc x | |
55 !$\blacksquare$! | |
56 +-sym {suc x} {suc y} = cong ( !$\lambda$! z !$\rightarrow$! suc z ) ( let open !$\equiv$!-Reasoning in | |
57 begin | |
58 x + suc y | |
59 !$\equiv$!!$\langle$! +-sym {x} {suc y} !$\rangle$! | |
60 suc (y + x) | |
61 !$\equiv$!!$\langle$! cong ( !$\lambda$! z !$\rightarrow$! suc z ) (+-sym {y} {x}) !$\rangle$! | |
62 suc (x + y) | |
63 !$\equiv$!!$\langle$! sym ( +-sym {y} {suc x}) !$\rangle$! | |
64 y + suc x | |
65 !$\blacksquare$! ) | |
66 | |
67 | |
68 minus-plus : { x y : !$\mathbb{N}$! } !$\rightarrow$! (suc x - 1) + (y + 1) !$\equiv$! suc x + y | |
69 minus-plus {zero} {y} = +-sym {y} {1} | |
70 minus-plus {suc x} {y} = cong ( !$\lambda$! z !$\rightarrow$! suc z ) (minus-plus {x} {y}) | |
71 | |
72 +1!$\equiv$!suc : { x : !$\mathbb{N}$! } !$\rightarrow$! x + 1 !$\equiv$! suc x | |
73 +1!$\equiv$!suc {zero} = refl | |
74 +1!$\equiv$!suc {suc x} = cong ( !$\lambda$! z !$\rightarrow$! suc z ) ( +1!$\equiv$!suc {x} ) | |
75 | |
76 lt : !$\mathbb{N}$! !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! Bool | |
77 lt x y with (suc x ) !$\leq$!? y | |
78 lt x y | yes p = true | |
79 lt x y | no !$\neg$!p = false | |
80 | |
81 pred!$\mathbb{N}$! : {n : !$\mathbb{N}$! } !$\rightarrow$! lt 0 n !$\equiv$! true !$\rightarrow$! !$\mathbb{N}$! | |
82 pred!$\mathbb{N}$! {zero} () | |
83 pred!$\mathbb{N}$! {suc n} refl = n | |
84 | |
85 pred!$\mathbb{N}$!+1=n : {n : !$\mathbb{N}$! } !$\rightarrow$! (less : lt 0 n !$\equiv$! true ) !$\rightarrow$! (pred!$\mathbb{N}$! less) + 1 !$\equiv$! n | |
86 pred!$\mathbb{N}$!+1=n {zero} () | |
87 pred!$\mathbb{N}$!+1=n {suc n} refl = +1!$\equiv$!suc | |
88 | |
89 suc-pred!$\mathbb{N}$!=n : {n : !$\mathbb{N}$! } !$\rightarrow$! (less : lt 0 n !$\equiv$! true ) !$\rightarrow$! suc (pred!$\mathbb{N}$! less) !$\equiv$! n | |
90 suc-pred!$\mathbb{N}$!=n {zero} () | |
91 suc-pred!$\mathbb{N}$!=n {suc n} refl = refl | |
92 | |
93 Equal : !$\mathbb{N}$! !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! Bool | |
94 Equal x y with x ≟ y | |
95 Equal x y | yes p = true | |
96 Equal x y | no !$\neg$!p = false | |
97 | |
98 _!$\Rightarrow$!_ : Bool !$\rightarrow$! Bool !$\rightarrow$! Bool | |
99 false !$\Rightarrow$! _ = true | |
100 true !$\Rightarrow$! true = true | |
101 true !$\Rightarrow$! false = false | |
102 | |
103 !$\Rightarrow$!t : {x : Bool} !$\rightarrow$! x !$\Rightarrow$! true !$\equiv$! true | |
104 !$\Rightarrow$!t {x} with x | |
105 !$\Rightarrow$!t {x} | false = refl | |
106 !$\Rightarrow$!t {x} | true = refl | |
107 | |
108 f!$\Rightarrow$! : {x : Bool} !$\rightarrow$! false !$\Rightarrow$! x !$\equiv$! true | |
109 f!$\Rightarrow$! {x} with x | |
110 f!$\Rightarrow$! {x} | false = refl | |
111 f!$\Rightarrow$! {x} | true = refl | |
112 | |
113 !$\wedge$!-pi1 : { x y : Bool } !$\rightarrow$! x !$\wedge$! y !$\equiv$! true !$\rightarrow$! x !$\equiv$! true | |
114 !$\wedge$!-pi1 {x} {y} eq with x | y | eq | |
115 !$\wedge$!-pi1 {x} {y} eq | false | b | () | |
116 !$\wedge$!-pi1 {x} {y} eq | true | false | () | |
117 !$\wedge$!-pi1 {x} {y} eq | true | true | refl = refl | |
118 | |
119 !$\wedge$!-pi2 : { x y : Bool } !$\rightarrow$! x !$\wedge$! y !$\equiv$! true !$\rightarrow$! y !$\equiv$! true | |
120 !$\wedge$!-pi2 {x} {y} eq with x | y | eq | |
121 !$\wedge$!-pi2 {x} {y} eq | false | b | () | |
122 !$\wedge$!-pi2 {x} {y} eq | true | false | () | |
123 !$\wedge$!-pi2 {x} {y} eq | true | true | refl = refl | |
124 | |
125 !$\wedge$!true : { x : Bool } !$\rightarrow$! x !$\wedge$! true !$\equiv$! x | |
126 !$\wedge$!true {x} with x | |
127 !$\wedge$!true {x} | false = refl | |
128 !$\wedge$!true {x} | true = refl | |
129 | |
130 true!$\wedge$! : { x : Bool } !$\rightarrow$! true !$\wedge$! x !$\equiv$! x | |
131 true!$\wedge$! {x} with x | |
132 true!$\wedge$! {x} | false = refl | |
133 true!$\wedge$! {x} | true = refl | |
134 bool-case : ( x : Bool ) { p : Set } !$\rightarrow$! ( x !$\equiv$! true !$\rightarrow$! p ) !$\rightarrow$! ( x !$\equiv$! false !$\rightarrow$! p ) !$\rightarrow$! p | |
135 bool-case x T F with x | |
136 bool-case x T F | false = F refl | |
137 bool-case x T F | true = T refl | |
138 | |
139 impl!$\Rightarrow$! : {x y : Bool} !$\rightarrow$! (x !$\equiv$! true !$\rightarrow$! y !$\equiv$! true ) !$\rightarrow$! x !$\Rightarrow$! y !$\equiv$! true | |
140 impl!$\Rightarrow$! {x} {y} p = bool-case x (!$\lambda$! x=t !$\rightarrow$! let open !$\equiv$!-Reasoning in | |
141 begin | |
142 x !$\Rightarrow$! y | |
143 !$\equiv$!!$\langle$! cong ( !$\lambda$! z !$\rightarrow$! x !$\Rightarrow$! z ) (p x=t ) !$\rangle$! | |
144 x !$\Rightarrow$! true | |
145 !$\equiv$!!$\langle$! !$\Rightarrow$!t !$\rangle$! | |
146 true | |
147 !$\blacksquare$! | |
148 ) ( !$\lambda$! x=f !$\rightarrow$! let open !$\equiv$!-Reasoning in | |
149 begin | |
150 x !$\Rightarrow$! y | |
151 !$\equiv$!!$\langle$! cong ( !$\lambda$! z !$\rightarrow$! z !$\Rightarrow$! y ) x=f !$\rangle$! | |
152 true | |
153 !$\blacksquare$! | |
154 ) | |
155 | |
156 Equal!$\rightarrow$!!$\equiv$! : { x y : !$\mathbb{N}$! } !$\rightarrow$! Equal x y !$\equiv$! true !$\rightarrow$! x !$\equiv$! y | |
157 Equal!$\rightarrow$!!$\equiv$! {x} {y} eq with x ≟ y | |
158 Equal!$\rightarrow$!!$\equiv$! {x} {y} refl | yes refl = refl | |
159 Equal!$\rightarrow$!!$\equiv$! {x} {y} () | no !$\neg$!p | |
160 | |
161 Equal+1 : { x y : !$\mathbb{N}$! } !$\rightarrow$! Equal x y !$\equiv$! Equal (suc x) (suc y) | |
162 Equal+1 {x} {y} with x ≟ y | |
163 Equal+1 {x} {.x} | yes refl = {!!} | |
164 Equal+1 {x} {y} | no !$\neg$!p = {!!} | |
165 | |
166 open import Data.Empty | |
167 | |
168 !$\equiv$!!$\rightarrow$!Equal : { x y : !$\mathbb{N}$! } !$\rightarrow$! x !$\equiv$! y !$\rightarrow$! Equal x y !$\equiv$! true | |
169 !$\equiv$!!$\rightarrow$!Equal {x} {.x} refl with x ≟ x | |
170 !$\equiv$!!$\rightarrow$!Equal {x} {.x} refl | yes refl = refl | |
171 !$\equiv$!!$\rightarrow$!Equal {x} {.x} refl | no !$\neg$!p = !$\bot$!-elim ( !$\neg$!p refl ) |