Mercurial > hg > RemoteEditor > vim7
comparison src/hashtab.c @ 0:76efa0be13f1
Initial revision
author | atsuki |
---|---|
date | Sat, 10 Nov 2007 15:07:22 +0900 |
parents | |
children | c16898406ff2 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:76efa0be13f1 |
---|---|
1 /* vi:set ts=8 sts=4 sw=4: | |
2 * | |
3 * VIM - Vi IMproved by Bram Moolenaar | |
4 * | |
5 * Do ":help uganda" in Vim to read copying and usage conditions. | |
6 * Do ":help credits" in Vim to see a list of people who contributed. | |
7 * See README.txt for an overview of the Vim source code. | |
8 */ | |
9 | |
10 /* | |
11 * hashtab.c: Handling of a hashtable with Vim-specific properties. | |
12 * | |
13 * Each item in a hashtable has a NUL terminated string key. A key can appear | |
14 * only once in the table. | |
15 * | |
16 * A hash number is computed from the key for quick lookup. When the hashes | |
17 * of two different keys point to the same entry an algorithm is used to | |
18 * iterate over other entries in the table until the right one is found. | |
19 * To make the iteration work removed keys are different from entries where a | |
20 * key was never present. | |
21 * | |
22 * The mechanism has been partly based on how Python Dictionaries are | |
23 * implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4. | |
24 * | |
25 * The hashtable grows to accommodate more entries when needed. At least 1/3 | |
26 * of the entries is empty to keep the lookup efficient (at the cost of extra | |
27 * memory). | |
28 */ | |
29 | |
30 #include "vim.h" | |
31 | |
32 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO) | |
33 | |
34 #if 0 | |
35 # define HT_DEBUG /* extra checks for table consistency and statistics */ | |
36 | |
37 static long hash_count_lookup = 0; /* count number of hashtab lookups */ | |
38 static long hash_count_perturb = 0; /* count number of "misses" */ | |
39 #endif | |
40 | |
41 /* Magic value for algorithm that walks through the array. */ | |
42 #define PERTURB_SHIFT 5 | |
43 | |
44 static int hash_may_resize __ARGS((hashtab_T *ht, int minitems)); | |
45 | |
46 #if 0 /* currently not used */ | |
47 /* | |
48 * Create an empty hash table. | |
49 * Returns NULL when out of memory. | |
50 */ | |
51 hashtab_T * | |
52 hash_create() | |
53 { | |
54 hashtab_T *ht; | |
55 | |
56 ht = (hashtab_T *)alloc(sizeof(hashtab_T)); | |
57 if (ht != NULL) | |
58 hash_init(ht); | |
59 return ht; | |
60 } | |
61 #endif | |
62 | |
63 /* | |
64 * Initialize an empty hash table. | |
65 */ | |
66 void | |
67 hash_init(ht) | |
68 hashtab_T *ht; | |
69 { | |
70 /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */ | |
71 vim_memset(ht, 0, sizeof(hashtab_T)); | |
72 ht->ht_array = ht->ht_smallarray; | |
73 ht->ht_mask = HT_INIT_SIZE - 1; | |
74 } | |
75 | |
76 /* | |
77 * Free the array of a hash table. Does not free the items it contains! | |
78 * If "ht" is not freed then you should call hash_init() next! | |
79 */ | |
80 void | |
81 hash_clear(ht) | |
82 hashtab_T *ht; | |
83 { | |
84 if (ht->ht_array != ht->ht_smallarray) | |
85 vim_free(ht->ht_array); | |
86 } | |
87 | |
88 /* | |
89 * Free the array of a hash table and all the keys it contains. The keys must | |
90 * have been allocated. "off" is the offset from the start of the allocate | |
91 * memory to the location of the key (it's always positive). | |
92 */ | |
93 void | |
94 hash_clear_all(ht, off) | |
95 hashtab_T *ht; | |
96 int off; | |
97 { | |
98 long todo; | |
99 hashitem_T *hi; | |
100 | |
101 todo = (long)ht->ht_used; | |
102 for (hi = ht->ht_array; todo > 0; ++hi) | |
103 { | |
104 if (!HASHITEM_EMPTY(hi)) | |
105 { | |
106 vim_free(hi->hi_key - off); | |
107 --todo; | |
108 } | |
109 } | |
110 hash_clear(ht); | |
111 } | |
112 | |
113 /* | |
114 * Find "key" in hashtable "ht". "key" must not be NULL. | |
115 * Always returns a pointer to a hashitem. If the item was not found then | |
116 * HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key | |
117 * would be added. | |
118 * WARNING: The returned pointer becomes invalid when the hashtable is changed | |
119 * (adding, setting or removing an item)! | |
120 */ | |
121 hashitem_T * | |
122 hash_find(ht, key) | |
123 hashtab_T *ht; | |
124 char_u *key; | |
125 { | |
126 return hash_lookup(ht, key, hash_hash(key)); | |
127 } | |
128 | |
129 /* | |
130 * Like hash_find(), but caller computes "hash". | |
131 */ | |
132 hashitem_T * | |
133 hash_lookup(ht, key, hash) | |
134 hashtab_T *ht; | |
135 char_u *key; | |
136 hash_T hash; | |
137 { | |
138 hash_T perturb; | |
139 hashitem_T *freeitem; | |
140 hashitem_T *hi; | |
141 int idx; | |
142 | |
143 #ifdef HT_DEBUG | |
144 ++hash_count_lookup; | |
145 #endif | |
146 | |
147 /* | |
148 * Quickly handle the most common situations: | |
149 * - return if there is no item at all | |
150 * - skip over a removed item | |
151 * - return if the item matches | |
152 */ | |
153 idx = (int)(hash & ht->ht_mask); | |
154 hi = &ht->ht_array[idx]; | |
155 | |
156 if (hi->hi_key == NULL) | |
157 return hi; | |
158 if (hi->hi_key == HI_KEY_REMOVED) | |
159 freeitem = hi; | |
160 else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0) | |
161 return hi; | |
162 else | |
163 freeitem = NULL; | |
164 | |
165 /* | |
166 * Need to search through the table to find the key. The algorithm | |
167 * to step through the table starts with large steps, gradually becoming | |
168 * smaller down to (1/4 table size + 1). This means it goes through all | |
169 * table entries in the end. | |
170 * When we run into a NULL key it's clear that the key isn't there. | |
171 * Return the first available slot found (can be a slot of a removed | |
172 * item). | |
173 */ | |
174 for (perturb = hash; ; perturb >>= PERTURB_SHIFT) | |
175 { | |
176 #ifdef HT_DEBUG | |
177 ++hash_count_perturb; /* count a "miss" for hashtab lookup */ | |
178 #endif | |
179 idx = (int)((idx << 2) + idx + perturb + 1); | |
180 hi = &ht->ht_array[idx & ht->ht_mask]; | |
181 if (hi->hi_key == NULL) | |
182 return freeitem == NULL ? hi : freeitem; | |
183 if (hi->hi_hash == hash | |
184 && hi->hi_key != HI_KEY_REMOVED | |
185 && STRCMP(hi->hi_key, key) == 0) | |
186 return hi; | |
187 if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL) | |
188 freeitem = hi; | |
189 } | |
190 } | |
191 | |
192 /* | |
193 * Print the efficiency of hashtable lookups. | |
194 * Useful when trying different hash algorithms. | |
195 * Called when exiting. | |
196 */ | |
197 void | |
198 hash_debug_results() | |
199 { | |
200 #ifdef HT_DEBUG | |
201 fprintf(stderr, "\r\n\r\n\r\n\r\n"); | |
202 fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup); | |
203 fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb); | |
204 fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n", | |
205 hash_count_perturb * 100 / hash_count_lookup); | |
206 #endif | |
207 } | |
208 | |
209 /* | |
210 * Add item with key "key" to hashtable "ht". | |
211 * Returns FAIL when out of memory or the key is already present. | |
212 */ | |
213 int | |
214 hash_add(ht, key) | |
215 hashtab_T *ht; | |
216 char_u *key; | |
217 { | |
218 hash_T hash = hash_hash(key); | |
219 hashitem_T *hi; | |
220 | |
221 hi = hash_lookup(ht, key, hash); | |
222 if (!HASHITEM_EMPTY(hi)) | |
223 { | |
224 EMSG2(_(e_intern2), "hash_add()"); | |
225 return FAIL; | |
226 } | |
227 return hash_add_item(ht, hi, key, hash); | |
228 } | |
229 | |
230 /* | |
231 * Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and | |
232 * "hi" must have been obtained with hash_lookup() and point to an empty item. | |
233 * "hi" is invalid after this! | |
234 * Returns OK or FAIL (out of memory). | |
235 */ | |
236 int | |
237 hash_add_item(ht, hi, key, hash) | |
238 hashtab_T *ht; | |
239 hashitem_T *hi; | |
240 char_u *key; | |
241 hash_T hash; | |
242 { | |
243 /* If resizing failed before and it fails again we can't add an item. */ | |
244 if (ht->ht_error && hash_may_resize(ht, 0) == FAIL) | |
245 return FAIL; | |
246 | |
247 ++ht->ht_used; | |
248 if (hi->hi_key == NULL) | |
249 ++ht->ht_filled; | |
250 hi->hi_key = key; | |
251 hi->hi_hash = hash; | |
252 | |
253 /* When the space gets low may resize the array. */ | |
254 return hash_may_resize(ht, 0); | |
255 } | |
256 | |
257 #if 0 /* not used */ | |
258 /* | |
259 * Overwrite hashtable item "hi" with "key". "hi" must point to the item that | |
260 * is to be overwritten. Thus the number of items in the hashtable doesn't | |
261 * change. | |
262 * Although the key must be identical, the pointer may be different, thus it's | |
263 * set anyway (the key is part of an item with that key). | |
264 * The caller must take care of freeing the old item. | |
265 * "hi" is invalid after this! | |
266 */ | |
267 void | |
268 hash_set(hi, key) | |
269 hashitem_T *hi; | |
270 char_u *key; | |
271 { | |
272 hi->hi_key = key; | |
273 } | |
274 #endif | |
275 | |
276 /* | |
277 * Remove item "hi" from hashtable "ht". "hi" must have been obtained with | |
278 * hash_lookup(). | |
279 * The caller must take care of freeing the item itself. | |
280 */ | |
281 void | |
282 hash_remove(ht, hi) | |
283 hashtab_T *ht; | |
284 hashitem_T *hi; | |
285 { | |
286 --ht->ht_used; | |
287 hi->hi_key = HI_KEY_REMOVED; | |
288 hash_may_resize(ht, 0); | |
289 } | |
290 | |
291 /* | |
292 * Lock a hashtable: prevent that ht_array changes. | |
293 * Don't use this when items are to be added! | |
294 * Must call hash_unlock() later. | |
295 */ | |
296 void | |
297 hash_lock(ht) | |
298 hashtab_T *ht; | |
299 { | |
300 ++ht->ht_locked; | |
301 } | |
302 | |
303 #if 0 /* currently not used */ | |
304 /* | |
305 * Lock a hashtable at the specified number of entries. | |
306 * Caller must make sure no more than "size" entries will be added. | |
307 * Must call hash_unlock() later. | |
308 */ | |
309 void | |
310 hash_lock_size(ht, size) | |
311 hashtab_T *ht; | |
312 int size; | |
313 { | |
314 (void)hash_may_resize(ht, size); | |
315 ++ht->ht_locked; | |
316 } | |
317 #endif | |
318 | |
319 /* | |
320 * Unlock a hashtable: allow ht_array changes again. | |
321 * Table will be resized (shrink) when necessary. | |
322 * This must balance a call to hash_lock(). | |
323 */ | |
324 void | |
325 hash_unlock(ht) | |
326 hashtab_T *ht; | |
327 { | |
328 --ht->ht_locked; | |
329 (void)hash_may_resize(ht, 0); | |
330 } | |
331 | |
332 /* | |
333 * Shrink a hashtable when there is too much empty space. | |
334 * Grow a hashtable when there is not enough empty space. | |
335 * Returns OK or FAIL (out of memory). | |
336 */ | |
337 static int | |
338 hash_may_resize(ht, minitems) | |
339 hashtab_T *ht; | |
340 int minitems; /* minimal number of items */ | |
341 { | |
342 hashitem_T temparray[HT_INIT_SIZE]; | |
343 hashitem_T *oldarray, *newarray; | |
344 hashitem_T *olditem, *newitem; | |
345 int newi; | |
346 int todo; | |
347 long_u oldsize, newsize; | |
348 long_u minsize; | |
349 long_u newmask; | |
350 hash_T perturb; | |
351 | |
352 /* Don't resize a locked table. */ | |
353 if (ht->ht_locked > 0) | |
354 return OK; | |
355 | |
356 #ifdef HT_DEBUG | |
357 if (ht->ht_used > ht->ht_filled) | |
358 EMSG("hash_may_resize(): more used than filled"); | |
359 if (ht->ht_filled >= ht->ht_mask + 1) | |
360 EMSG("hash_may_resize(): table completely filled"); | |
361 #endif | |
362 | |
363 if (minitems == 0) | |
364 { | |
365 /* Return quickly for small tables with at least two NULL items. NULL | |
366 * items are required for the lookup to decide a key isn't there. */ | |
367 if (ht->ht_filled < HT_INIT_SIZE - 1 | |
368 && ht->ht_array == ht->ht_smallarray) | |
369 return OK; | |
370 | |
371 /* | |
372 * Grow or refill the array when it's more than 2/3 full (including | |
373 * removed items, so that they get cleaned up). | |
374 * Shrink the array when it's less than 1/5 full. When growing it is | |
375 * at least 1/4 full (avoids repeated grow-shrink operations) | |
376 */ | |
377 oldsize = ht->ht_mask + 1; | |
378 if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5) | |
379 return OK; | |
380 | |
381 if (ht->ht_used > 1000) | |
382 minsize = ht->ht_used * 2; /* it's big, don't make too much room */ | |
383 else | |
384 minsize = ht->ht_used * 4; /* make plenty of room */ | |
385 } | |
386 else | |
387 { | |
388 /* Use specified size. */ | |
389 if ((long_u)minitems < ht->ht_used) /* just in case... */ | |
390 minitems = (int)ht->ht_used; | |
391 minsize = minitems * 3 / 2; /* array is up to 2/3 full */ | |
392 } | |
393 | |
394 newsize = HT_INIT_SIZE; | |
395 while (newsize < minsize) | |
396 { | |
397 newsize <<= 1; /* make sure it's always a power of 2 */ | |
398 if (newsize == 0) | |
399 return FAIL; /* overflow */ | |
400 } | |
401 | |
402 if (newsize == HT_INIT_SIZE) | |
403 { | |
404 /* Use the small array inside the hashdict structure. */ | |
405 newarray = ht->ht_smallarray; | |
406 if (ht->ht_array == newarray) | |
407 { | |
408 /* Moving from ht_smallarray to ht_smallarray! Happens when there | |
409 * are many removed items. Copy the items to be able to clean up | |
410 * removed items. */ | |
411 mch_memmove(temparray, newarray, sizeof(temparray)); | |
412 oldarray = temparray; | |
413 } | |
414 else | |
415 oldarray = ht->ht_array; | |
416 } | |
417 else | |
418 { | |
419 /* Allocate an array. */ | |
420 newarray = (hashitem_T *)alloc((unsigned) | |
421 (sizeof(hashitem_T) * newsize)); | |
422 if (newarray == NULL) | |
423 { | |
424 /* Out of memory. When there are NULL items still return OK. | |
425 * Otherwise set ht_error, because lookup may result in a hang if | |
426 * we add another item. */ | |
427 if (ht->ht_filled < ht->ht_mask) | |
428 return OK; | |
429 ht->ht_error = TRUE; | |
430 return FAIL; | |
431 } | |
432 oldarray = ht->ht_array; | |
433 } | |
434 vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize)); | |
435 | |
436 /* | |
437 * Move all the items from the old array to the new one, placing them in | |
438 * the right spot. The new array won't have any removed items, thus this | |
439 * is also a cleanup action. | |
440 */ | |
441 newmask = newsize - 1; | |
442 todo = (int)ht->ht_used; | |
443 for (olditem = oldarray; todo > 0; ++olditem) | |
444 if (!HASHITEM_EMPTY(olditem)) | |
445 { | |
446 /* | |
447 * The algorithm to find the spot to add the item is identical to | |
448 * the algorithm to find an item in hash_lookup(). But we only | |
449 * need to search for a NULL key, thus it's simpler. | |
450 */ | |
451 newi = (int)(olditem->hi_hash & newmask); | |
452 newitem = &newarray[newi]; | |
453 | |
454 if (newitem->hi_key != NULL) | |
455 for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT) | |
456 { | |
457 newi = (int)((newi << 2) + newi + perturb + 1); | |
458 newitem = &newarray[newi & newmask]; | |
459 if (newitem->hi_key == NULL) | |
460 break; | |
461 } | |
462 *newitem = *olditem; | |
463 --todo; | |
464 } | |
465 | |
466 if (ht->ht_array != ht->ht_smallarray) | |
467 vim_free(ht->ht_array); | |
468 ht->ht_array = newarray; | |
469 ht->ht_mask = newmask; | |
470 ht->ht_filled = ht->ht_used; | |
471 ht->ht_error = FALSE; | |
472 | |
473 return OK; | |
474 } | |
475 | |
476 /* | |
477 * Get the hash number for a key. | |
478 * If you think you know a better hash function: Compile with HT_DEBUG set and | |
479 * run a script that uses hashtables a lot. Vim will then print statistics | |
480 * when exiting. Try that with the current hash algorithm and yours. The | |
481 * lower the percentage the better. | |
482 */ | |
483 hash_T | |
484 hash_hash(key) | |
485 char_u *key; | |
486 { | |
487 hash_T hash; | |
488 char_u *p; | |
489 | |
490 if ((hash = *key) == 0) | |
491 return (hash_T)0; /* Empty keys are not allowed, but we don't | |
492 want to crash if we get one. */ | |
493 p = key + 1; | |
494 | |
495 #if 0 | |
496 /* ElfHash algorithm, which is supposed to have an even distribution. | |
497 * Suggested by Charles Campbell. */ | |
498 hash_T g; | |
499 | |
500 while (*p != NUL) | |
501 { | |
502 hash = (hash << 4) + *p++; /* clear low 4 bits of hash, add char */ | |
503 g = hash & 0xf0000000L; /* g has high 4 bits of hash only */ | |
504 if (g != 0) | |
505 hash ^= g >> 24; /* xor g's high 4 bits into hash */ | |
506 } | |
507 #else | |
508 | |
509 /* A simplistic algorithm that appears to do very well. | |
510 * Suggested by George Reilly. */ | |
511 while (*p != NUL) | |
512 hash = hash * 101 + *p++; | |
513 #endif | |
514 | |
515 return hash; | |
516 } | |
517 | |
518 #endif |