0
|
1 /* IRA processing allocno lives to build allocno live ranges.
|
|
2 Copyright (C) 2006, 2007, 2008, 2009
|
|
3 Free Software Foundation, Inc.
|
|
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
|
5
|
|
6 This file is part of GCC.
|
|
7
|
|
8 GCC is free software; you can redistribute it and/or modify it under
|
|
9 the terms of the GNU General Public License as published by the Free
|
|
10 Software Foundation; either version 3, or (at your option) any later
|
|
11 version.
|
|
12
|
|
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with GCC; see the file COPYING3. If not see
|
|
20 <http://www.gnu.org/licenses/>. */
|
|
21
|
|
22 #include "config.h"
|
|
23 #include "system.h"
|
|
24 #include "coretypes.h"
|
|
25 #include "tm.h"
|
|
26 #include "regs.h"
|
|
27 #include "rtl.h"
|
|
28 #include "tm_p.h"
|
|
29 #include "target.h"
|
|
30 #include "flags.h"
|
|
31 #include "except.h"
|
|
32 #include "hard-reg-set.h"
|
|
33 #include "basic-block.h"
|
|
34 #include "insn-config.h"
|
|
35 #include "recog.h"
|
|
36 #include "toplev.h"
|
|
37 #include "params.h"
|
|
38 #include "df.h"
|
|
39 #include "sparseset.h"
|
|
40 #include "ira-int.h"
|
|
41
|
|
42 /* The code in this file is similar to one in global but the code
|
|
43 works on the allocno basis and creates live ranges instead of
|
|
44 pseudo-register conflicts. */
|
|
45
|
|
46 /* Program points are enumerated by numbers from range
|
|
47 0..IRA_MAX_POINT-1. There are approximately two times more program
|
|
48 points than insns. Program points are places in the program where
|
|
49 liveness info can be changed. In most general case (there are more
|
|
50 complicated cases too) some program points correspond to places
|
|
51 where input operand dies and other ones correspond to places where
|
|
52 output operands are born. */
|
|
53 int ira_max_point;
|
|
54
|
|
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
|
|
56 live ranges with given start/finish point. */
|
|
57 allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
|
|
58
|
|
59 /* Number of the current program point. */
|
|
60 static int curr_point;
|
|
61
|
|
62 /* Point where register pressure excess started or -1 if there is no
|
|
63 register pressure excess. Excess pressure for a register class at
|
|
64 some point means that there are more allocnos of given register
|
|
65 class living at the point than number of hard-registers of the
|
|
66 class available for the allocation. It is defined only for cover
|
|
67 classes. */
|
|
68 static int high_pressure_start_point[N_REG_CLASSES];
|
|
69
|
|
70 /* Allocnos live at current point in the scan. */
|
|
71 static sparseset allocnos_live;
|
|
72
|
|
73 /* Set of hard regs (except eliminable ones) currently live. */
|
|
74 static HARD_REG_SET hard_regs_live;
|
|
75
|
|
76 /* The loop tree node corresponding to the current basic block. */
|
|
77 static ira_loop_tree_node_t curr_bb_node;
|
|
78
|
|
79 /* The number of the last processed call. */
|
|
80 static int last_call_num;
|
|
81 /* The number of last call at which given allocno was saved. */
|
|
82 static int *allocno_saved_at_call;
|
|
83
|
|
84 /* The function processing birth of register REGNO. It updates living
|
|
85 hard regs and conflict hard regs for living allocnos or starts a
|
|
86 new live range for the allocno corresponding to REGNO if it is
|
|
87 necessary. */
|
|
88 static void
|
|
89 make_regno_born (int regno)
|
|
90 {
|
|
91 unsigned int i;
|
|
92 ira_allocno_t a;
|
|
93 allocno_live_range_t p;
|
|
94
|
|
95 if (regno < FIRST_PSEUDO_REGISTER)
|
|
96 {
|
|
97 SET_HARD_REG_BIT (hard_regs_live, regno);
|
|
98 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
|
|
99 {
|
|
100 SET_HARD_REG_BIT (ALLOCNO_CONFLICT_HARD_REGS (ira_allocnos[i]),
|
|
101 regno);
|
|
102 SET_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (ira_allocnos[i]),
|
|
103 regno);
|
|
104 }
|
|
105 return;
|
|
106 }
|
|
107 a = ira_curr_regno_allocno_map[regno];
|
|
108 if (a == NULL)
|
|
109 return;
|
|
110 if ((p = ALLOCNO_LIVE_RANGES (a)) == NULL
|
|
111 || (p->finish != curr_point && p->finish + 1 != curr_point))
|
|
112 ALLOCNO_LIVE_RANGES (a)
|
|
113 = ira_create_allocno_live_range (a, curr_point, -1,
|
|
114 ALLOCNO_LIVE_RANGES (a));
|
|
115 }
|
|
116
|
|
117 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for allocno A. */
|
|
118 static void
|
|
119 update_allocno_pressure_excess_length (ira_allocno_t a)
|
|
120 {
|
|
121 int start, i;
|
|
122 enum reg_class cover_class, cl;
|
|
123 allocno_live_range_t p;
|
|
124
|
|
125 cover_class = ALLOCNO_COVER_CLASS (a);
|
|
126 for (i = 0;
|
|
127 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
|
|
128 i++)
|
|
129 {
|
|
130 if (high_pressure_start_point[cl] < 0)
|
|
131 continue;
|
|
132 p = ALLOCNO_LIVE_RANGES (a);
|
|
133 ira_assert (p != NULL);
|
|
134 start = (high_pressure_start_point[cl] > p->start
|
|
135 ? high_pressure_start_point[cl] : p->start);
|
|
136 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
|
|
137 }
|
|
138 }
|
|
139
|
|
140 /* Process the death of register REGNO. This updates hard_regs_live
|
|
141 or finishes the current live range for the allocno corresponding to
|
|
142 REGNO. */
|
|
143 static void
|
|
144 make_regno_dead (int regno)
|
|
145 {
|
|
146 ira_allocno_t a;
|
|
147 allocno_live_range_t p;
|
|
148
|
|
149 if (regno < FIRST_PSEUDO_REGISTER)
|
|
150 {
|
|
151 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
|
|
152 return;
|
|
153 }
|
|
154 a = ira_curr_regno_allocno_map[regno];
|
|
155 if (a == NULL)
|
|
156 return;
|
|
157 p = ALLOCNO_LIVE_RANGES (a);
|
|
158 ira_assert (p != NULL);
|
|
159 p->finish = curr_point;
|
|
160 update_allocno_pressure_excess_length (a);
|
|
161 }
|
|
162
|
|
163 /* The current register pressures for each cover class for the current
|
|
164 basic block. */
|
|
165 static int curr_reg_pressure[N_REG_CLASSES];
|
|
166
|
|
167 /* Mark allocno A as currently living and update current register
|
|
168 pressure, maximal register pressure for the current BB, start point
|
|
169 of the register pressure excess, and conflicting hard registers of
|
|
170 A. */
|
|
171 static void
|
|
172 set_allocno_live (ira_allocno_t a)
|
|
173 {
|
|
174 int i;
|
|
175 enum reg_class cover_class, cl;
|
|
176
|
|
177 /* Invalidate because it is referenced. */
|
|
178 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
179 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
|
|
180 return;
|
|
181 sparseset_set_bit (allocnos_live, ALLOCNO_NUM (a));
|
|
182 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a), hard_regs_live);
|
|
183 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), hard_regs_live);
|
|
184 cover_class = ALLOCNO_COVER_CLASS (a);
|
|
185 for (i = 0;
|
|
186 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
|
|
187 i++)
|
|
188 {
|
|
189 curr_reg_pressure[cl] += ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
190 if (high_pressure_start_point[cl] < 0
|
|
191 && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
|
|
192 high_pressure_start_point[cl] = curr_point;
|
|
193 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
194 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
195 }
|
|
196 }
|
|
197
|
|
198 /* Mark allocno A as currently not living and update current register
|
|
199 pressure, start point of the register pressure excess, and register
|
|
200 pressure excess length for living allocnos. */
|
|
201 static void
|
|
202 clear_allocno_live (ira_allocno_t a)
|
|
203 {
|
|
204 int i;
|
|
205 unsigned int j;
|
|
206 enum reg_class cover_class, cl;
|
|
207 bool set_p;
|
|
208
|
|
209 /* Invalidate because it is referenced. */
|
|
210 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
211 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
|
|
212 {
|
|
213 cover_class = ALLOCNO_COVER_CLASS (a);
|
|
214 set_p = false;
|
|
215 for (i = 0;
|
|
216 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
217 != LIM_REG_CLASSES;
|
|
218 i++)
|
|
219 {
|
|
220 curr_reg_pressure[cl] -= ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
|
|
221 ira_assert (curr_reg_pressure[cl] >= 0);
|
|
222 if (high_pressure_start_point[cl] >= 0
|
|
223 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
|
|
224 set_p = true;
|
|
225 }
|
|
226 if (set_p)
|
|
227 {
|
|
228 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
|
|
229 update_allocno_pressure_excess_length (ira_allocnos[j]);
|
|
230 for (i = 0;
|
|
231 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
232 != LIM_REG_CLASSES;
|
|
233 i++)
|
|
234 if (high_pressure_start_point[cl] >= 0
|
|
235 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
|
|
236 high_pressure_start_point[cl] = -1;
|
|
237
|
|
238 }
|
|
239 }
|
|
240 sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (a));
|
|
241 }
|
|
242
|
|
243 /* Mark the register REG as live. Store a 1 in hard_regs_live or
|
|
244 allocnos_live for this register or the corresponding allocno,
|
|
245 record how many consecutive hardware registers it actually
|
|
246 needs. */
|
|
247 static void
|
|
248 mark_reg_live (rtx reg)
|
|
249 {
|
|
250 int i, regno;
|
|
251
|
|
252 gcc_assert (REG_P (reg));
|
|
253 regno = REGNO (reg);
|
|
254
|
|
255 if (regno >= FIRST_PSEUDO_REGISTER)
|
|
256 {
|
|
257 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
258
|
|
259 if (a != NULL)
|
|
260 {
|
|
261 if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
|
|
262 {
|
|
263 /* Invalidate because it is referenced. */
|
|
264 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
265 return;
|
|
266 }
|
|
267 set_allocno_live (a);
|
|
268 }
|
|
269 make_regno_born (regno);
|
|
270 }
|
|
271 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
272 {
|
|
273 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
|
274 enum reg_class cover_class, cl;
|
|
275
|
|
276 while (regno < last)
|
|
277 {
|
|
278 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
|
|
279 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
|
|
280 {
|
|
281 cover_class = ira_hard_regno_cover_class[regno];
|
|
282 for (i = 0;
|
|
283 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
284 != LIM_REG_CLASSES;
|
|
285 i++)
|
|
286 {
|
|
287 curr_reg_pressure[cl]++;
|
|
288 if (high_pressure_start_point[cl] < 0
|
|
289 && (curr_reg_pressure[cl]
|
|
290 > ira_available_class_regs[cl]))
|
|
291 high_pressure_start_point[cl] = curr_point;
|
|
292 }
|
|
293 make_regno_born (regno);
|
|
294 for (i = 0;
|
|
295 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
296 != LIM_REG_CLASSES;
|
|
297 i++)
|
|
298 {
|
|
299 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
300 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
301 }
|
|
302 }
|
|
303 regno++;
|
|
304 }
|
|
305 }
|
|
306 }
|
|
307
|
|
308 /* Mark the register referenced by use or def REF as live. */
|
|
309 static void
|
|
310 mark_ref_live (df_ref ref)
|
|
311 {
|
|
312 rtx reg;
|
|
313
|
|
314 reg = DF_REF_REG (ref);
|
|
315 if (GET_CODE (reg) == SUBREG)
|
|
316 reg = SUBREG_REG (reg);
|
|
317 mark_reg_live (reg);
|
|
318 }
|
|
319
|
|
320 /* Mark the register REG as dead. Store a 0 in hard_regs_live or
|
|
321 allocnos_live for the register. */
|
|
322 static void
|
|
323 mark_reg_dead (rtx reg)
|
|
324 {
|
|
325 int regno;
|
|
326
|
|
327 gcc_assert (REG_P (reg));
|
|
328 regno = REGNO (reg);
|
|
329
|
|
330 if (regno >= FIRST_PSEUDO_REGISTER)
|
|
331 {
|
|
332 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
333
|
|
334 if (a != NULL)
|
|
335 {
|
|
336 if (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
|
|
337 {
|
|
338 /* Invalidate because it is referenced. */
|
|
339 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
340 return;
|
|
341 }
|
|
342 clear_allocno_live (a);
|
|
343 }
|
|
344 make_regno_dead (regno);
|
|
345 }
|
|
346 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
347 {
|
|
348 int i;
|
|
349 unsigned int j;
|
|
350 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
|
|
351 enum reg_class cover_class, cl;
|
|
352 bool set_p;
|
|
353
|
|
354 while (regno < last)
|
|
355 {
|
|
356 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
|
|
357 {
|
|
358 set_p = false;
|
|
359 cover_class = ira_hard_regno_cover_class[regno];
|
|
360 for (i = 0;
|
|
361 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
362 != LIM_REG_CLASSES;
|
|
363 i++)
|
|
364 {
|
|
365 curr_reg_pressure[cl]--;
|
|
366 if (high_pressure_start_point[cl] >= 0
|
|
367 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
|
|
368 set_p = true;
|
|
369 ira_assert (curr_reg_pressure[cl] >= 0);
|
|
370 }
|
|
371 if (set_p)
|
|
372 {
|
|
373 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
|
|
374 update_allocno_pressure_excess_length (ira_allocnos[j]);
|
|
375 for (i = 0;
|
|
376 (cl = ira_reg_class_super_classes[cover_class][i])
|
|
377 != LIM_REG_CLASSES;
|
|
378 i++)
|
|
379 if (high_pressure_start_point[cl] >= 0
|
|
380 && (curr_reg_pressure[cl]
|
|
381 <= ira_available_class_regs[cl]))
|
|
382 high_pressure_start_point[cl] = -1;
|
|
383 }
|
|
384 make_regno_dead (regno);
|
|
385 }
|
|
386 regno++;
|
|
387 }
|
|
388 }
|
|
389 }
|
|
390
|
|
391 /* Mark the register referenced by definition DEF as dead, if the
|
|
392 definition is a total one. */
|
|
393 static void
|
|
394 mark_ref_dead (df_ref def)
|
|
395 {
|
|
396 rtx reg;
|
|
397
|
|
398 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
|
|
399 || DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
|
|
400 return;
|
|
401
|
|
402 reg = DF_REF_REG (def);
|
|
403 if (GET_CODE (reg) == SUBREG)
|
|
404 reg = SUBREG_REG (reg);
|
|
405 mark_reg_dead (reg);
|
|
406 }
|
|
407
|
|
408 /* Make pseudo REG conflicting with pseudo DREG, if the 1st pseudo
|
|
409 class is intersected with class CL. Advance the current program
|
|
410 point before making the conflict if ADVANCE_P. Return TRUE if we
|
|
411 will need to advance the current program point. */
|
|
412 static bool
|
|
413 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, bool advance_p)
|
|
414 {
|
|
415 ira_allocno_t a;
|
|
416
|
|
417 if (GET_CODE (reg) == SUBREG)
|
|
418 reg = SUBREG_REG (reg);
|
|
419
|
|
420 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
|
421 return advance_p;
|
|
422
|
|
423 a = ira_curr_regno_allocno_map[REGNO (reg)];
|
|
424 if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
|
|
425 return advance_p;
|
|
426
|
|
427 if (advance_p)
|
|
428 curr_point++;
|
|
429
|
|
430 mark_reg_live (reg);
|
|
431 mark_reg_live (dreg);
|
|
432 mark_reg_dead (reg);
|
|
433 mark_reg_dead (dreg);
|
|
434
|
|
435 return false;
|
|
436 }
|
|
437
|
|
438 /* Check and make if necessary conflicts for pseudo DREG of class
|
|
439 DEF_CL of the current insn with input operand USE of class USE_CL.
|
|
440 Advance the current program point before making the conflict if
|
|
441 ADVANCE_P. Return TRUE if we will need to advance the current
|
|
442 program point. */
|
|
443 static bool
|
|
444 check_and_make_def_use_conflict (rtx dreg, enum reg_class def_cl,
|
|
445 int use, enum reg_class use_cl,
|
|
446 bool advance_p)
|
|
447 {
|
|
448 if (! reg_classes_intersect_p (def_cl, use_cl))
|
|
449 return advance_p;
|
|
450
|
|
451 advance_p = make_pseudo_conflict (recog_data.operand[use],
|
|
452 use_cl, dreg, advance_p);
|
|
453 /* Reload may end up swapping commutative operands, so you
|
|
454 have to take both orderings into account. The
|
|
455 constraints for the two operands can be completely
|
|
456 different. (Indeed, if the constraints for the two
|
|
457 operands are the same for all alternatives, there's no
|
|
458 point marking them as commutative.) */
|
|
459 if (use < recog_data.n_operands + 1
|
|
460 && recog_data.constraints[use][0] == '%')
|
|
461 advance_p
|
|
462 = make_pseudo_conflict (recog_data.operand[use + 1],
|
|
463 use_cl, dreg, advance_p);
|
|
464 if (use >= 1
|
|
465 && recog_data.constraints[use - 1][0] == '%')
|
|
466 advance_p
|
|
467 = make_pseudo_conflict (recog_data.operand[use - 1],
|
|
468 use_cl, dreg, advance_p);
|
|
469 return advance_p;
|
|
470 }
|
|
471
|
|
472 /* Check and make if necessary conflicts for definition DEF of class
|
|
473 DEF_CL of the current insn with input operands. Process only
|
|
474 constraints of alternative ALT. */
|
|
475 static void
|
|
476 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
|
|
477 {
|
|
478 int use, use_match;
|
|
479 ira_allocno_t a;
|
|
480 enum reg_class use_cl, acl;
|
|
481 bool advance_p;
|
|
482 rtx dreg = recog_data.operand[def];
|
|
483
|
|
484 if (def_cl == NO_REGS)
|
|
485 return;
|
|
486
|
|
487 if (GET_CODE (dreg) == SUBREG)
|
|
488 dreg = SUBREG_REG (dreg);
|
|
489
|
|
490 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
|
|
491 return;
|
|
492
|
|
493 a = ira_curr_regno_allocno_map[REGNO (dreg)];
|
|
494 acl = ALLOCNO_COVER_CLASS (a);
|
|
495 if (! reg_classes_intersect_p (acl, def_cl))
|
|
496 return;
|
|
497
|
|
498 advance_p = true;
|
|
499
|
|
500 for (use = 0; use < recog_data.n_operands; use++)
|
|
501 {
|
|
502 if (use == def || recog_data.operand_type[use] == OP_OUT)
|
|
503 return;
|
|
504
|
|
505 if (recog_op_alt[use][alt].anything_ok)
|
|
506 use_cl = ALL_REGS;
|
|
507 else
|
|
508 use_cl = recog_op_alt[use][alt].cl;
|
|
509
|
|
510 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
|
|
511 use_cl, advance_p);
|
|
512
|
|
513 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
|
|
514 {
|
|
515 if (use_match == def)
|
|
516 return;
|
|
517
|
|
518 if (recog_op_alt[use_match][alt].anything_ok)
|
|
519 use_cl = ALL_REGS;
|
|
520 else
|
|
521 use_cl = recog_op_alt[use_match][alt].cl;
|
|
522 advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
|
|
523 use_cl, advance_p);
|
|
524 }
|
|
525 }
|
|
526 }
|
|
527
|
|
528 /* Make conflicts of early clobber pseudo registers of the current
|
|
529 insn with its inputs. Avoid introducing unnecessary conflicts by
|
|
530 checking classes of the constraints and pseudos because otherwise
|
|
531 significant code degradation is possible for some targets. */
|
|
532 static void
|
|
533 make_early_clobber_and_input_conflicts (void)
|
|
534 {
|
|
535 int alt;
|
|
536 int def, def_match;
|
|
537 enum reg_class def_cl;
|
|
538
|
|
539 for (alt = 0; alt < recog_data.n_alternatives; alt++)
|
|
540 for (def = 0; def < recog_data.n_operands; def++)
|
|
541 {
|
|
542 def_cl = NO_REGS;
|
|
543 if (recog_op_alt[def][alt].earlyclobber)
|
|
544 {
|
|
545 if (recog_op_alt[def][alt].anything_ok)
|
|
546 def_cl = ALL_REGS;
|
|
547 else
|
|
548 def_cl = recog_op_alt[def][alt].cl;
|
|
549 check_and_make_def_conflict (alt, def, def_cl);
|
|
550 }
|
|
551 if ((def_match = recog_op_alt[def][alt].matches) >= 0
|
|
552 && (recog_op_alt[def_match][alt].earlyclobber
|
|
553 || recog_op_alt[def][alt].earlyclobber))
|
|
554 {
|
|
555 if (recog_op_alt[def_match][alt].anything_ok)
|
|
556 def_cl = ALL_REGS;
|
|
557 else
|
|
558 def_cl = recog_op_alt[def_match][alt].cl;
|
|
559 check_and_make_def_conflict (alt, def, def_cl);
|
|
560 }
|
|
561 }
|
|
562 }
|
|
563
|
|
564 /* Mark early clobber hard registers of the current INSN as live (if
|
|
565 LIVE_P) or dead. Return true if there are such registers. */
|
|
566 static bool
|
|
567 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
|
|
568 {
|
|
569 df_ref *def_rec;
|
|
570 bool set_p = false;
|
|
571
|
|
572 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
573 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
|
|
574 {
|
|
575 rtx dreg = DF_REF_REG (*def_rec);
|
|
576
|
|
577 if (GET_CODE (dreg) == SUBREG)
|
|
578 dreg = SUBREG_REG (dreg);
|
|
579 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
|
|
580 continue;
|
|
581
|
|
582 /* Hard register clobbers are believed to be early clobber
|
|
583 because there is no way to say that non-operand hard
|
|
584 register clobbers are not early ones. */
|
|
585 if (live_p)
|
|
586 mark_ref_live (*def_rec);
|
|
587 else
|
|
588 mark_ref_dead (*def_rec);
|
|
589 set_p = true;
|
|
590 }
|
|
591
|
|
592 return set_p;
|
|
593 }
|
|
594
|
|
595 /* Checks that CONSTRAINTS permits to use only one hard register. If
|
|
596 it is so, the function returns the class of the hard register.
|
|
597 Otherwise it returns NO_REGS. */
|
|
598 static enum reg_class
|
|
599 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
|
|
600 {
|
|
601 int ignore_p;
|
|
602 enum reg_class cl, next_cl;
|
|
603 int c;
|
|
604
|
|
605 cl = NO_REGS;
|
|
606 for (ignore_p = false;
|
|
607 (c = *constraints);
|
|
608 constraints += CONSTRAINT_LEN (c, constraints))
|
|
609 if (c == '#')
|
|
610 ignore_p = true;
|
|
611 else if (c == ',')
|
|
612 ignore_p = false;
|
|
613 else if (! ignore_p)
|
|
614 switch (c)
|
|
615 {
|
|
616 case ' ':
|
|
617 case '\t':
|
|
618 case '=':
|
|
619 case '+':
|
|
620 case '*':
|
|
621 case '&':
|
|
622 case '%':
|
|
623 case '!':
|
|
624 case '?':
|
|
625 break;
|
|
626 case 'i':
|
|
627 if (CONSTANT_P (op)
|
|
628 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
|
|
629 return NO_REGS;
|
|
630 break;
|
|
631
|
|
632 case 'n':
|
|
633 if (GET_CODE (op) == CONST_INT
|
|
634 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
|
|
635 || (equiv_const != NULL_RTX
|
|
636 && (GET_CODE (equiv_const) == CONST_INT
|
|
637 || (GET_CODE (equiv_const) == CONST_DOUBLE
|
|
638 && GET_MODE (equiv_const) == VOIDmode))))
|
|
639 return NO_REGS;
|
|
640 break;
|
|
641
|
|
642 case 's':
|
|
643 if ((CONSTANT_P (op) && GET_CODE (op) != CONST_INT
|
|
644 && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
|
|
645 || (equiv_const != NULL_RTX
|
|
646 && CONSTANT_P (equiv_const)
|
|
647 && GET_CODE (equiv_const) != CONST_INT
|
|
648 && (GET_CODE (equiv_const) != CONST_DOUBLE
|
|
649 || GET_MODE (equiv_const) != VOIDmode)))
|
|
650 return NO_REGS;
|
|
651 break;
|
|
652
|
|
653 case 'I':
|
|
654 case 'J':
|
|
655 case 'K':
|
|
656 case 'L':
|
|
657 case 'M':
|
|
658 case 'N':
|
|
659 case 'O':
|
|
660 case 'P':
|
|
661 if ((GET_CODE (op) == CONST_INT
|
|
662 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
|
|
663 || (equiv_const != NULL_RTX
|
|
664 && GET_CODE (equiv_const) == CONST_INT
|
|
665 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
|
|
666 c, constraints)))
|
|
667 return NO_REGS;
|
|
668 break;
|
|
669
|
|
670 case 'E':
|
|
671 case 'F':
|
|
672 if (GET_CODE (op) == CONST_DOUBLE
|
|
673 || (GET_CODE (op) == CONST_VECTOR
|
|
674 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
|
|
675 || (equiv_const != NULL_RTX
|
|
676 && (GET_CODE (equiv_const) == CONST_DOUBLE
|
|
677 || (GET_CODE (equiv_const) == CONST_VECTOR
|
|
678 && (GET_MODE_CLASS (GET_MODE (equiv_const))
|
|
679 == MODE_VECTOR_FLOAT)))))
|
|
680 return NO_REGS;
|
|
681 break;
|
|
682
|
|
683 case 'G':
|
|
684 case 'H':
|
|
685 if ((GET_CODE (op) == CONST_DOUBLE
|
|
686 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
|
|
687 || (equiv_const != NULL_RTX
|
|
688 && GET_CODE (equiv_const) == CONST_DOUBLE
|
|
689 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
|
|
690 c, constraints)))
|
|
691 return NO_REGS;
|
|
692 /* ??? what about memory */
|
|
693 case 'r':
|
|
694 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
695 case 'h': case 'j': case 'k': case 'l':
|
|
696 case 'q': case 't': case 'u':
|
|
697 case 'v': case 'w': case 'x': case 'y': case 'z':
|
|
698 case 'A': case 'B': case 'C': case 'D':
|
|
699 case 'Q': case 'R': case 'S': case 'T': case 'U':
|
|
700 case 'W': case 'Y': case 'Z':
|
|
701 next_cl = (c == 'r'
|
|
702 ? GENERAL_REGS
|
|
703 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
|
|
704 if ((cl != NO_REGS && next_cl != cl)
|
|
705 || ira_available_class_regs[next_cl] > 1)
|
|
706 return NO_REGS;
|
|
707 cl = next_cl;
|
|
708 break;
|
|
709
|
|
710 case '0': case '1': case '2': case '3': case '4':
|
|
711 case '5': case '6': case '7': case '8': case '9':
|
|
712 next_cl
|
|
713 = single_reg_class (recog_data.constraints[c - '0'],
|
|
714 recog_data.operand[c - '0'], NULL_RTX);
|
|
715 if ((cl != NO_REGS && next_cl != cl) || next_cl == NO_REGS
|
|
716 || ira_available_class_regs[next_cl] > 1)
|
|
717 return NO_REGS;
|
|
718 cl = next_cl;
|
|
719 break;
|
|
720
|
|
721 default:
|
|
722 return NO_REGS;
|
|
723 }
|
|
724 return cl;
|
|
725 }
|
|
726
|
|
727 /* The function checks that operand OP_NUM of the current insn can use
|
|
728 only one hard register. If it is so, the function returns the
|
|
729 class of the hard register. Otherwise it returns NO_REGS. */
|
|
730 static enum reg_class
|
|
731 single_reg_operand_class (int op_num)
|
|
732 {
|
|
733 if (op_num < 0 || recog_data.n_alternatives == 0)
|
|
734 return NO_REGS;
|
|
735 return single_reg_class (recog_data.constraints[op_num],
|
|
736 recog_data.operand[op_num], NULL_RTX);
|
|
737 }
|
|
738
|
|
739 /* Processes input operands, if IN_P, or output operands otherwise of
|
|
740 the current insn with FREQ to find allocno which can use only one
|
|
741 hard register and makes other currently living allocnos conflicting
|
|
742 with the hard register. */
|
|
743 static void
|
|
744 process_single_reg_class_operands (bool in_p, int freq)
|
|
745 {
|
|
746 int i, regno, cost;
|
|
747 unsigned int px;
|
|
748 enum reg_class cl, cover_class;
|
|
749 rtx operand;
|
|
750 ira_allocno_t operand_a, a;
|
|
751
|
|
752 for (i = 0; i < recog_data.n_operands; i++)
|
|
753 {
|
|
754 operand = recog_data.operand[i];
|
|
755 if (in_p && recog_data.operand_type[i] != OP_IN
|
|
756 && recog_data.operand_type[i] != OP_INOUT)
|
|
757 continue;
|
|
758 if (! in_p && recog_data.operand_type[i] != OP_OUT
|
|
759 && recog_data.operand_type[i] != OP_INOUT)
|
|
760 continue;
|
|
761 cl = single_reg_operand_class (i);
|
|
762 if (cl == NO_REGS)
|
|
763 continue;
|
|
764
|
|
765 operand_a = NULL;
|
|
766
|
|
767 if (GET_CODE (operand) == SUBREG)
|
|
768 operand = SUBREG_REG (operand);
|
|
769
|
|
770 if (REG_P (operand)
|
|
771 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
|
|
772 {
|
|
773 enum machine_mode mode;
|
|
774 enum reg_class cover_class;
|
|
775
|
|
776 operand_a = ira_curr_regno_allocno_map[regno];
|
|
777 mode = ALLOCNO_MODE (operand_a);
|
|
778 cover_class = ALLOCNO_COVER_CLASS (operand_a);
|
|
779 if (ira_class_subset_p[cl][cover_class]
|
|
780 && ira_class_hard_regs_num[cl] != 0
|
|
781 && (ira_class_hard_reg_index[cover_class]
|
|
782 [ira_class_hard_regs[cl][0]]) >= 0
|
|
783 && reg_class_size[cl] <= (unsigned) CLASS_MAX_NREGS (cl, mode))
|
|
784 {
|
|
785 /* ??? FREQ */
|
|
786 cost = freq * (in_p
|
|
787 ? ira_register_move_cost[mode][cover_class][cl]
|
|
788 : ira_register_move_cost[mode][cl][cover_class]);
|
|
789 ira_allocate_and_set_costs
|
|
790 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a), cover_class, 0);
|
|
791 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
|
|
792 [ira_class_hard_reg_index
|
|
793 [cover_class][ira_class_hard_regs[cl][0]]]
|
|
794 -= cost;
|
|
795 }
|
|
796 }
|
|
797
|
|
798 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
|
|
799 {
|
|
800 a = ira_allocnos[px];
|
|
801 cover_class = ALLOCNO_COVER_CLASS (a);
|
|
802 if (a != operand_a)
|
|
803 {
|
|
804 /* We could increase costs of A instead of making it
|
|
805 conflicting with the hard register. But it works worse
|
|
806 because it will be spilled in reload in anyway. */
|
|
807 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
|
|
808 reg_class_contents[cl]);
|
|
809 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
|
|
810 reg_class_contents[cl]);
|
|
811 }
|
|
812 }
|
|
813 }
|
|
814 }
|
|
815
|
|
816 /* Process insns of the basic block given by its LOOP_TREE_NODE to
|
|
817 update allocno live ranges, allocno hard register conflicts,
|
|
818 intersected calls, and register pressure info for allocnos for the
|
|
819 basic block for and regions containing the basic block. */
|
|
820 static void
|
|
821 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
|
|
822 {
|
|
823 int i, freq;
|
|
824 unsigned int j;
|
|
825 basic_block bb;
|
|
826 rtx insn;
|
|
827 bitmap_iterator bi;
|
|
828 bitmap reg_live_out;
|
|
829 unsigned int px;
|
|
830 bool set_p;
|
|
831
|
|
832 bb = loop_tree_node->bb;
|
|
833 if (bb != NULL)
|
|
834 {
|
|
835 for (i = 0; i < ira_reg_class_cover_size; i++)
|
|
836 {
|
|
837 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
|
|
838 high_pressure_start_point[ira_reg_class_cover[i]] = -1;
|
|
839 }
|
|
840 curr_bb_node = loop_tree_node;
|
|
841 reg_live_out = DF_LR_OUT (bb);
|
|
842 sparseset_clear (allocnos_live);
|
|
843 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
|
|
844 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
|
|
845 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
|
|
846 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
847 if (TEST_HARD_REG_BIT (hard_regs_live, i))
|
|
848 {
|
|
849 enum reg_class cover_class, cl;
|
|
850
|
|
851 cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
|
|
852 for (j = 0;
|
|
853 (cl = ira_reg_class_super_classes[cover_class][j])
|
|
854 != LIM_REG_CLASSES;
|
|
855 j++)
|
|
856 {
|
|
857 curr_reg_pressure[cl]++;
|
|
858 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
859 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
860 ira_assert (curr_reg_pressure[cl]
|
|
861 <= ira_available_class_regs[cl]);
|
|
862 }
|
|
863 }
|
|
864 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
|
|
865 {
|
|
866 ira_allocno_t a = ira_curr_regno_allocno_map[j];
|
|
867
|
|
868 if (a == NULL)
|
|
869 continue;
|
|
870 ira_assert (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)));
|
|
871 set_allocno_live (a);
|
|
872 make_regno_born (j);
|
|
873 }
|
|
874
|
|
875 freq = REG_FREQ_FROM_BB (bb);
|
|
876 if (freq == 0)
|
|
877 freq = 1;
|
|
878
|
|
879 /* Invalidate all allocno_saved_at_call entries. */
|
|
880 last_call_num++;
|
|
881
|
|
882 /* Scan the code of this basic block, noting which allocnos and
|
|
883 hard regs are born or die.
|
|
884
|
|
885 Note that this loop treats uninitialized values as live until
|
|
886 the beginning of the block. For example, if an instruction
|
|
887 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
|
|
888 set, FOO will remain live until the beginning of the block.
|
|
889 Likewise if FOO is not set at all. This is unnecessarily
|
|
890 pessimistic, but it probably doesn't matter much in practice. */
|
|
891 FOR_BB_INSNS_REVERSE (bb, insn)
|
|
892 {
|
|
893 df_ref *def_rec, *use_rec;
|
|
894 bool call_p;
|
|
895
|
|
896 if (! INSN_P (insn))
|
|
897 continue;
|
|
898
|
|
899 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
900 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
|
|
901 INSN_UID (insn), loop_tree_node->parent->loop->num,
|
|
902 curr_point);
|
|
903
|
|
904 /* Mark each defined value as live. We need to do this for
|
|
905 unused values because they still conflict with quantities
|
|
906 that are live at the time of the definition.
|
|
907
|
|
908 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
|
|
909 references represent the effect of the called function
|
|
910 on a call-clobbered register. Marking the register as
|
|
911 live would stop us from allocating it to a call-crossing
|
|
912 allocno. */
|
|
913 call_p = CALL_P (insn);
|
|
914 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
915 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
|
|
916 mark_ref_live (*def_rec);
|
|
917
|
|
918 /* If INSN has multiple outputs, then any value used in one
|
|
919 of the outputs conflicts with the other outputs. Model this
|
|
920 by making the used value live during the output phase.
|
|
921
|
|
922 It is unsafe to use !single_set here since it will ignore
|
|
923 an unused output. Just because an output is unused does
|
|
924 not mean the compiler can assume the side effect will not
|
|
925 occur. Consider if ALLOCNO appears in the address of an
|
|
926 output and we reload the output. If we allocate ALLOCNO
|
|
927 to the same hard register as an unused output we could
|
|
928 set the hard register before the output reload insn. */
|
|
929 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
|
|
930 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
931 {
|
|
932 int i;
|
|
933 rtx reg;
|
|
934
|
|
935 reg = DF_REF_REG (*use_rec);
|
|
936 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
|
937 {
|
|
938 rtx set;
|
|
939
|
|
940 set = XVECEXP (PATTERN (insn), 0, i);
|
|
941 if (GET_CODE (set) == SET
|
|
942 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
|
943 {
|
|
944 /* After the previous loop, this is a no-op if
|
|
945 REG is contained within SET_DEST (SET). */
|
|
946 mark_ref_live (*use_rec);
|
|
947 break;
|
|
948 }
|
|
949 }
|
|
950 }
|
|
951
|
|
952 extract_insn (insn);
|
|
953 preprocess_constraints ();
|
|
954 process_single_reg_class_operands (false, freq);
|
|
955
|
|
956 /* See which defined values die here. */
|
|
957 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
|
958 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
|
|
959 mark_ref_dead (*def_rec);
|
|
960
|
|
961 if (call_p)
|
|
962 {
|
|
963 last_call_num++;
|
|
964 /* The current set of live allocnos are live across the call. */
|
|
965 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
|
|
966 {
|
|
967 ira_allocno_t a = ira_allocnos[i];
|
|
968
|
|
969 if (allocno_saved_at_call[i] != last_call_num)
|
|
970 /* Here we are mimicking caller-save.c behaviour
|
|
971 which does not save hard register at a call if
|
|
972 it was saved on previous call in the same basic
|
|
973 block and the hard register was not mentioned
|
|
974 between the two calls. */
|
|
975 ALLOCNO_CALL_FREQ (a) += freq;
|
|
976 /* Mark it as saved at the next call. */
|
|
977 allocno_saved_at_call[i] = last_call_num + 1;
|
|
978 ALLOCNO_CALLS_CROSSED_NUM (a)++;
|
|
979 /* Don't allocate allocnos that cross setjmps or any
|
|
980 call, if this function receives a nonlocal
|
|
981 goto. */
|
|
982 if (cfun->has_nonlocal_label
|
|
983 || find_reg_note (insn, REG_SETJMP,
|
|
984 NULL_RTX) != NULL_RTX)
|
|
985 {
|
|
986 SET_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a));
|
|
987 SET_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
|
|
988 }
|
|
989 if (can_throw_internal (insn))
|
|
990 {
|
|
991 IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
|
|
992 call_used_reg_set);
|
|
993 IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
|
|
994 call_used_reg_set);
|
|
995 }
|
|
996 }
|
|
997 }
|
|
998
|
|
999 make_early_clobber_and_input_conflicts ();
|
|
1000
|
|
1001 curr_point++;
|
|
1002
|
|
1003 /* Mark each used value as live. */
|
|
1004 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
1005 mark_ref_live (*use_rec);
|
|
1006
|
|
1007 process_single_reg_class_operands (true, freq);
|
|
1008
|
|
1009 set_p = mark_hard_reg_early_clobbers (insn, true);
|
|
1010
|
|
1011 if (set_p)
|
|
1012 {
|
|
1013 mark_hard_reg_early_clobbers (insn, false);
|
|
1014
|
|
1015 /* Mark each hard reg as live again. For example, a
|
|
1016 hard register can be in clobber and in an insn
|
|
1017 input. */
|
|
1018 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
|
|
1019 {
|
|
1020 rtx ureg = DF_REF_REG (*use_rec);
|
|
1021
|
|
1022 if (GET_CODE (ureg) == SUBREG)
|
|
1023 ureg = SUBREG_REG (ureg);
|
|
1024 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
|
|
1025 continue;
|
|
1026
|
|
1027 mark_ref_live (*use_rec);
|
|
1028 }
|
|
1029 }
|
|
1030
|
|
1031 curr_point++;
|
|
1032 }
|
|
1033
|
|
1034 #ifdef EH_RETURN_DATA_REGNO
|
|
1035 if (bb_has_eh_pred (bb))
|
|
1036 for (j = 0; ; ++j)
|
|
1037 {
|
|
1038 unsigned int regno = EH_RETURN_DATA_REGNO (j);
|
|
1039 if (regno == INVALID_REGNUM)
|
|
1040 break;
|
|
1041 make_regno_born (regno);
|
|
1042 }
|
|
1043 #endif
|
|
1044
|
|
1045 /* Allocnos can't go in stack regs at the start of a basic block
|
|
1046 that is reached by an abnormal edge. Likewise for call
|
|
1047 clobbered regs, because caller-save, fixup_abnormal_edges and
|
|
1048 possibly the table driven EH machinery are not quite ready to
|
|
1049 handle such allocnos live across such edges. */
|
|
1050 if (bb_has_abnormal_pred (bb))
|
|
1051 {
|
|
1052 #ifdef STACK_REGS
|
|
1053 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
|
|
1054 {
|
|
1055 ALLOCNO_NO_STACK_REG_P (ira_allocnos[px]) = true;
|
|
1056 ALLOCNO_TOTAL_NO_STACK_REG_P (ira_allocnos[px]) = true;
|
|
1057 }
|
|
1058 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
|
|
1059 make_regno_born (px);
|
|
1060 #endif
|
|
1061 /* No need to record conflicts for call clobbered regs if we
|
|
1062 have nonlocal labels around, as we don't ever try to
|
|
1063 allocate such regs in this case. */
|
|
1064 if (!cfun->has_nonlocal_label)
|
|
1065 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
|
|
1066 if (call_used_regs[px])
|
|
1067 make_regno_born (px);
|
|
1068 }
|
|
1069
|
|
1070 EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
|
|
1071 {
|
|
1072 make_regno_dead (ALLOCNO_REGNO (ira_allocnos[i]));
|
|
1073 }
|
|
1074
|
|
1075 curr_point++;
|
|
1076
|
|
1077 }
|
|
1078 /* Propagate register pressure to upper loop tree nodes: */
|
|
1079 if (loop_tree_node != ira_loop_tree_root)
|
|
1080 for (i = 0; i < ira_reg_class_cover_size; i++)
|
|
1081 {
|
|
1082 enum reg_class cover_class;
|
|
1083
|
|
1084 cover_class = ira_reg_class_cover[i];
|
|
1085 if (loop_tree_node->reg_pressure[cover_class]
|
|
1086 > loop_tree_node->parent->reg_pressure[cover_class])
|
|
1087 loop_tree_node->parent->reg_pressure[cover_class]
|
|
1088 = loop_tree_node->reg_pressure[cover_class];
|
|
1089 }
|
|
1090 }
|
|
1091
|
|
1092 /* Create and set up IRA_START_POINT_RANGES and
|
|
1093 IRA_FINISH_POINT_RANGES. */
|
|
1094 static void
|
|
1095 create_start_finish_chains (void)
|
|
1096 {
|
|
1097 ira_allocno_t a;
|
|
1098 ira_allocno_iterator ai;
|
|
1099 allocno_live_range_t r;
|
|
1100
|
|
1101 ira_start_point_ranges
|
|
1102 = (allocno_live_range_t *) ira_allocate (ira_max_point
|
|
1103 * sizeof (allocno_live_range_t));
|
|
1104 memset (ira_start_point_ranges, 0,
|
|
1105 ira_max_point * sizeof (allocno_live_range_t));
|
|
1106 ira_finish_point_ranges
|
|
1107 = (allocno_live_range_t *) ira_allocate (ira_max_point
|
|
1108 * sizeof (allocno_live_range_t));
|
|
1109 memset (ira_finish_point_ranges, 0,
|
|
1110 ira_max_point * sizeof (allocno_live_range_t));
|
|
1111 FOR_EACH_ALLOCNO (a, ai)
|
|
1112 {
|
|
1113 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
|
|
1114 {
|
|
1115 r->start_next = ira_start_point_ranges[r->start];
|
|
1116 ira_start_point_ranges[r->start] = r;
|
|
1117 r->finish_next = ira_finish_point_ranges[r->finish];
|
|
1118 ira_finish_point_ranges[r->finish] = r;
|
|
1119 }
|
|
1120 }
|
|
1121 }
|
|
1122
|
|
1123 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
|
|
1124 new live ranges and program points were added as a result if new
|
|
1125 insn generation. */
|
|
1126 void
|
|
1127 ira_rebuild_start_finish_chains (void)
|
|
1128 {
|
|
1129 ira_free (ira_finish_point_ranges);
|
|
1130 ira_free (ira_start_point_ranges);
|
|
1131 create_start_finish_chains ();
|
|
1132 }
|
|
1133
|
|
1134 /* Compress allocno live ranges by removing program points where
|
|
1135 nothing happens. */
|
|
1136 static void
|
|
1137 remove_some_program_points_and_update_live_ranges (void)
|
|
1138 {
|
|
1139 unsigned i;
|
|
1140 int n;
|
|
1141 int *map;
|
|
1142 ira_allocno_t a;
|
|
1143 ira_allocno_iterator ai;
|
|
1144 allocno_live_range_t r;
|
|
1145 bitmap born_or_died;
|
|
1146 bitmap_iterator bi;
|
|
1147
|
|
1148 born_or_died = ira_allocate_bitmap ();
|
|
1149 FOR_EACH_ALLOCNO (a, ai)
|
|
1150 {
|
|
1151 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
|
|
1152 {
|
|
1153 ira_assert (r->start <= r->finish);
|
|
1154 bitmap_set_bit (born_or_died, r->start);
|
|
1155 bitmap_set_bit (born_or_died, r->finish);
|
|
1156 }
|
|
1157 }
|
|
1158 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
|
|
1159 n = 0;
|
|
1160 EXECUTE_IF_SET_IN_BITMAP(born_or_died, 0, i, bi)
|
|
1161 {
|
|
1162 map[i] = n++;
|
|
1163 }
|
|
1164 ira_free_bitmap (born_or_died);
|
|
1165 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
|
1166 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
|
|
1167 ira_max_point, n, 100 * n / ira_max_point);
|
|
1168 ira_max_point = n;
|
|
1169 FOR_EACH_ALLOCNO (a, ai)
|
|
1170 {
|
|
1171 for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
|
|
1172 {
|
|
1173 r->start = map[r->start];
|
|
1174 r->finish = map[r->finish];
|
|
1175 }
|
|
1176 }
|
|
1177 ira_free (map);
|
|
1178 }
|
|
1179
|
|
1180 /* Print live ranges R to file F. */
|
|
1181 void
|
|
1182 ira_print_live_range_list (FILE *f, allocno_live_range_t r)
|
|
1183 {
|
|
1184 for (; r != NULL; r = r->next)
|
|
1185 fprintf (f, " [%d..%d]", r->start, r->finish);
|
|
1186 fprintf (f, "\n");
|
|
1187 }
|
|
1188
|
|
1189 /* Print live ranges R to stderr. */
|
|
1190 void
|
|
1191 ira_debug_live_range_list (allocno_live_range_t r)
|
|
1192 {
|
|
1193 ira_print_live_range_list (stderr, r);
|
|
1194 }
|
|
1195
|
|
1196 /* Print live ranges of allocno A to file F. */
|
|
1197 static void
|
|
1198 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
|
|
1199 {
|
|
1200 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
|
1201 ira_print_live_range_list (f, ALLOCNO_LIVE_RANGES (a));
|
|
1202 }
|
|
1203
|
|
1204 /* Print live ranges of allocno A to stderr. */
|
|
1205 void
|
|
1206 ira_debug_allocno_live_ranges (ira_allocno_t a)
|
|
1207 {
|
|
1208 print_allocno_live_ranges (stderr, a);
|
|
1209 }
|
|
1210
|
|
1211 /* Print live ranges of all allocnos to file F. */
|
|
1212 static void
|
|
1213 print_live_ranges (FILE *f)
|
|
1214 {
|
|
1215 ira_allocno_t a;
|
|
1216 ira_allocno_iterator ai;
|
|
1217
|
|
1218 FOR_EACH_ALLOCNO (a, ai)
|
|
1219 print_allocno_live_ranges (f, a);
|
|
1220 }
|
|
1221
|
|
1222 /* Print live ranges of all allocnos to stderr. */
|
|
1223 void
|
|
1224 ira_debug_live_ranges (void)
|
|
1225 {
|
|
1226 print_live_ranges (stderr);
|
|
1227 }
|
|
1228
|
|
1229 /* The main entry function creates live ranges, set up
|
|
1230 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for allocnos, and
|
|
1231 calculate register pressure info. */
|
|
1232 void
|
|
1233 ira_create_allocno_live_ranges (void)
|
|
1234 {
|
|
1235 allocnos_live = sparseset_alloc (ira_allocnos_num);
|
|
1236 curr_point = 0;
|
|
1237 last_call_num = 0;
|
|
1238 allocno_saved_at_call
|
|
1239 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
|
|
1240 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
|
|
1241 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
|
|
1242 process_bb_node_lives);
|
|
1243 ira_max_point = curr_point;
|
|
1244 create_start_finish_chains ();
|
|
1245 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
1246 print_live_ranges (ira_dump_file);
|
|
1247 /* Clean up. */
|
|
1248 ira_free (allocno_saved_at_call);
|
|
1249 sparseset_free (allocnos_live);
|
|
1250 }
|
|
1251
|
|
1252 /* Compress allocno live ranges. */
|
|
1253 void
|
|
1254 ira_compress_allocno_live_ranges (void)
|
|
1255 {
|
|
1256 remove_some_program_points_and_update_live_ranges ();
|
|
1257 ira_rebuild_start_finish_chains ();
|
|
1258 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
1259 {
|
|
1260 fprintf (ira_dump_file, "Ranges after the compression:\n");
|
|
1261 print_live_ranges (ira_dump_file);
|
|
1262 }
|
|
1263 }
|
|
1264
|
|
1265 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
|
|
1266 void
|
|
1267 ira_finish_allocno_live_ranges (void)
|
|
1268 {
|
|
1269 ira_free (ira_finish_point_ranges);
|
|
1270 ira_free (ira_start_point_ranges);
|
|
1271 }
|