0
|
1 /* Integrated Register Allocator (IRA) intercommunication header file.
|
|
2 Copyright (C) 2006, 2007, 2008, 2009
|
|
3 Free Software Foundation, Inc.
|
|
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
|
5
|
|
6 This file is part of GCC.
|
|
7
|
|
8 GCC is free software; you can redistribute it and/or modify it under
|
|
9 the terms of the GNU General Public License as published by the Free
|
|
10 Software Foundation; either version 3, or (at your option) any later
|
|
11 version.
|
|
12
|
|
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with GCC; see the file COPYING3. If not see
|
|
20 <http://www.gnu.org/licenses/>. */
|
|
21
|
|
22 #include "cfgloop.h"
|
|
23 #include "ira.h"
|
|
24 #include "alloc-pool.h"
|
|
25
|
|
26 /* To provide consistency in naming, all IRA external variables,
|
|
27 functions, common typedefs start with prefix ira_. */
|
|
28
|
|
29 #ifdef ENABLE_CHECKING
|
|
30 #define ENABLE_IRA_CHECKING
|
|
31 #endif
|
|
32
|
|
33 #ifdef ENABLE_IRA_CHECKING
|
|
34 #define ira_assert(c) gcc_assert (c)
|
|
35 #else
|
|
36 /* Always define and include C, so that warnings for empty body in an
|
|
37 ‘if’ statement and unused variable do not occur. */
|
|
38 #define ira_assert(c) ((void)(0 && (c)))
|
|
39 #endif
|
|
40
|
|
41 /* Compute register frequency from edge frequency FREQ. It is
|
|
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
|
|
43 profile driven feedback is available and the function is never
|
|
44 executed, frequency is always equivalent. Otherwise rescale the
|
|
45 edge frequency. */
|
|
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
|
|
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
|
|
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
|
|
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
|
|
50
|
|
51 /* All natural loops. */
|
|
52 extern struct loops ira_loops;
|
|
53
|
|
54 /* A modified value of flag `-fira-verbose' used internally. */
|
|
55 extern int internal_flag_ira_verbose;
|
|
56
|
|
57 /* Dump file of the allocator if it is not NULL. */
|
|
58 extern FILE *ira_dump_file;
|
|
59
|
|
60 /* Typedefs for pointers to allocno live range, allocno, and copy of
|
|
61 allocnos. */
|
|
62 typedef struct ira_allocno_live_range *allocno_live_range_t;
|
|
63 typedef struct ira_allocno *ira_allocno_t;
|
|
64 typedef struct ira_allocno_copy *ira_copy_t;
|
|
65
|
|
66 /* Definition of vector of allocnos and copies. */
|
|
67 DEF_VEC_P(ira_allocno_t);
|
|
68 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
|
|
69 DEF_VEC_P(ira_copy_t);
|
|
70 DEF_VEC_ALLOC_P(ira_copy_t, heap);
|
|
71
|
|
72 /* Typedef for pointer to the subsequent structure. */
|
|
73 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
|
|
74
|
|
75 /* In general case, IRA is a regional allocator. The regions are
|
|
76 nested and form a tree. Currently regions are natural loops. The
|
|
77 following structure describes loop tree node (representing basic
|
|
78 block or loop). We need such tree because the loop tree from
|
|
79 cfgloop.h is not convenient for the optimization: basic blocks are
|
|
80 not a part of the tree from cfgloop.h. We also use the nodes for
|
|
81 storing additional information about basic blocks/loops for the
|
|
82 register allocation purposes. */
|
|
83 struct ira_loop_tree_node
|
|
84 {
|
|
85 /* The node represents basic block if children == NULL. */
|
|
86 basic_block bb; /* NULL for loop. */
|
|
87 struct loop *loop; /* NULL for BB. */
|
|
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
|
|
89 SUBLOOP_NEXT is always NULL for BBs. */
|
|
90 ira_loop_tree_node_t subloop_next, next;
|
|
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
|
|
92 the node. They are NULL for BBs. */
|
|
93 ira_loop_tree_node_t subloops, children;
|
|
94 /* The node immediately containing given node. */
|
|
95 ira_loop_tree_node_t parent;
|
|
96
|
|
97 /* Loop level in range [0, ira_loop_tree_height). */
|
|
98 int level;
|
|
99
|
|
100 /* All the following members are defined only for nodes representing
|
|
101 loops. */
|
|
102
|
|
103 /* True if the loop was marked for removal from the register
|
|
104 allocation. */
|
|
105 bool to_remove_p;
|
|
106
|
|
107 /* Allocnos in the loop corresponding to their regnos. If it is
|
|
108 NULL the loop does not form a separate register allocation region
|
|
109 (e.g. because it has abnormal enter/exit edges and we can not put
|
|
110 code for register shuffling on the edges if a different
|
|
111 allocation is used for a pseudo-register on different sides of
|
|
112 the edges). Caps are not in the map (remember we can have more
|
|
113 one cap with the same regno in a region). */
|
|
114 ira_allocno_t *regno_allocno_map;
|
|
115
|
|
116 /* True if there is an entry to given loop not from its parent (or
|
|
117 grandparent) basic block. For example, it is possible for two
|
|
118 adjacent loops inside another loop. */
|
|
119 bool entered_from_non_parent_p;
|
|
120
|
|
121 /* Maximal register pressure inside loop for given register class
|
|
122 (defined only for the cover classes). */
|
|
123 int reg_pressure[N_REG_CLASSES];
|
|
124
|
|
125 /* Numbers of allocnos referred or living in the loop node (except
|
|
126 for its subloops). */
|
|
127 bitmap all_allocnos;
|
|
128
|
|
129 /* Numbers of allocnos living at the loop borders. */
|
|
130 bitmap border_allocnos;
|
|
131
|
|
132 /* Regnos of pseudos modified in the loop node (including its
|
|
133 subloops). */
|
|
134 bitmap modified_regnos;
|
|
135
|
|
136 /* Numbers of copies referred in the corresponding loop. */
|
|
137 bitmap local_copies;
|
|
138 };
|
|
139
|
|
140 /* The root of the loop tree corresponding to the all function. */
|
|
141 extern ira_loop_tree_node_t ira_loop_tree_root;
|
|
142
|
|
143 /* Height of the loop tree. */
|
|
144 extern int ira_loop_tree_height;
|
|
145
|
|
146 /* All nodes representing basic blocks are referred through the
|
|
147 following array. We can not use basic block member `aux' for this
|
|
148 because it is used for insertion of insns on edges. */
|
|
149 extern ira_loop_tree_node_t ira_bb_nodes;
|
|
150
|
|
151 /* Two access macros to the nodes representing basic blocks. */
|
|
152 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
|
|
153 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
|
|
154 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
|
|
155 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
|
|
156 { \
|
|
157 fprintf (stderr, \
|
|
158 "\n%s: %d: error in %s: it is not a block node\n", \
|
|
159 __FILE__, __LINE__, __FUNCTION__); \
|
|
160 gcc_unreachable (); \
|
|
161 } \
|
|
162 _node; }))
|
|
163 #else
|
|
164 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
|
|
165 #endif
|
|
166
|
|
167 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
|
|
168
|
|
169 /* All nodes representing loops are referred through the following
|
|
170 array. */
|
|
171 extern ira_loop_tree_node_t ira_loop_nodes;
|
|
172
|
|
173 /* Two access macros to the nodes representing loops. */
|
|
174 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
|
|
175 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
|
|
176 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
|
|
177 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
|
|
178 { \
|
|
179 fprintf (stderr, \
|
|
180 "\n%s: %d: error in %s: it is not a loop node\n", \
|
|
181 __FILE__, __LINE__, __FUNCTION__); \
|
|
182 gcc_unreachable (); \
|
|
183 } \
|
|
184 _node; }))
|
|
185 #else
|
|
186 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
|
|
187 #endif
|
|
188
|
|
189 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
|
|
190
|
|
191
|
|
192
|
|
193 /* The structure describes program points where a given allocno lives.
|
|
194 To save memory we store allocno conflicts only for the same cover
|
|
195 class allocnos which is enough to assign hard registers. To find
|
|
196 conflicts for other allocnos (e.g. to assign stack memory slot) we
|
|
197 use the live ranges. If the live ranges of two allocnos are
|
|
198 intersected, the allocnos are in conflict. */
|
|
199 struct ira_allocno_live_range
|
|
200 {
|
|
201 /* Allocno whose live range is described by given structure. */
|
|
202 ira_allocno_t allocno;
|
|
203 /* Program point range. */
|
|
204 int start, finish;
|
|
205 /* Next structure describing program points where the allocno
|
|
206 lives. */
|
|
207 allocno_live_range_t next;
|
|
208 /* Pointer to structures with the same start/finish. */
|
|
209 allocno_live_range_t start_next, finish_next;
|
|
210 };
|
|
211
|
|
212 /* Program points are enumerated by numbers from range
|
|
213 0..IRA_MAX_POINT-1. There are approximately two times more program
|
|
214 points than insns. Program points are places in the program where
|
|
215 liveness info can be changed. In most general case (there are more
|
|
216 complicated cases too) some program points correspond to places
|
|
217 where input operand dies and other ones correspond to places where
|
|
218 output operands are born. */
|
|
219 extern int ira_max_point;
|
|
220
|
|
221 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
|
|
222 live ranges with given start/finish point. */
|
|
223 extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
|
|
224
|
|
225 /* A structure representing an allocno (allocation entity). Allocno
|
|
226 represents a pseudo-register in an allocation region. If
|
|
227 pseudo-register does not live in a region but it lives in the
|
|
228 nested regions, it is represented in the region by special allocno
|
|
229 called *cap*. There may be more one cap representing the same
|
|
230 pseudo-register in region. It means that the corresponding
|
|
231 pseudo-register lives in more one non-intersected subregion. */
|
|
232 struct ira_allocno
|
|
233 {
|
|
234 /* The allocno order number starting with 0. Each allocno has an
|
|
235 unique number and the number is never changed for the
|
|
236 allocno. */
|
|
237 int num;
|
|
238 /* Regno for allocno or cap. */
|
|
239 int regno;
|
|
240 /* Mode of the allocno which is the mode of the corresponding
|
|
241 pseudo-register. */
|
|
242 enum machine_mode mode;
|
|
243 /* Hard register assigned to given allocno. Negative value means
|
|
244 that memory was allocated to the allocno. During the reload,
|
|
245 spilled allocno has value equal to the corresponding stack slot
|
|
246 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
|
|
247 reload (at this point pseudo-register has only one allocno) which
|
|
248 did not get stack slot yet. */
|
|
249 int hard_regno;
|
|
250 /* Final rtx representation of the allocno. */
|
|
251 rtx reg;
|
|
252 /* Allocnos with the same regno are linked by the following member.
|
|
253 Allocnos corresponding to inner loops are first in the list (it
|
|
254 corresponds to depth-first traverse of the loops). */
|
|
255 ira_allocno_t next_regno_allocno;
|
|
256 /* There may be different allocnos with the same regno in different
|
|
257 regions. Allocnos are bound to the corresponding loop tree node.
|
|
258 Pseudo-register may have only one regular allocno with given loop
|
|
259 tree node but more than one cap (see comments above). */
|
|
260 ira_loop_tree_node_t loop_tree_node;
|
|
261 /* Accumulated usage references of the allocno. Here and below,
|
|
262 word 'accumulated' means info for given region and all nested
|
|
263 subregions. In this case, 'accumulated' means sum of references
|
|
264 of the corresponding pseudo-register in this region and in all
|
|
265 nested subregions recursively. */
|
|
266 int nrefs;
|
|
267 /* Accumulated frequency of usage of the allocno. */
|
|
268 int freq;
|
|
269 /* Register class which should be used for allocation for given
|
|
270 allocno. NO_REGS means that we should use memory. */
|
|
271 enum reg_class cover_class;
|
|
272 /* Minimal accumulated and updated costs of usage register of the
|
|
273 cover class for the allocno. */
|
|
274 int cover_class_cost, updated_cover_class_cost;
|
|
275 /* Minimal accumulated, and updated costs of memory for the allocno.
|
|
276 At the allocation start, the original and updated costs are
|
|
277 equal. The updated cost may be changed after finishing
|
|
278 allocation in a region and starting allocation in a subregion.
|
|
279 The change reflects the cost of spill/restore code on the
|
|
280 subregion border if we assign memory to the pseudo in the
|
|
281 subregion. */
|
|
282 int memory_cost, updated_memory_cost;
|
|
283 /* Accumulated number of points where the allocno lives and there is
|
|
284 excess pressure for its class. Excess pressure for a register
|
|
285 class at some point means that there are more allocnos of given
|
|
286 register class living at the point than number of hard-registers
|
|
287 of the class available for the allocation. */
|
|
288 int excess_pressure_points_num;
|
|
289 /* Copies to other non-conflicting allocnos. The copies can
|
|
290 represent move insn or potential move insn usually because of two
|
|
291 operand insn constraints. */
|
|
292 ira_copy_t allocno_copies;
|
|
293 /* It is a allocno (cap) representing given allocno on upper loop tree
|
|
294 level. */
|
|
295 ira_allocno_t cap;
|
|
296 /* It is a link to allocno (cap) on lower loop level represented by
|
|
297 given cap. Null if given allocno is not a cap. */
|
|
298 ira_allocno_t cap_member;
|
|
299 /* Coalesced allocnos form a cyclic list. One allocno given by
|
|
300 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
|
|
301 list is chained by NEXT_COALESCED_ALLOCNO. */
|
|
302 ira_allocno_t first_coalesced_allocno;
|
|
303 ira_allocno_t next_coalesced_allocno;
|
|
304 /* Pointer to structures describing at what program point the
|
|
305 allocno lives. We always maintain the list in such way that *the
|
|
306 ranges in the list are not intersected and ordered by decreasing
|
|
307 their program points*. */
|
|
308 allocno_live_range_t live_ranges;
|
|
309 /* Before building conflicts the two member values are
|
|
310 correspondingly minimal and maximal points of the accumulated
|
|
311 allocno live ranges. After building conflicts the values are
|
|
312 correspondingly minimal and maximal conflict ids of allocnos with
|
|
313 which given allocno can conflict. */
|
|
314 int min, max;
|
|
315 /* Vector of accumulated conflicting allocnos with NULL end marker
|
|
316 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
|
|
317 Only allocnos with the same cover class are in the vector or in
|
|
318 the bit vector. */
|
|
319 void *conflict_allocno_array;
|
|
320 /* The unique member value represents given allocno in conflict bit
|
|
321 vectors. */
|
|
322 int conflict_id;
|
|
323 /* Allocated size of the previous array. */
|
|
324 unsigned int conflict_allocno_array_size;
|
|
325 /* Initial and accumulated hard registers conflicting with this
|
|
326 allocno and as a consequences can not be assigned to the allocno.
|
|
327 All non-allocatable hard regs and hard regs of cover classes
|
|
328 different from given allocno one are included in the sets. */
|
|
329 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
|
|
330 /* Number of accumulated conflicts in the vector of conflicting
|
|
331 allocnos. */
|
|
332 int conflict_allocnos_num;
|
|
333 /* Accumulated frequency of calls which given allocno
|
|
334 intersects. */
|
|
335 int call_freq;
|
|
336 /* Accumulated number of the intersected calls. */
|
|
337 int calls_crossed_num;
|
|
338 /* TRUE if the allocno assigned to memory was a destination of
|
|
339 removed move (see ira-emit.c) at loop exit because the value of
|
|
340 the corresponding pseudo-register is not changed inside the
|
|
341 loop. */
|
|
342 unsigned int mem_optimized_dest_p : 1;
|
|
343 /* TRUE if the corresponding pseudo-register has disjoint live
|
|
344 ranges and the other allocnos of the pseudo-register except this
|
|
345 one changed REG. */
|
|
346 unsigned int somewhere_renamed_p : 1;
|
|
347 /* TRUE if allocno with the same REGNO in a subregion has been
|
|
348 renamed, in other words, got a new pseudo-register. */
|
|
349 unsigned int child_renamed_p : 1;
|
|
350 /* During the reload, value TRUE means that we should not reassign a
|
|
351 hard register to the allocno got memory earlier. It is set up
|
|
352 when we removed memory-memory move insn before each iteration of
|
|
353 the reload. */
|
|
354 unsigned int dont_reassign_p : 1;
|
|
355 #ifdef STACK_REGS
|
|
356 /* Set to TRUE if allocno can't be assigned to the stack hard
|
|
357 register correspondingly in this region and area including the
|
|
358 region and all its subregions recursively. */
|
|
359 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
|
|
360 #endif
|
|
361 /* TRUE value means that there is no sense to spill the allocno
|
|
362 during coloring because the spill will result in additional
|
|
363 reloads in reload pass. */
|
|
364 unsigned int bad_spill_p : 1;
|
|
365 /* TRUE value means that the allocno was not removed yet from the
|
|
366 conflicting graph during colouring. */
|
|
367 unsigned int in_graph_p : 1;
|
|
368 /* TRUE if a hard register or memory has been assigned to the
|
|
369 allocno. */
|
|
370 unsigned int assigned_p : 1;
|
|
371 /* TRUE if it is put on the stack to make other allocnos
|
|
372 colorable. */
|
|
373 unsigned int may_be_spilled_p : 1;
|
|
374 /* TRUE if the allocno was removed from the splay tree used to
|
|
375 choose allocn for spilling (see ira-color.c::. */
|
|
376 unsigned int splay_removed_p : 1;
|
|
377 /* TRUE if conflicts for given allocno are represented by vector of
|
|
378 pointers to the conflicting allocnos. Otherwise, we use a bit
|
|
379 vector where a bit with given index represents allocno with the
|
|
380 same number. */
|
|
381 unsigned int conflict_vec_p : 1;
|
|
382 /* Non NULL if we remove restoring value from given allocno to
|
|
383 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
|
|
384 allocno value is not changed inside the loop. */
|
|
385 ira_allocno_t mem_optimized_dest;
|
|
386 /* Array of usage costs (accumulated and the one updated during
|
|
387 coloring) for each hard register of the allocno cover class. The
|
|
388 member value can be NULL if all costs are the same and equal to
|
|
389 COVER_CLASS_COST. For example, the costs of two different hard
|
|
390 registers can be different if one hard register is callee-saved
|
|
391 and another one is callee-used and the allocno lives through
|
|
392 calls. Another example can be case when for some insn the
|
|
393 corresponding pseudo-register value should be put in specific
|
|
394 register class (e.g. AREG for x86) which is a strict subset of
|
|
395 the allocno cover class (GENERAL_REGS for x86). We have updated
|
|
396 costs to reflect the situation when the usage cost of a hard
|
|
397 register is decreased because the allocno is connected to another
|
|
398 allocno by a copy and the another allocno has been assigned to
|
|
399 the hard register. */
|
|
400 int *hard_reg_costs, *updated_hard_reg_costs;
|
|
401 /* Array of decreasing costs (accumulated and the one updated during
|
|
402 coloring) for allocnos conflicting with given allocno for hard
|
|
403 regno of the allocno cover class. The member value can be NULL
|
|
404 if all costs are the same. These costs are used to reflect
|
|
405 preferences of other allocnos not assigned yet during assigning
|
|
406 to given allocno. */
|
|
407 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
|
|
408 /* Number of the same cover class allocnos with TRUE in_graph_p
|
|
409 value and conflicting with given allocno during each point of
|
|
410 graph coloring. */
|
|
411 int left_conflicts_num;
|
|
412 /* Number of hard registers of the allocno cover class really
|
|
413 available for the allocno allocation. */
|
|
414 int available_regs_num;
|
|
415 /* Allocnos in a bucket (used in coloring) chained by the following
|
|
416 two members. */
|
|
417 ira_allocno_t next_bucket_allocno;
|
|
418 ira_allocno_t prev_bucket_allocno;
|
|
419 /* Used for temporary purposes. */
|
|
420 int temp;
|
|
421 };
|
|
422
|
|
423 /* All members of the allocno structures should be accessed only
|
|
424 through the following macros. */
|
|
425 #define ALLOCNO_NUM(A) ((A)->num)
|
|
426 #define ALLOCNO_REGNO(A) ((A)->regno)
|
|
427 #define ALLOCNO_REG(A) ((A)->reg)
|
|
428 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
|
|
429 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
|
|
430 #define ALLOCNO_CAP(A) ((A)->cap)
|
|
431 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
|
|
432 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
|
|
433 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
|
|
434 ((A)->conflict_allocno_array_size)
|
|
435 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
|
|
436 ((A)->conflict_allocnos_num)
|
|
437 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
|
|
438 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
|
|
439 #define ALLOCNO_NREFS(A) ((A)->nrefs)
|
|
440 #define ALLOCNO_FREQ(A) ((A)->freq)
|
|
441 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
|
|
442 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
|
|
443 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
|
|
444 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
|
|
445 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
|
|
446 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
|
|
447 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
|
|
448 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
|
|
449 #ifdef STACK_REGS
|
|
450 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
|
|
451 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
|
|
452 #endif
|
|
453 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
|
|
454 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
|
|
455 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
|
|
456 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
|
|
457 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
|
|
458 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
|
|
459 #define ALLOCNO_MODE(A) ((A)->mode)
|
|
460 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
|
|
461 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
|
|
462 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
|
|
463 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
|
|
464 ((A)->conflict_hard_reg_costs)
|
|
465 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
|
|
466 ((A)->updated_conflict_hard_reg_costs)
|
|
467 #define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
|
|
468 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
|
|
469 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
|
|
470 #define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
|
|
471 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
|
|
472 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
|
|
473 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
|
|
474 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
|
|
475 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
|
|
476 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
|
|
477 #define ALLOCNO_TEMP(A) ((A)->temp)
|
|
478 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
|
|
479 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
|
|
480 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
|
|
481 #define ALLOCNO_MIN(A) ((A)->min)
|
|
482 #define ALLOCNO_MAX(A) ((A)->max)
|
|
483 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
|
|
484
|
|
485 /* Map regno -> allocnos with given regno (see comments for
|
|
486 allocno member `next_regno_allocno'). */
|
|
487 extern ira_allocno_t *ira_regno_allocno_map;
|
|
488
|
|
489 /* Array of references to all allocnos. The order number of the
|
|
490 allocno corresponds to the index in the array. Removed allocnos
|
|
491 have NULL element value. */
|
|
492 extern ira_allocno_t *ira_allocnos;
|
|
493
|
|
494 /* Sizes of the previous array. */
|
|
495 extern int ira_allocnos_num;
|
|
496
|
|
497 /* Map conflict id -> allocno with given conflict id (see comments for
|
|
498 allocno member `conflict_id'). */
|
|
499 extern ira_allocno_t *ira_conflict_id_allocno_map;
|
|
500
|
|
501 /* The following structure represents a copy of two allocnos. The
|
|
502 copies represent move insns or potential move insns usually because
|
|
503 of two operand insn constraints. To remove register shuffle, we
|
|
504 also create copies between allocno which is output of an insn and
|
|
505 allocno becoming dead in the insn. */
|
|
506 struct ira_allocno_copy
|
|
507 {
|
|
508 /* The unique order number of the copy node starting with 0. */
|
|
509 int num;
|
|
510 /* Allocnos connected by the copy. The first allocno should have
|
|
511 smaller order number than the second one. */
|
|
512 ira_allocno_t first, second;
|
|
513 /* Execution frequency of the copy. */
|
|
514 int freq;
|
|
515 bool constraint_p;
|
|
516 /* It is a move insn which is an origin of the copy. The member
|
|
517 value for the copy representing two operand insn constraints or
|
|
518 for the copy created to remove register shuffle is NULL. In last
|
|
519 case the copy frequency is smaller than the corresponding insn
|
|
520 execution frequency. */
|
|
521 rtx insn;
|
|
522 /* All copies with the same allocno as FIRST are linked by the two
|
|
523 following members. */
|
|
524 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
|
|
525 /* All copies with the same allocno as SECOND are linked by the two
|
|
526 following members. */
|
|
527 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
|
|
528 /* Region from which given copy is originated. */
|
|
529 ira_loop_tree_node_t loop_tree_node;
|
|
530 };
|
|
531
|
|
532 /* Array of references to all copies. The order number of the copy
|
|
533 corresponds to the index in the array. Removed copies have NULL
|
|
534 element value. */
|
|
535 extern ira_copy_t *ira_copies;
|
|
536
|
|
537 /* Size of the previous array. */
|
|
538 extern int ira_copies_num;
|
|
539
|
|
540 /* The following structure describes a stack slot used for spilled
|
|
541 pseudo-registers. */
|
|
542 struct ira_spilled_reg_stack_slot
|
|
543 {
|
|
544 /* pseudo-registers assigned to the stack slot. */
|
|
545 regset_head spilled_regs;
|
|
546 /* RTL representation of the stack slot. */
|
|
547 rtx mem;
|
|
548 /* Size of the stack slot. */
|
|
549 unsigned int width;
|
|
550 };
|
|
551
|
|
552 /* The number of elements in the following array. */
|
|
553 extern int ira_spilled_reg_stack_slots_num;
|
|
554
|
|
555 /* The following array contains info about spilled pseudo-registers
|
|
556 stack slots used in current function so far. */
|
|
557 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
|
|
558
|
|
559 /* Correspondingly overall cost of the allocation, cost of the
|
|
560 allocnos assigned to hard-registers, cost of the allocnos assigned
|
|
561 to memory, cost of loads, stores and register move insns generated
|
|
562 for pseudo-register live range splitting (see ira-emit.c). */
|
|
563 extern int ira_overall_cost;
|
|
564 extern int ira_reg_cost, ira_mem_cost;
|
|
565 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
|
|
566 extern int ira_move_loops_num, ira_additional_jumps_num;
|
|
567
|
|
568 /* Map: hard register number -> cover class it belongs to. If the
|
|
569 corresponding class is NO_REGS, the hard register is not available
|
|
570 for allocation. */
|
|
571 extern enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
|
|
572
|
|
573 /* Map: register class x machine mode -> number of hard registers of
|
|
574 given class needed to store value of given mode. If the number for
|
|
575 some hard-registers of the register class is different, the size
|
|
576 will be negative. */
|
|
577 extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
|
|
578
|
|
579 /* Maximal value of the previous array elements. */
|
|
580 extern int ira_max_nregs;
|
|
581
|
|
582 /* The number of bits in each element of array used to implement a bit
|
|
583 vector of allocnos and what type that element has. We use the
|
|
584 largest integer format on the host machine. */
|
|
585 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
|
|
586 #define IRA_INT_TYPE HOST_WIDE_INT
|
|
587
|
|
588 /* Set, clear or test bit number I in R, a bit vector of elements with
|
|
589 minimal index and maximal index equal correspondingly to MIN and
|
|
590 MAX. */
|
|
591 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
|
|
592
|
|
593 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
|
|
594 (({ int _min = (MIN), _max = (MAX), _i = (I); \
|
|
595 if (_i < _min || _i > _max) \
|
|
596 { \
|
|
597 fprintf (stderr, \
|
|
598 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
|
|
599 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
|
|
600 gcc_unreachable (); \
|
|
601 } \
|
|
602 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
|
|
603 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
|
|
604
|
|
605
|
|
606 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
|
|
607 (({ int _min = (MIN), _max = (MAX), _i = (I); \
|
|
608 if (_i < _min || _i > _max) \
|
|
609 { \
|
|
610 fprintf (stderr, \
|
|
611 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
|
|
612 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
|
|
613 gcc_unreachable (); \
|
|
614 } \
|
|
615 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
|
|
616 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
|
|
617
|
|
618 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
|
|
619 (({ int _min = (MIN), _max = (MAX), _i = (I); \
|
|
620 if (_i < _min || _i > _max) \
|
|
621 { \
|
|
622 fprintf (stderr, \
|
|
623 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
|
|
624 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
|
|
625 gcc_unreachable (); \
|
|
626 } \
|
|
627 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
|
|
628 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
|
|
629
|
|
630 #else
|
|
631
|
|
632 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
|
|
633 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
|
|
634 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
|
|
635
|
|
636 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
|
|
637 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
|
|
638 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
|
|
639
|
|
640 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
|
|
641 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
|
|
642 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
|
|
643
|
|
644 #endif
|
|
645
|
|
646 /* The iterator for allocno set implemented ed as allocno bit
|
|
647 vector. */
|
|
648 typedef struct {
|
|
649
|
|
650 /* Array containing the allocno bit vector. */
|
|
651 IRA_INT_TYPE *vec;
|
|
652
|
|
653 /* The number of the current element in the vector. */
|
|
654 unsigned int word_num;
|
|
655
|
|
656 /* The number of bits in the bit vector. */
|
|
657 unsigned int nel;
|
|
658
|
|
659 /* The current bit index of the bit vector. */
|
|
660 unsigned int bit_num;
|
|
661
|
|
662 /* Index corresponding to the 1st bit of the bit vector. */
|
|
663 int start_val;
|
|
664
|
|
665 /* The word of the bit vector currently visited. */
|
|
666 unsigned IRA_INT_TYPE word;
|
|
667 } ira_allocno_set_iterator;
|
|
668
|
|
669 /* Initialize the iterator I for allocnos bit vector VEC containing
|
|
670 minimal and maximal values MIN and MAX. */
|
|
671 static inline void
|
|
672 ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
|
|
673 IRA_INT_TYPE *vec, int min, int max)
|
|
674 {
|
|
675 i->vec = vec;
|
|
676 i->word_num = 0;
|
|
677 i->nel = max < min ? 0 : max - min + 1;
|
|
678 i->start_val = min;
|
|
679 i->bit_num = 0;
|
|
680 i->word = i->nel == 0 ? 0 : vec[0];
|
|
681 }
|
|
682
|
|
683 /* Return TRUE if we have more allocnos to visit, in which case *N is
|
|
684 set to the allocno number to be visited. Otherwise, return
|
|
685 FALSE. */
|
|
686 static inline bool
|
|
687 ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
|
|
688 {
|
|
689 /* Skip words that are zeros. */
|
|
690 for (; i->word == 0; i->word = i->vec[i->word_num])
|
|
691 {
|
|
692 i->word_num++;
|
|
693 i->bit_num = i->word_num * IRA_INT_BITS;
|
|
694
|
|
695 /* If we have reached the end, break. */
|
|
696 if (i->bit_num >= i->nel)
|
|
697 return false;
|
|
698 }
|
|
699
|
|
700 /* Skip bits that are zero. */
|
|
701 for (; (i->word & 1) == 0; i->word >>= 1)
|
|
702 i->bit_num++;
|
|
703
|
|
704 *n = (int) i->bit_num + i->start_val;
|
|
705
|
|
706 return true;
|
|
707 }
|
|
708
|
|
709 /* Advance to the next allocno in the set. */
|
|
710 static inline void
|
|
711 ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
|
|
712 {
|
|
713 i->word >>= 1;
|
|
714 i->bit_num++;
|
|
715 }
|
|
716
|
|
717 /* Loop over all elements of allocno set given by bit vector VEC and
|
|
718 their minimal and maximal values MIN and MAX. In each iteration, N
|
|
719 is set to the number of next allocno. ITER is an instance of
|
|
720 ira_allocno_set_iterator used to iterate the allocnos in the set. */
|
|
721 #define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
|
|
722 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
|
|
723 ira_allocno_set_iter_cond (&(ITER), &(N)); \
|
|
724 ira_allocno_set_iter_next (&(ITER)))
|
|
725
|
|
726 /* ira.c: */
|
|
727
|
|
728 /* Map: hard regs X modes -> set of hard registers for storing value
|
|
729 of given mode starting with given hard register. */
|
|
730 extern HARD_REG_SET ira_reg_mode_hard_regset
|
|
731 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
|
|
732
|
|
733 /* Arrays analogous to macros MEMORY_MOVE_COST and
|
|
734 REGISTER_MOVE_COST. */
|
|
735 extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
|
|
736 extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
|
|
737
|
|
738 /* Similar to may_move_in_cost but it is calculated in IRA instead of
|
|
739 regclass. Another difference we take only available hard registers
|
|
740 into account to figure out that one register class is a subset of
|
|
741 the another one. */
|
|
742 extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
|
|
743
|
|
744 /* Similar to may_move_out_cost but it is calculated in IRA instead of
|
|
745 regclass. Another difference we take only available hard registers
|
|
746 into account to figure out that one register class is a subset of
|
|
747 the another one. */
|
|
748 extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
|
|
749
|
|
750 /* Register class subset relation: TRUE if the first class is a subset
|
|
751 of the second one considering only hard registers available for the
|
|
752 allocation. */
|
|
753 extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
|
|
754
|
|
755 /* Array of number of hard registers of given class which are
|
|
756 available for the allocation. The order is defined by the
|
|
757 allocation order. */
|
|
758 extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
|
|
759
|
|
760 /* The number of elements of the above array for given register
|
|
761 class. */
|
|
762 extern int ira_class_hard_regs_num[N_REG_CLASSES];
|
|
763
|
|
764 /* Index (in ira_class_hard_regs) for given register class and hard
|
|
765 register (in general case a hard register can belong to several
|
|
766 register classes). The index is negative for hard registers
|
|
767 unavailable for the allocation. */
|
|
768 extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
|
|
769
|
|
770 /* Function specific hard registers can not be used for the register
|
|
771 allocation. */
|
|
772 extern HARD_REG_SET ira_no_alloc_regs;
|
|
773
|
|
774 /* Number of given class hard registers available for the register
|
|
775 allocation for given classes. */
|
|
776 extern int ira_available_class_regs[N_REG_CLASSES];
|
|
777
|
|
778 /* Array whose values are hard regset of hard registers available for
|
|
779 the allocation of given register class whose HARD_REGNO_MODE_OK
|
|
780 values for given mode are zero. */
|
|
781 extern HARD_REG_SET prohibited_class_mode_regs
|
|
782 [N_REG_CLASSES][NUM_MACHINE_MODES];
|
|
783
|
|
784 /* Array whose values are hard regset of hard registers for which
|
|
785 move of the hard register in given mode into itself is
|
|
786 prohibited. */
|
|
787 extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
|
|
788
|
|
789 /* Number of cover classes. Cover classes is non-intersected register
|
|
790 classes containing all hard-registers available for the
|
|
791 allocation. */
|
|
792 extern int ira_reg_class_cover_size;
|
|
793
|
|
794 /* The array containing cover classes (see also comments for macro
|
|
795 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
|
|
796 used for this. */
|
|
797 extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
|
|
798
|
|
799 /* The value is number of elements in the subsequent array. */
|
|
800 extern int ira_important_classes_num;
|
|
801
|
|
802 /* The array containing non-empty classes (including non-empty cover
|
|
803 classes) which are subclasses of cover classes. Such classes is
|
|
804 important for calculation of the hard register usage costs. */
|
|
805 extern enum reg_class ira_important_classes[N_REG_CLASSES];
|
|
806
|
|
807 /* The array containing indexes of important classes in the previous
|
|
808 array. The array elements are defined only for important
|
|
809 classes. */
|
|
810 extern int ira_important_class_nums[N_REG_CLASSES];
|
|
811
|
|
812 /* Map of all register classes to corresponding cover class containing
|
|
813 the given class. If given class is not a subset of a cover class,
|
|
814 we translate it into the cheapest cover class. */
|
|
815 extern enum reg_class ira_class_translate[N_REG_CLASSES];
|
|
816
|
|
817 /* The biggest important class inside of intersection of the two
|
|
818 classes (that is calculated taking only hard registers available
|
|
819 for allocation into account). If the both classes contain no hard
|
|
820 registers available for allocation, the value is calculated with
|
|
821 taking all hard-registers including fixed ones into account. */
|
|
822 extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
|
|
823
|
|
824 /* True if the two classes (that is calculated taking only hard
|
|
825 registers available for allocation into account) are
|
|
826 intersected. */
|
|
827 extern bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
|
|
828
|
|
829 /* Classes with end marker LIM_REG_CLASSES which are intersected with
|
|
830 given class (the first index). That includes given class itself.
|
|
831 This is calculated taking only hard registers available for
|
|
832 allocation into account. */
|
|
833 extern enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
|
|
834 /* The biggest important class inside of union of the two classes
|
|
835 (that is calculated taking only hard registers available for
|
|
836 allocation into account). If the both classes contain no hard
|
|
837 registers available for allocation, the value is calculated with
|
|
838 taking all hard-registers including fixed ones into account. In
|
|
839 other words, the value is the corresponding reg_class_subunion
|
|
840 value. */
|
|
841 extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
|
|
842
|
|
843 extern void *ira_allocate (size_t);
|
|
844 extern void *ira_reallocate (void *, size_t);
|
|
845 extern void ira_free (void *addr);
|
|
846 extern bitmap ira_allocate_bitmap (void);
|
|
847 extern void ira_free_bitmap (bitmap);
|
|
848 extern void ira_print_disposition (FILE *);
|
|
849 extern void ira_debug_disposition (void);
|
|
850 extern void ira_debug_class_cover (void);
|
|
851 extern void ira_init_register_move_cost (enum machine_mode);
|
|
852
|
|
853 /* The length of the two following arrays. */
|
|
854 extern int ira_reg_equiv_len;
|
|
855
|
|
856 /* The element value is TRUE if the corresponding regno value is
|
|
857 invariant. */
|
|
858 extern bool *ira_reg_equiv_invariant_p;
|
|
859
|
|
860 /* The element value is equiv constant of given pseudo-register or
|
|
861 NULL_RTX. */
|
|
862 extern rtx *ira_reg_equiv_const;
|
|
863
|
|
864 /* ira-build.c */
|
|
865
|
|
866 /* The current loop tree node and its regno allocno map. */
|
|
867 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
|
|
868 extern ira_allocno_t *ira_curr_regno_allocno_map;
|
|
869
|
|
870 extern void ira_debug_copy (ira_copy_t);
|
|
871 extern void ira_debug_copies (void);
|
|
872 extern void ira_debug_allocno_copies (ira_allocno_t);
|
|
873
|
|
874 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
|
|
875 void (*) (ira_loop_tree_node_t),
|
|
876 void (*) (ira_loop_tree_node_t));
|
|
877 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
|
|
878 extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
|
|
879 extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
|
|
880 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
|
|
881 extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
|
|
882 extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
|
|
883 extern void ira_print_expanded_allocno (ira_allocno_t);
|
|
884 extern allocno_live_range_t ira_create_allocno_live_range
|
|
885 (ira_allocno_t, int, int, allocno_live_range_t);
|
|
886 extern allocno_live_range_t ira_copy_allocno_live_range_list
|
|
887 (allocno_live_range_t);
|
|
888 extern allocno_live_range_t ira_merge_allocno_live_ranges
|
|
889 (allocno_live_range_t, allocno_live_range_t);
|
|
890 extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t,
|
|
891 allocno_live_range_t);
|
|
892 extern void ira_finish_allocno_live_range (allocno_live_range_t);
|
|
893 extern void ira_finish_allocno_live_range_list (allocno_live_range_t);
|
|
894 extern void ira_free_allocno_updated_costs (ira_allocno_t);
|
|
895 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
|
|
896 int, bool, rtx, ira_loop_tree_node_t);
|
|
897 extern void ira_add_allocno_copy_to_list (ira_copy_t);
|
|
898 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
|
|
899 extern void ira_remove_allocno_copy_from_list (ira_copy_t);
|
|
900 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
|
|
901 bool, rtx, ira_loop_tree_node_t);
|
|
902
|
|
903 extern int *ira_allocate_cost_vector (enum reg_class);
|
|
904 extern void ira_free_cost_vector (int *, enum reg_class);
|
|
905
|
|
906 extern void ira_flattening (int, int);
|
|
907 extern bool ira_build (bool);
|
|
908 extern void ira_destroy (void);
|
|
909
|
|
910 /* ira-costs.c */
|
|
911 extern void ira_init_costs_once (void);
|
|
912 extern void ira_init_costs (void);
|
|
913 extern void ira_finish_costs_once (void);
|
|
914 extern void ira_costs (void);
|
|
915 extern void ira_tune_allocno_costs_and_cover_classes (void);
|
|
916
|
|
917 /* ira-lives.c */
|
|
918
|
|
919 extern void ira_rebuild_start_finish_chains (void);
|
|
920 extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
|
|
921 extern void ira_debug_live_range_list (allocno_live_range_t);
|
|
922 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
|
|
923 extern void ira_debug_live_ranges (void);
|
|
924 extern void ira_create_allocno_live_ranges (void);
|
|
925 extern void ira_compress_allocno_live_ranges (void);
|
|
926 extern void ira_finish_allocno_live_ranges (void);
|
|
927
|
|
928 /* ira-conflicts.c */
|
|
929 extern void ira_debug_conflicts (bool);
|
|
930 extern void ira_build_conflicts (void);
|
|
931
|
|
932 /* ira-color.c */
|
|
933 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
|
|
934 extern void ira_reassign_conflict_allocnos (int);
|
|
935 extern void ira_initiate_assign (void);
|
|
936 extern void ira_finish_assign (void);
|
|
937 extern void ira_color (void);
|
|
938
|
|
939 /* ira-emit.c */
|
|
940 extern void ira_emit (bool);
|
|
941
|
|
942
|
|
943
|
|
944 /* The iterator for all allocnos. */
|
|
945 typedef struct {
|
|
946 /* The number of the current element in IRA_ALLOCNOS. */
|
|
947 int n;
|
|
948 } ira_allocno_iterator;
|
|
949
|
|
950 /* Initialize the iterator I. */
|
|
951 static inline void
|
|
952 ira_allocno_iter_init (ira_allocno_iterator *i)
|
|
953 {
|
|
954 i->n = 0;
|
|
955 }
|
|
956
|
|
957 /* Return TRUE if we have more allocnos to visit, in which case *A is
|
|
958 set to the allocno to be visited. Otherwise, return FALSE. */
|
|
959 static inline bool
|
|
960 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
|
|
961 {
|
|
962 int n;
|
|
963
|
|
964 for (n = i->n; n < ira_allocnos_num; n++)
|
|
965 if (ira_allocnos[n] != NULL)
|
|
966 {
|
|
967 *a = ira_allocnos[n];
|
|
968 i->n = n + 1;
|
|
969 return true;
|
|
970 }
|
|
971 return false;
|
|
972 }
|
|
973
|
|
974 /* Loop over all allocnos. In each iteration, A is set to the next
|
|
975 allocno. ITER is an instance of ira_allocno_iterator used to iterate
|
|
976 the allocnos. */
|
|
977 #define FOR_EACH_ALLOCNO(A, ITER) \
|
|
978 for (ira_allocno_iter_init (&(ITER)); \
|
|
979 ira_allocno_iter_cond (&(ITER), &(A));)
|
|
980
|
|
981
|
|
982
|
|
983
|
|
984 /* The iterator for copies. */
|
|
985 typedef struct {
|
|
986 /* The number of the current element in IRA_COPIES. */
|
|
987 int n;
|
|
988 } ira_copy_iterator;
|
|
989
|
|
990 /* Initialize the iterator I. */
|
|
991 static inline void
|
|
992 ira_copy_iter_init (ira_copy_iterator *i)
|
|
993 {
|
|
994 i->n = 0;
|
|
995 }
|
|
996
|
|
997 /* Return TRUE if we have more copies to visit, in which case *CP is
|
|
998 set to the copy to be visited. Otherwise, return FALSE. */
|
|
999 static inline bool
|
|
1000 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
|
|
1001 {
|
|
1002 int n;
|
|
1003
|
|
1004 for (n = i->n; n < ira_copies_num; n++)
|
|
1005 if (ira_copies[n] != NULL)
|
|
1006 {
|
|
1007 *cp = ira_copies[n];
|
|
1008 i->n = n + 1;
|
|
1009 return true;
|
|
1010 }
|
|
1011 return false;
|
|
1012 }
|
|
1013
|
|
1014 /* Loop over all copies. In each iteration, C is set to the next
|
|
1015 copy. ITER is an instance of ira_copy_iterator used to iterate
|
|
1016 the copies. */
|
|
1017 #define FOR_EACH_COPY(C, ITER) \
|
|
1018 for (ira_copy_iter_init (&(ITER)); \
|
|
1019 ira_copy_iter_cond (&(ITER), &(C));)
|
|
1020
|
|
1021
|
|
1022
|
|
1023
|
|
1024 /* The iterator for allocno conflicts. */
|
|
1025 typedef struct {
|
|
1026
|
|
1027 /* TRUE if the conflicts are represented by vector of allocnos. */
|
|
1028 bool allocno_conflict_vec_p;
|
|
1029
|
|
1030 /* The conflict vector or conflict bit vector. */
|
|
1031 void *vec;
|
|
1032
|
|
1033 /* The number of the current element in the vector (of type
|
|
1034 ira_allocno_t or IRA_INT_TYPE). */
|
|
1035 unsigned int word_num;
|
|
1036
|
|
1037 /* The bit vector size. It is defined only if
|
|
1038 ALLOCNO_CONFLICT_VEC_P is FALSE. */
|
|
1039 unsigned int size;
|
|
1040
|
|
1041 /* The current bit index of bit vector. It is defined only if
|
|
1042 ALLOCNO_CONFLICT_VEC_P is FALSE. */
|
|
1043 unsigned int bit_num;
|
|
1044
|
|
1045 /* Allocno conflict id corresponding to the 1st bit of the bit
|
|
1046 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
|
|
1047 FALSE. */
|
|
1048 int base_conflict_id;
|
|
1049
|
|
1050 /* The word of bit vector currently visited. It is defined only if
|
|
1051 ALLOCNO_CONFLICT_VEC_P is FALSE. */
|
|
1052 unsigned IRA_INT_TYPE word;
|
|
1053 } ira_allocno_conflict_iterator;
|
|
1054
|
|
1055 /* Initialize the iterator I with ALLOCNO conflicts. */
|
|
1056 static inline void
|
|
1057 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
|
|
1058 ira_allocno_t allocno)
|
|
1059 {
|
|
1060 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
|
|
1061 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
|
|
1062 i->word_num = 0;
|
|
1063 if (i->allocno_conflict_vec_p)
|
|
1064 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
|
|
1065 else
|
|
1066 {
|
|
1067 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
|
|
1068 i->size = 0;
|
|
1069 else
|
|
1070 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
|
|
1071 + IRA_INT_BITS)
|
|
1072 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
|
|
1073 i->bit_num = 0;
|
|
1074 i->base_conflict_id = ALLOCNO_MIN (allocno);
|
|
1075 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
|
|
1076 }
|
|
1077 }
|
|
1078
|
|
1079 /* Return TRUE if we have more conflicting allocnos to visit, in which
|
|
1080 case *A is set to the allocno to be visited. Otherwise, return
|
|
1081 FALSE. */
|
|
1082 static inline bool
|
|
1083 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
|
|
1084 ira_allocno_t *a)
|
|
1085 {
|
|
1086 ira_allocno_t conflict_allocno;
|
|
1087
|
|
1088 if (i->allocno_conflict_vec_p)
|
|
1089 {
|
|
1090 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
|
|
1091 if (conflict_allocno == NULL)
|
|
1092 return false;
|
|
1093 *a = conflict_allocno;
|
|
1094 return true;
|
|
1095 }
|
|
1096 else
|
|
1097 {
|
|
1098 /* Skip words that are zeros. */
|
|
1099 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
|
|
1100 {
|
|
1101 i->word_num++;
|
|
1102
|
|
1103 /* If we have reached the end, break. */
|
|
1104 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
|
|
1105 return false;
|
|
1106
|
|
1107 i->bit_num = i->word_num * IRA_INT_BITS;
|
|
1108 }
|
|
1109
|
|
1110 /* Skip bits that are zero. */
|
|
1111 for (; (i->word & 1) == 0; i->word >>= 1)
|
|
1112 i->bit_num++;
|
|
1113
|
|
1114 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
|
|
1115
|
|
1116 return true;
|
|
1117 }
|
|
1118 }
|
|
1119
|
|
1120 /* Advance to the next conflicting allocno. */
|
|
1121 static inline void
|
|
1122 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
|
|
1123 {
|
|
1124 if (i->allocno_conflict_vec_p)
|
|
1125 i->word_num++;
|
|
1126 else
|
|
1127 {
|
|
1128 i->word >>= 1;
|
|
1129 i->bit_num++;
|
|
1130 }
|
|
1131 }
|
|
1132
|
|
1133 /* Loop over all allocnos conflicting with ALLOCNO. In each
|
|
1134 iteration, A is set to the next conflicting allocno. ITER is an
|
|
1135 instance of ira_allocno_conflict_iterator used to iterate the
|
|
1136 conflicts. */
|
|
1137 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
|
|
1138 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
|
|
1139 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
|
|
1140 ira_allocno_conflict_iter_next (&(ITER)))
|
|
1141
|
|
1142
|
|
1143
|
|
1144 /* The function returns TRUE if hard registers starting with
|
|
1145 HARD_REGNO and containing value of MODE are not in set
|
|
1146 HARD_REGSET. */
|
|
1147 static inline bool
|
|
1148 ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
|
|
1149 HARD_REG_SET hard_regset)
|
|
1150 {
|
|
1151 int i;
|
|
1152
|
|
1153 ira_assert (hard_regno >= 0);
|
|
1154 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
|
|
1155 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
|
|
1156 return false;
|
|
1157 return true;
|
|
1158 }
|
|
1159
|
|
1160
|
|
1161
|
|
1162 /* To save memory we use a lazy approach for allocation and
|
|
1163 initialization of the cost vectors. We do this only when it is
|
|
1164 really necessary. */
|
|
1165
|
|
1166 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
|
|
1167 initialize the elements by VAL if it is necessary */
|
|
1168 static inline void
|
|
1169 ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
|
|
1170 {
|
|
1171 int i, *reg_costs;
|
|
1172 int len;
|
|
1173
|
|
1174 if (*vec != NULL)
|
|
1175 return;
|
|
1176 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
|
|
1177 len = ira_class_hard_regs_num[cover_class];
|
|
1178 for (i = 0; i < len; i++)
|
|
1179 reg_costs[i] = val;
|
|
1180 }
|
|
1181
|
|
1182 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
|
|
1183 copy values of vector SRC into the vector if it is necessary */
|
|
1184 static inline void
|
|
1185 ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
|
|
1186 {
|
|
1187 int len;
|
|
1188
|
|
1189 if (*vec != NULL || src == NULL)
|
|
1190 return;
|
|
1191 *vec = ira_allocate_cost_vector (cover_class);
|
|
1192 len = ira_class_hard_regs_num[cover_class];
|
|
1193 memcpy (*vec, src, sizeof (int) * len);
|
|
1194 }
|
|
1195
|
|
1196 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
|
|
1197 add values of vector SRC into the vector if it is necessary */
|
|
1198 static inline void
|
|
1199 ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
|
|
1200 int *src)
|
|
1201 {
|
|
1202 int i, len;
|
|
1203
|
|
1204 if (src == NULL)
|
|
1205 return;
|
|
1206 len = ira_class_hard_regs_num[cover_class];
|
|
1207 if (*vec == NULL)
|
|
1208 {
|
|
1209 *vec = ira_allocate_cost_vector (cover_class);
|
|
1210 memset (*vec, 0, sizeof (int) * len);
|
|
1211 }
|
|
1212 for (i = 0; i < len; i++)
|
|
1213 (*vec)[i] += src[i];
|
|
1214 }
|
|
1215
|
|
1216 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
|
|
1217 copy values of vector SRC into the vector or initialize it by VAL
|
|
1218 (if SRC is null). */
|
|
1219 static inline void
|
|
1220 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
|
|
1221 int val, int *src)
|
|
1222 {
|
|
1223 int i, *reg_costs;
|
|
1224 int len;
|
|
1225
|
|
1226 if (*vec != NULL)
|
|
1227 return;
|
|
1228 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
|
|
1229 len = ira_class_hard_regs_num[cover_class];
|
|
1230 if (src != NULL)
|
|
1231 memcpy (reg_costs, src, sizeof (int) * len);
|
|
1232 else
|
|
1233 {
|
|
1234 for (i = 0; i < len; i++)
|
|
1235 reg_costs[i] = val;
|
|
1236 }
|
|
1237 }
|