Mercurial > hg > CbC > CbC_gcc
view contrib/analyze_brprob.py @ 158:494b0b89df80 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 18:13:55 +0900 |
parents | 84e7813d76e9 |
children |
line wrap: on
line source
#!/usr/bin/env python3 # # Script to analyze results of our branch prediction heuristics # # This file is part of GCC. # # GCC is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation; either version 3, or (at your option) any later # version. # # GCC is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with GCC; see the file COPYING3. If not see # <http://www.gnu.org/licenses/>. */ # # # # This script is used to calculate two basic properties of the branch prediction # heuristics - coverage and hitrate. Coverage is number of executions # of a given branch matched by the heuristics and hitrate is probability # that once branch is predicted as taken it is really taken. # # These values are useful to determine the quality of given heuristics. # Hitrate may be directly used in predict.def. # # Usage: # Step 1: Compile and profile your program. You need to use -fprofile-generate # flag to get the profiles. # Step 2: Make a reference run of the intrumented application. # Step 3: Compile the program with collected profile and dump IPA profiles # (-fprofile-use -fdump-ipa-profile-details) # Step 4: Collect all generated dump files: # find . -name '*.profile' | xargs cat > dump_file # Step 5: Run the script: # ./analyze_brprob.py dump_file # and read results. Basically the following table is printed: # # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL) # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0% # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0% # call 18 1.4% 31.95% / 69.95% 51880179 0.2% # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2% # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8% # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6% # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5% # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4% # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9% # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0% # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1% # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0% # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0% # # # The heuristics called "first match" is a heuristics used by GCC branch # prediction pass and it predicts 55.2% branches correctly. As you can, # the heuristics has very good covertage (69.05%). On the other hand, # "opcode values nonequal (on trees)" heuristics has good hirate, but poor # coverage. import sys import os import re import argparse from math import * counter_aggregates = set(['combined', 'first match', 'DS theory', 'no prediction']) hot_threshold = 10 def percentage(a, b): return 100.0 * a / b def average(values): return 1.0 * sum(values) / len(values) def average_cutoff(values, cut): l = len(values) skip = floor(l * cut / 2) if skip > 0: values.sort() values = values[skip:-skip] return average(values) def median(values): values.sort() return values[int(len(values) / 2)] class PredictDefFile: def __init__(self, path): self.path = path self.predictors = {} def parse_and_modify(self, heuristics, write_def_file): lines = [x.rstrip() for x in open(self.path).readlines()] p = None modified_lines = [] for l in lines: if l.startswith('DEF_PREDICTOR'): m = re.match('.*"(.*)".*', l) p = m.group(1) elif l == '': p = None if p != None: heuristic = [x for x in heuristics if x.name == p] heuristic = heuristic[0] if len(heuristic) == 1 else None m = re.match('.*HITRATE \(([^)]*)\).*', l) if (m != None): self.predictors[p] = int(m.group(1)) # modify the line if heuristic != None: new_line = (l[:m.start(1)] + str(round(heuristic.get_hitrate())) + l[m.end(1):]) l = new_line p = None elif 'PROB_VERY_LIKELY' in l: self.predictors[p] = 100 modified_lines.append(l) # save the file if write_def_file: with open(self.path, 'w+') as f: for l in modified_lines: f.write(l + '\n') class Heuristics: def __init__(self, count, hits, fits): self.count = count self.hits = hits self.fits = fits class Summary: def __init__(self, name): self.name = name self.edges= [] def branches(self): return len(self.edges) def hits(self): return sum([x.hits for x in self.edges]) def fits(self): return sum([x.fits for x in self.edges]) def count(self): return sum([x.count for x in self.edges]) def successfull_branches(self): return len([x for x in self.edges if 2 * x.hits >= x.count]) def get_hitrate(self): return 100.0 * self.hits() / self.count() def get_branch_hitrate(self): return 100.0 * self.successfull_branches() / self.branches() def count_formatted(self): v = self.count() for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']: if v < 1000: return "%3.2f%s" % (v, unit) v /= 1000.0 return "%.1f%s" % (v, 'Y') def count(self): return sum([x.count for x in self.edges]) def print(self, branches_max, count_max, predict_def): # filter out most hot edges (if requested) self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count) if args.coverage_threshold != None: threshold = args.coverage_threshold * self.count() / 100 edges = [x for x in self.edges if x.count < threshold] if len(edges) != 0: self.edges = edges predicted_as = None if predict_def != None and self.name in predict_def.predictors: predicted_as = predict_def.predictors[self.name] print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' % (self.name, self.branches(), percentage(self.branches(), branches_max), self.get_branch_hitrate(), self.get_hitrate(), percentage(self.fits(), self.count()), self.count(), self.count_formatted(), percentage(self.count(), count_max)), end = '') if predicted_as != None: print('%12i%% %5.1f%%' % (predicted_as, self.get_hitrate() - predicted_as), end = '') else: print(' ' * 20, end = '') # print details about the most important edges if args.coverage_threshold == None: edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()] if args.verbose: for c in edges: r = 100.0 * c.count / self.count() print(' %.0f%%:%d' % (r, c.count), end = '') elif len(edges) > 0: print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '') print() class Profile: def __init__(self, filename): self.filename = filename self.heuristics = {} self.niter_vector = [] def add(self, name, prediction, count, hits): if not name in self.heuristics: self.heuristics[name] = Summary(name) s = self.heuristics[name] if prediction < 50: hits = count - hits remaining = count - hits fits = max(hits, remaining) s.edges.append(Heuristics(count, hits, fits)) def add_loop_niter(self, niter): if niter > 0: self.niter_vector.append(niter) def branches_max(self): return max([v.branches() for k, v in self.heuristics.items()]) def count_max(self): return max([v.count() for k, v in self.heuristics.items()]) def print_group(self, sorting, group_name, heuristics, predict_def): count_max = self.count_max() branches_max = self.branches_max() sorter = lambda x: x.branches() if sorting == 'branch-hitrate': sorter = lambda x: x.get_branch_hitrate() elif sorting == 'hitrate': sorter = lambda x: x.get_hitrate() elif sorting == 'coverage': sorter = lambda x: x.count elif sorting == 'name': sorter = lambda x: x.name.lower() print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' % ('HEURISTICS', 'BRANCHES', '(REL)', 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)', 'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold)) for h in sorted(heuristics, key = sorter): h.print(branches_max, count_max, predict_def) def dump(self, sorting): heuristics = self.heuristics.values() if len(heuristics) == 0: print('No heuristics available') return predict_def = None if args.def_file != None: predict_def = PredictDefFile(args.def_file) predict_def.parse_and_modify(heuristics, args.write_def_file) special = list(filter(lambda x: x.name in counter_aggregates, heuristics)) normal = list(filter(lambda x: x.name not in counter_aggregates, heuristics)) self.print_group(sorting, 'HEURISTICS', normal, predict_def) print() self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def) if len(self.niter_vector) > 0: print ('\nLoop count: %d' % len(self.niter_vector)), print(' avg. # of iter: %.2f' % average(self.niter_vector)) print(' median # of iter: %.2f' % median(self.niter_vector)) for v in [1, 5, 10, 20, 30]: cut = 0.01 * v print(' avg. (%d%% cutoff) # of iter: %.2f' % (v, average_cutoff(self.niter_vector, cut))) parser = argparse.ArgumentParser() parser.add_argument('dump_file', metavar = 'dump_file', help = 'IPA profile dump file') parser.add_argument('-s', '--sorting', dest = 'sorting', choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'], default = 'branches') parser.add_argument('-d', '--def-file', help = 'path to predict.def') parser.add_argument('-w', '--write-def-file', action = 'store_true', help = 'Modify predict.def file in order to set new numbers') parser.add_argument('-c', '--coverage-threshold', type = int, help = 'Ignore edges that have percentage coverage >= coverage-threshold') parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations') args = parser.parse_args() profile = Profile(args.dump_file) loop_niter_str = ';; profile-based iteration count: ' for l in open(args.dump_file): if l.startswith(';;heuristics;'): parts = l.strip().split(';') assert len(parts) == 8 name = parts[3] prediction = float(parts[6]) count = int(parts[4]) hits = int(parts[5]) profile.add(name, prediction, count, hits) elif l.startswith(loop_niter_str): v = int(l[len(loop_niter_str):]) profile.add_loop_niter(v) profile.dump(args.sorting)