Mercurial > hg > Papers > 2022 > soto-sigos
diff Paper/src/agda-hoare-soundness.agda @ 0:14a0e409d574
ADD fast commit
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 23:13:44 +0900 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Paper/src/agda-hoare-soundness.agda Sun Apr 24 23:13:44 2022 +0900 @@ -0,0 +1,66 @@ +Soundness : {bPre : Cond} -> {cm : Comm} -> {bPost : Cond} -> + HTProof bPre cm bPost -> Satisfies bPre cm bPost +Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2 + = axiomValid bPre cm bPost pr s1 s2 q1 q2 +Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2 + = substId1 State {Level.zero} {State} {s1} {s2} (proj₂ q2) (SemCond bPost) q1 +Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 () +Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost) + s1 s2 q1 q2 + = let hyp : Satisfies bPre' cm bPost' + hyp = Soundness pr + in tautValid bPost' bPost tautPost s2 (hyp s1 s2 (tautValid bPre bPre' tautPre s1 q1) q2) +Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2) + s1 s2 q1 q2 + = let hyp1 : Satisfies bPre cm1 bMid + hyp1 = Soundness pr1 + hyp2 : Satisfies bMid cm2 bPost + hyp2 = Soundness pr2 + in hyp2 (proj₁ q2) s2 (hyp1 s1 (proj₁ q2) q1 (proj₁ (proj₂ q2))) (proj₂ (proj₂ q2)) +Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse) + s1 s2 q1 q2 + = let hypThen : Satisfies (bPre /\ b) cmThen bPost + hypThen = Soundness pThen + hypElse : Satisfies (bPre /\ neg b) cmElse bPost + hypElse = Soundness pElse + rThen : RelOpState.comp (RelOpState.delta (SemCond b)) + (SemComm cmThen) s1 s2 -> SemCond bPost s2 + rThen = λ h -> hypThen s1 s2 ((proj₂ (respAnd bPre b s1)) (q1 , proj₁ t1)) + (proj₂ ((proj₂ (RelOpState.deltaRestPre (SemCond b) (SemComm cmThen) s1 s2)) h)) + rElse : RelOpState.comp (RelOpState.delta (NotP (SemCond b))) + (SemComm cmElse) s1 s2 -> SemCond bPost s2 + rElse = λ h -> + let t10 : (NotP (SemCond b) s1) × (SemComm cmElse s1 s2) + t10 = proj₂ (RelOpState.deltaRestPre + (NotP (SemCond b)) (SemComm cmElse) s1 s2) h + in hypElse s1 s2 (proj₂ (respAnd bPre (neg b) s1) + (q1 , (proj₂ (respNeg b s1) (proj₁ t10)))) (proj₂ t10) + in when rThen rElse q2 +Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2 + = proj₂ (respAnd bInv (neg b) s2) + (lem1 (proj₁ q2) s2 (proj₁ t15) , proj₂ (respNeg b s2) (proj₂ t15)) + where + hyp : Satisfies (bInv /\ b) cm' bInv + hyp = Soundness pr + Rel1 : ℕ -> Rel State (Level.zero) + Rel1 = λ m -> + RelOpState.repeat + m + (RelOpState.comp (RelOpState.delta (SemCond b)) + (SemComm cm')) + t15 : (Rel1 (proj₁ q2) s1 s2) × (NotP (SemCond b) s2) + t15 = proj₂ (RelOpState.deltaRestPost + (NotP (SemCond b)) (Rel1 (proj₁ q2)) s1 s2) (proj₂ q2) + lem1 : (m : ℕ) -> (ss2 : State) -> Rel1 m s1 ss2 -> SemCond bInv ss2 + lem1 zero ss2 h = substId1 State (proj₂ h) (SemCond bInv) q1 + lem1 (suc n) ss2 h + = let hyp2 : (z : State) -> Rel1 (proj₁ q2) s1 z -> + SemCond bInv z + hyp2 = lem1 n + t22 : (SemCond b (proj₁ h)) × (SemComm cm' (proj₁ h) ss2) + t22 = proj₂ (RelOpState.deltaRestPre (SemCond b) (SemComm cm') (proj₁ h) ss2) + (proj₂ (proj₂ h)) + t23 : SemCond (bInv /\ b) (proj₁ h) + t23 = proj₂ (respAnd bInv b (proj₁ h)) + (hyp2 (proj₁ h) (proj₁ (proj₂ h)) , proj₁ t22) + in hyp (proj₁ h) ss2 t23 (proj₂ t22)