0
|
1 ;; ARM 1020E & ARM 1022E Pipeline Description
|
|
2 ;; Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
|
3 ;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
|
|
4 ;;
|
|
5 ;; This file is part of GCC.
|
|
6 ;;
|
|
7 ;; GCC is free software; you can redistribute it and/or modify it
|
|
8 ;; under the terms of the GNU General Public License as published by
|
|
9 ;; the Free Software Foundation; either version 3, or (at your option)
|
|
10 ;; any later version.
|
|
11 ;;
|
|
12 ;; GCC is distributed in the hope that it will be useful, but
|
|
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
15 ;; General Public License for more details.
|
|
16 ;;
|
|
17 ;; You should have received a copy of the GNU General Public License
|
|
18 ;; along with GCC; see the file COPYING3. If not see
|
|
19 ;; <http://www.gnu.org/licenses/>. */
|
|
20
|
|
21 ;; These descriptions are based on the information contained in the
|
|
22 ;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
|
|
23 ;; Limited.
|
|
24 ;;
|
|
25
|
|
26 ;; This automaton provides a pipeline description for the ARM
|
|
27 ;; 1020E core.
|
|
28 ;;
|
|
29 ;; The model given here assumes that the condition for all conditional
|
|
30 ;; instructions is "true", i.e., that all of the instructions are
|
|
31 ;; actually executed.
|
|
32
|
|
33 (define_automaton "arm1020e")
|
|
34
|
|
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
36 ;; Pipelines
|
|
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
38
|
|
39 ;; There are two pipelines:
|
|
40 ;;
|
|
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
|
|
42 ;;
|
|
43 ;; The ALU pipeline has fetch, issue, decode, execute, memory, and
|
|
44 ;; write stages. We only need to model the execute, memory and write
|
|
45 ;; stages.
|
|
46 ;;
|
|
47 ;; - A Load-Store Unit (LSU) pipeline.
|
|
48 ;;
|
|
49 ;; The LSU pipeline has decode, execute, memory, and write stages.
|
|
50 ;; We only model the execute, memory and write stages.
|
|
51
|
|
52 (define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
|
|
53 (define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
|
|
54
|
|
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
56 ;; ALU Instructions
|
|
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
58
|
|
59 ;; ALU instructions require three cycles to execute, and use the ALU
|
|
60 ;; pipeline in each of the three stages. The results are available
|
|
61 ;; after the execute stage stage has finished.
|
|
62 ;;
|
|
63 ;; If the destination register is the PC, the pipelines are stalled
|
|
64 ;; for several cycles. That case is not modeled here.
|
|
65
|
|
66 ;; ALU operations with no shifted operand
|
|
67 (define_insn_reservation "1020alu_op" 1
|
|
68 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
69 (eq_attr "type" "alu"))
|
|
70 "1020a_e,1020a_m,1020a_w")
|
|
71
|
|
72 ;; ALU operations with a shift-by-constant operand
|
|
73 (define_insn_reservation "1020alu_shift_op" 1
|
|
74 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
75 (eq_attr "type" "alu_shift"))
|
|
76 "1020a_e,1020a_m,1020a_w")
|
|
77
|
|
78 ;; ALU operations with a shift-by-register operand
|
|
79 ;; These really stall in the decoder, in order to read
|
|
80 ;; the shift value in a second cycle. Pretend we take two cycles in
|
|
81 ;; the execute stage.
|
|
82 (define_insn_reservation "1020alu_shift_reg_op" 2
|
|
83 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
84 (eq_attr "type" "alu_shift_reg"))
|
|
85 "1020a_e*2,1020a_m,1020a_w")
|
|
86
|
|
87 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
88 ;; Multiplication Instructions
|
|
89 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
90
|
|
91 ;; Multiplication instructions loop in the execute stage until the
|
|
92 ;; instruction has been passed through the multiplier array enough
|
|
93 ;; times.
|
|
94
|
|
95 ;; The result of the "smul" and "smulw" instructions is not available
|
|
96 ;; until after the memory stage.
|
|
97 (define_insn_reservation "1020mult1" 2
|
|
98 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
99 (eq_attr "insn" "smulxy,smulwy"))
|
|
100 "1020a_e,1020a_m,1020a_w")
|
|
101
|
|
102 ;; The "smlaxy" and "smlawx" instructions require two iterations through
|
|
103 ;; the execute stage; the result is available immediately following
|
|
104 ;; the execute stage.
|
|
105 (define_insn_reservation "1020mult2" 2
|
|
106 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
107 (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
|
|
108 "1020a_e*2,1020a_m,1020a_w")
|
|
109
|
|
110 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
|
|
111 ;; through the execute stage; the result is not available until after
|
|
112 ;; the memory stage.
|
|
113 (define_insn_reservation "1020mult3" 3
|
|
114 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
115 (eq_attr "insn" "smlalxy,mul,mla"))
|
|
116 "1020a_e*2,1020a_m,1020a_w")
|
|
117
|
|
118 ;; The "muls" and "mlas" instructions loop in the execute stage for
|
|
119 ;; four iterations in order to set the flags. The value result is
|
|
120 ;; available after three iterations.
|
|
121 (define_insn_reservation "1020mult4" 3
|
|
122 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
123 (eq_attr "insn" "muls,mlas"))
|
|
124 "1020a_e*4,1020a_m,1020a_w")
|
|
125
|
|
126 ;; Long multiply instructions that produce two registers of
|
|
127 ;; output (such as umull) make their results available in two cycles;
|
|
128 ;; the least significant word is available before the most significant
|
|
129 ;; word. That fact is not modeled; instead, the instructions are
|
|
130 ;; described.as if the entire result was available at the end of the
|
|
131 ;; cycle in which both words are available.
|
|
132
|
|
133 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
|
|
134 ;; three iterations through the execute cycle, and make their results
|
|
135 ;; available after the memory cycle.
|
|
136 (define_insn_reservation "1020mult5" 4
|
|
137 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
138 (eq_attr "insn" "umull,umlal,smull,smlal"))
|
|
139 "1020a_e*3,1020a_m,1020a_w")
|
|
140
|
|
141 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
|
|
142 ;; the execute stage for five iterations in order to set the flags.
|
|
143 ;; The value result is available after four iterations.
|
|
144 (define_insn_reservation "1020mult6" 4
|
|
145 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
146 (eq_attr "insn" "umulls,umlals,smulls,smlals"))
|
|
147 "1020a_e*5,1020a_m,1020a_w")
|
|
148
|
|
149 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
150 ;; Load/Store Instructions
|
|
151 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
152
|
|
153 ;; The models for load/store instructions do not accurately describe
|
|
154 ;; the difference between operations with a base register writeback
|
|
155 ;; (such as "ldm!"). These models assume that all memory references
|
|
156 ;; hit in dcache.
|
|
157
|
|
158 ;; LSU instructions require six cycles to execute. They use the ALU
|
|
159 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
|
|
160 ;; three through six.
|
|
161 ;; Loads and stores which use a scaled register offset or scaled
|
|
162 ;; register pre-indexed addressing mode take three cycles EXCEPT for
|
|
163 ;; those that are base + offset with LSL of 0 or 2, or base - offset
|
|
164 ;; with LSL of zero. The remainder take 1 cycle to execute.
|
|
165 ;; For 4byte loads there is a bypass from the load stage
|
|
166
|
|
167 (define_insn_reservation "1020load1_op" 2
|
|
168 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
169 (eq_attr "type" "load_byte,load1"))
|
|
170 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
171
|
|
172 (define_insn_reservation "1020store1_op" 0
|
|
173 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
174 (eq_attr "type" "store1"))
|
|
175 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
176
|
|
177 ;; A load's result can be stored by an immediately following store
|
|
178 (define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
|
|
179
|
|
180 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
|
|
181 ;; registers have been processed.
|
|
182 ;;
|
|
183 ;; The time it takes to load the data depends on whether or not the
|
|
184 ;; base address is 64-bit aligned; if it is not, an additional cycle
|
|
185 ;; is required. This model assumes that the address is always 64-bit
|
|
186 ;; aligned. Because the processor can load two registers per cycle,
|
|
187 ;; that assumption means that we use the same instruction reservations
|
|
188 ;; for loading 2k and 2k - 1 registers.
|
|
189 ;;
|
|
190 ;; The ALU pipeline is decoupled after the first cycle unless there is
|
|
191 ;; a register dependency; the dependency is cleared as soon as the LDM/STM
|
|
192 ;; has dealt with the corresponding register. So for example,
|
|
193 ;; stmia sp, {r0-r3}
|
|
194 ;; add r0, r0, #4
|
|
195 ;; will have one fewer stalls than
|
|
196 ;; stmia sp, {r0-r3}
|
|
197 ;; add r3, r3, #4
|
|
198 ;;
|
|
199 ;; As with ALU operations, if one of the destination registers is the
|
|
200 ;; PC, there are additional stalls; that is not modeled.
|
|
201
|
|
202 (define_insn_reservation "1020load2_op" 2
|
|
203 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
204 (eq_attr "type" "load2"))
|
|
205 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
206
|
|
207 (define_insn_reservation "1020store2_op" 0
|
|
208 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
209 (eq_attr "type" "store2"))
|
|
210 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
211
|
|
212 (define_insn_reservation "1020load34_op" 3
|
|
213 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
214 (eq_attr "type" "load3,load4"))
|
|
215 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
|
216
|
|
217 (define_insn_reservation "1020store34_op" 0
|
|
218 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
219 (eq_attr "type" "store3,store4"))
|
|
220 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
|
221
|
|
222 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
223 ;; Branch and Call Instructions
|
|
224 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
225
|
|
226 ;; Branch instructions are difficult to model accurately. The ARM
|
|
227 ;; core can predict most branches. If the branch is predicted
|
|
228 ;; correctly, and predicted early enough, the branch can be completely
|
|
229 ;; eliminated from the instruction stream. Some branches can
|
|
230 ;; therefore appear to require zero cycles to execute. We assume that
|
|
231 ;; all branches are predicted correctly, and that the latency is
|
|
232 ;; therefore the minimum value.
|
|
233
|
|
234 (define_insn_reservation "1020branch_op" 0
|
|
235 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
236 (eq_attr "type" "branch"))
|
|
237 "1020a_e")
|
|
238
|
|
239 ;; The latency for a call is not predictable. Therefore, we use 32 as
|
|
240 ;; roughly equivalent to positive infinity.
|
|
241
|
|
242 (define_insn_reservation "1020call_op" 32
|
|
243 (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
244 (eq_attr "type" "call"))
|
|
245 "1020a_e*32")
|
|
246
|
|
247 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
248 ;; VFP
|
|
249 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
250
|
|
251 (define_cpu_unit "v10_fmac" "arm1020e")
|
|
252
|
|
253 (define_cpu_unit "v10_ds" "arm1020e")
|
|
254
|
|
255 (define_cpu_unit "v10_fmstat" "arm1020e")
|
|
256
|
|
257 (define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
|
|
258
|
|
259 ;; fmstat is a serializing instruction. It will stall the core until
|
|
260 ;; the mac and ds units have completed.
|
|
261 (exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
|
|
262
|
|
263 (define_attr "vfp10" "yes,no"
|
|
264 (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
|
|
265 (eq_attr "fpu" "vfp"))
|
|
266 (const_string "yes") (const_string "no"))))
|
|
267
|
|
268 ;; Note, no instruction can issue to the VFP if the core is stalled in the
|
|
269 ;; first execute state. We model this by using 1020a_e in the first cycle.
|
|
270 (define_insn_reservation "v10_ffarith" 5
|
|
271 (and (eq_attr "vfp10" "yes")
|
|
272 (eq_attr "type" "fcpys,ffariths,ffarithd,fcmps,fcmpd"))
|
|
273 "1020a_e+v10_fmac")
|
|
274
|
|
275 (define_insn_reservation "v10_farith" 5
|
|
276 (and (eq_attr "vfp10" "yes")
|
|
277 (eq_attr "type" "faddd,fadds"))
|
|
278 "1020a_e+v10_fmac")
|
|
279
|
|
280 (define_insn_reservation "v10_cvt" 5
|
|
281 (and (eq_attr "vfp10" "yes")
|
|
282 (eq_attr "type" "f_cvt"))
|
|
283 "1020a_e+v10_fmac")
|
|
284
|
|
285 (define_insn_reservation "v10_fmul" 6
|
|
286 (and (eq_attr "vfp10" "yes")
|
|
287 (eq_attr "type" "fmuls,fmacs,fmuld,fmacd"))
|
|
288 "1020a_e+v10_fmac*2")
|
|
289
|
|
290 (define_insn_reservation "v10_fdivs" 18
|
|
291 (and (eq_attr "vfp10" "yes")
|
|
292 (eq_attr "type" "fdivs"))
|
|
293 "1020a_e+v10_ds*14")
|
|
294
|
|
295 (define_insn_reservation "v10_fdivd" 32
|
|
296 (and (eq_attr "vfp10" "yes")
|
|
297 (eq_attr "type" "fdivd"))
|
|
298 "1020a_e+v10_fmac+v10_ds*28")
|
|
299
|
|
300 (define_insn_reservation "v10_floads" 4
|
|
301 (and (eq_attr "vfp10" "yes")
|
|
302 (eq_attr "type" "f_loads"))
|
|
303 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
304
|
|
305 ;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
|
|
306 ;; This gives the correct mix between single-and double loads where a flds
|
|
307 ;; followed by and fldd will stall for one cycle, but two back-to-back fldd
|
|
308 ;; insns stall for two cycles.
|
|
309 (define_insn_reservation "v10_floadd" 5
|
|
310 (and (eq_attr "vfp10" "yes")
|
|
311 (eq_attr "type" "f_loadd"))
|
|
312 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
|
313
|
|
314 ;; Moves to/from arm regs also use the load/store pipeline.
|
|
315
|
|
316 (define_insn_reservation "v10_c2v" 4
|
|
317 (and (eq_attr "vfp10" "yes")
|
|
318 (eq_attr "type" "r_2_f"))
|
|
319 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
320
|
|
321 (define_insn_reservation "v10_fstores" 1
|
|
322 (and (eq_attr "vfp10" "yes")
|
|
323 (eq_attr "type" "f_stores"))
|
|
324 "1020a_e+1020l_e+v10_ls1,v10_ls2")
|
|
325
|
|
326 (define_insn_reservation "v10_fstored" 1
|
|
327 (and (eq_attr "vfp10" "yes")
|
|
328 (eq_attr "type" "f_stored"))
|
|
329 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
|
330
|
|
331 (define_insn_reservation "v10_v2c" 1
|
|
332 (and (eq_attr "vfp10" "yes")
|
|
333 (eq_attr "type" "f_2_r"))
|
|
334 "1020a_e+1020l_e,1020l_m,1020l_w")
|
|
335
|
|
336 (define_insn_reservation "v10_to_cpsr" 2
|
|
337 (and (eq_attr "vfp10" "yes")
|
|
338 (eq_attr "type" "f_flag"))
|
|
339 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
|
|
340
|
|
341 ;; VFP bypasses
|
|
342
|
|
343 ;; There are bypasses for most operations other than store
|
|
344
|
|
345 (define_bypass 3
|
|
346 "v10_c2v,v10_floads"
|
|
347 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
|
|
348
|
|
349 (define_bypass 4
|
|
350 "v10_floadd"
|
|
351 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
352
|
|
353 ;; Arithmetic to other arithmetic saves a cycle due to forwarding
|
|
354 (define_bypass 4
|
|
355 "v10_ffarith,v10_farith"
|
|
356 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
357
|
|
358 (define_bypass 5
|
|
359 "v10_fmul"
|
|
360 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
361
|
|
362 (define_bypass 17
|
|
363 "v10_fdivs"
|
|
364 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
365
|
|
366 (define_bypass 31
|
|
367 "v10_fdivd"
|
|
368 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
|
369
|
|
370 ;; VFP anti-dependencies.
|
|
371
|
|
372 ;; There is one anti-dependence in the following case (not yet modelled):
|
|
373 ;; - After a store: one extra cycle for both fsts and fstd
|
|
374 ;; Note, back-to-back fstd instructions will overload the load/store datapath
|
|
375 ;; causing a two-cycle stall.
|