Mercurial > hg > Papers > 2023 > soto-master
view Paper/src/agda/hoare-while.agda.replaced @ 3:c28e8156a37b
Add paper init~agda
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Jan 2023 13:40:03 +0900 |
parents | a72446879486 |
children |
line wrap: on
line source
module hoare-while where open import Data.Nat open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat.Properties as NatProp -- <-cmp open import Relation.Binary record Envc : Set (succ Zero) where field c10 : !$\mathbb{N}$! varn : !$\mathbb{N}$! vari : !$\mathbb{N}$! open Envc whileTestP : {l : Level} {t : Set l} !$\rightarrow$! (c10 : !$\mathbb{N}$!) !$\rightarrow$! (next : Envc !$\rightarrow$! t) !$\rightarrow$! t whileTestP c10 next = next (record {varn = c10 ; vari = 0 ; c10 = c10 } ) whileLoopP : {l : Level} {t : Set l} !$\rightarrow$! Envc !$\rightarrow$! (next : Envc !$\rightarrow$! t) !$\rightarrow$! (exit : Envc !$\rightarrow$! t) !$\rightarrow$! t whileLoopP env next exit with (varn env) ... | zero = exit env ... | suc n = exit (record env { varn = n ; vari = (suc n) }) {-# TERMINATING #-} loopP : {l : Level} {t : Set l} !$\rightarrow$! Envc !$\rightarrow$! (exit : Envc !$\rightarrow$! t) !$\rightarrow$! t loopP env exit = whileLoopP env (!$\lambda$! env !$\rightarrow$! loopP env exit ) exit whileTestPCall : (c10 : !$\mathbb{N}$! ) !$\rightarrow$! Envc whileTestPCall c10 = whileTestP {_} {_} c10 (!$\lambda$! env !$\rightarrow$! loopP env (!$\lambda$! env !$\rightarrow$! env)) --- open import Data.Empty --open import Relation.Nullary using (!$\neg$!_; Dec; yes; no) --open import Agda.Builtin.Unit open import utilities open import Relation.Binary.PropositionalEquality open _/\_ data whileTestState : Set where s1 : whileTestState s2 : whileTestState sf : whileTestState whileTestStateP : whileTestState !$\rightarrow$! Envc !$\rightarrow$! Set whileTestStateP s1 env = (vari env !$\equiv$! 0) /\ (varn env !$\equiv$! c10 env) whileTestStateP s2 env = (varn env + vari env !$\equiv$! c10 env) whileTestStateP sf env = (vari env !$\equiv$! c10 env) whileTestPwP : {l : Level} {t : Set l} !$\rightarrow$! (c10 : !$\mathbb{N}$!) !$\rightarrow$! ((env : Envc ) !$\rightarrow$! whileTestStateP s1 env !$\rightarrow$! t) !$\rightarrow$! t whileTestPwP c10 next = next env record { pi1 = refl ; pi2 = refl } where env : Envc env = whileTestP c10 ( !$\lambda$! env !$\rightarrow$! env ) whileLoopPwP : {l : Level} {t : Set l} !$\rightarrow$! (env : Envc ) !$\rightarrow$! whileTestStateP s2 env !$\rightarrow$! (next : (env : Envc ) !$\rightarrow$! whileTestStateP s2 env !$\rightarrow$! t) !$\rightarrow$! (exit : (env : Envc ) !$\rightarrow$! whileTestStateP sf env !$\rightarrow$! t) !$\rightarrow$! t whileLoopPwP env s next exit with <-cmp 0 (varn env) whileLoopPwP env s next exit | tri≈ !$\neg$!a b !$\neg$!c = exit env (lem (sym b) s) where lem : (varn env !$\equiv$! 0) !$\rightarrow$! (varn env + vari env !$\equiv$! c10 env) !$\rightarrow$! vari env !$\equiv$! c10 env lem refl refl = refl whileLoopPwP env s next exit | tri< a !$\neg$!b !$\neg$!c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) (proof5 a) where 1<0 : 1 !$\leq$! zero !$\rightarrow$! !$\bot$! 1<0 () proof5 : (suc zero !$\leq$! (varn env)) !$\rightarrow$! ((varn env ) - 1) + (vari env + 1) !$\equiv$! c10 env proof5 (s!$\leq$!s lt) with varn env proof5 (s!$\leq$!s z!$\leq$!n) | zero = !$\bot$!-elim (1<0 a) proof5 (s!$\leq$!s (z!$\leq$!n {n!$\prime$!}) ) | suc n = let open !$\equiv$!-Reasoning in begin n!$\prime$! + (vari env + 1) !$\equiv$!!$\langle$! cong ( !$\lambda$! z !$\rightarrow$! n!$\prime$! + z ) ( +-sym {vari env} {1} ) !$\rangle$! n!$\prime$! + (1 + vari env ) !$\equiv$!!$\langle$! sym ( +-assoc (n!$\prime$!) 1 (vari env) ) !$\rangle$! (n!$\prime$! + 1) + vari env !$\equiv$!!$\langle$! cong ( !$\lambda$! z !$\rightarrow$! z + vari env ) +1!$\equiv$!suc !$\rangle$! (suc n!$\prime$! ) + vari env !$\equiv$!!$\langle$!!$\rangle$! varn env + vari env !$\equiv$!!$\langle$! s !$\rangle$! c10 env !$\blacksquare$! whileLoopPwP!$\prime$! : {l : Level} {t : Set l} !$\rightarrow$! (n : !$\mathbb{N}$!) !$\rightarrow$! (env : Envc ) !$\rightarrow$! (n !$\equiv$! varn env) !$\rightarrow$! whileTestStateP s2 env !$\rightarrow$! (next : (env : Envc ) !$\rightarrow$! (pred n !$\equiv$! varn env) !$\rightarrow$! whileTestStateP s2 env !$\rightarrow$! t) !$\rightarrow$! (exit : (env : Envc ) !$\rightarrow$! whileTestStateP sf env !$\rightarrow$! t) !$\rightarrow$! t whileLoopPwP!$\prime$! zero env refl refl next exit = exit env refl whileLoopPwP!$\prime$! (suc n) env refl refl next exit = next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env)) whileTestPSemSound : (c : !$\mathbb{N}$! ) (output : Envc ) !$\rightarrow$! output !$\equiv$! whileTestP c (!$\lambda$! e !$\rightarrow$! e) !$\rightarrow$! !$\top$! implies ((vari output !$\equiv$! 0) /\ (varn output !$\equiv$! c)) whileTestPSemSound c output refl = whileTestPSem c