Mercurial > hg > Papers > 2022 > soto-sigos
comparison Paper/src/gears-while.agda @ 0:14a0e409d574
ADD fast commit
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 23:13:44 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:14a0e409d574 |
---|---|
1 whileTest : {l : Level} {t : Set l} -> {c10 : ℕ } → (Code : (env : Env) -> | |
2 ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -> t) -> t | |
3 whileTest {_} {_} {c10} next = next env proof2 | |
4 where | |
5 env : Env | |
6 env = record {vari = 0 ; varn = c10} | |
7 proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) | |
8 proof2 = record {pi1 = refl ; pi2 = refl} | |
9 | |
10 conversion1 : {l : Level} {t : Set l } → (env : Env) -> {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) | |
11 -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ c10) -> t) -> t | |
12 conversion1 env {c10} p1 next = next env proof4 | |
13 where | |
14 proof4 : varn env + vari env ≡ c10 | |
15 proof4 = let open ≡-Reasoning in | |
16 begin | |
17 varn env + vari env | |
18 ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ | |
19 c10 + vari env | |
20 ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ | |
21 c10 + 0 | |
22 ≡⟨ +-sym {c10} {0} ⟩ | |
23 c10 | |
24 ∎ | |
25 | |
26 {-# TERMINATING #-} | |
27 whileLoop : {l : Level} {t : Set l} -> (env : Env) -> {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) -> (Code : Env -> t) -> t | |
28 whileLoop env proof next with ( suc zero ≤? (varn env) ) | |
29 whileLoop env proof next | no p = next env | |
30 whileLoop env {c10} proof next | yes p = whileLoop env1 (proof3 p ) next | |
31 where | |
32 env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} | |
33 1<0 : 1 ≤ zero → ⊥ | |
34 1<0 () | |
35 proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 | |
36 proof3 (s≤s lt) with varn env | |
37 proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) | |
38 proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in | |
39 begin | |
40 n' + (vari env + 1) | |
41 ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ | |
42 n' + (1 + vari env ) | |
43 ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ | |
44 (n' + 1) + vari env | |
45 ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ | |
46 (suc n' ) + vari env | |
47 ≡⟨⟩ | |
48 varn env + vari env | |
49 ≡⟨ proof ⟩ | |
50 c10 | |
51 ∎ |