Mercurial > hg > CbC > CbC_gcc
view gcc/print-rtl.c @ 158:494b0b89df80 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 18:13:55 +0900 |
parents | 1830386684a0 |
children |
line wrap: on
line source
/* Print RTL for GCC. Copyright (C) 1987-2020 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This file is compiled twice: once for the generator programs, once for the compiler. */ #ifdef GENERATOR_FILE #include "bconfig.h" #else #include "config.h" #endif #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" /* These headers all define things which are not available in generator programs. */ #ifndef GENERATOR_FILE #include "alias.h" #include "tree.h" #include "basic-block.h" #include "print-tree.h" #include "flags.h" #include "predict.h" #include "function.h" #include "cfg.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-pretty-print.h" #include "alloc-pool.h" #include "cselib.h" #include "dumpfile.h" /* for dump_flags */ #include "dwarf2out.h" #include "pretty-print.h" #endif #include "print-rtl.h" #include "rtl-iter.h" /* Disable warnings about quoting issues in the pp_xxx calls below that (intentionally) don't follow GCC diagnostic conventions. */ #if __GNUC__ >= 10 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wformat-diag" #endif /* String printed at beginning of each RTL when it is dumped. This string is set to ASM_COMMENT_START when the RTL is dumped in the assembly output file. */ const char *print_rtx_head = ""; #ifdef GENERATOR_FILE /* These are defined from the .opt file when not used in generator programs. */ /* Nonzero means suppress output of instruction numbers in debugging dumps. This must be defined here so that programs like gencodes can be linked. */ int flag_dump_unnumbered = 0; /* Nonzero means suppress output of instruction numbers for previous and next insns in debugging dumps. This must be defined here so that programs like gencodes can be linked. */ int flag_dump_unnumbered_links = 0; #endif /* Constructor for rtx_writer. */ rtx_writer::rtx_writer (FILE *outf, int ind, bool simple, bool compact, rtx_reuse_manager *reuse_manager) : m_outfile (outf), m_sawclose (0), m_indent (ind), m_in_call_function_usage (false), m_simple (simple), m_compact (compact), m_rtx_reuse_manager (reuse_manager) { } #ifndef GENERATOR_FILE /* rtx_reuse_manager's ctor. */ rtx_reuse_manager::rtx_reuse_manager () : m_next_id (0) { } /* Determine if X is of a kind suitable for dumping via reuse_rtx. */ static bool uses_rtx_reuse_p (const_rtx x) { if (x == NULL) return false; switch (GET_CODE (x)) { case DEBUG_EXPR: case VALUE: case SCRATCH: return true; /* We don't use reuse_rtx for consts. */ CASE_CONST_UNIQUE: default: return false; } } /* Traverse X and its descendents, determining if we see any rtx more than once. Any rtx suitable for "reuse_rtx" that is seen more than once is assigned an ID. */ void rtx_reuse_manager::preprocess (const_rtx x) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, NONCONST) if (uses_rtx_reuse_p (*iter)) { if (int *count = m_rtx_occurrence_count.get (*iter)) { if (*(count++) == 1) m_rtx_reuse_ids.put (*iter, m_next_id++); } else m_rtx_occurrence_count.put (*iter, 1); } } /* Return true iff X has been assigned a reuse ID. If it has, and OUT is non-NULL, then write the reuse ID to *OUT. */ bool rtx_reuse_manager::has_reuse_id (const_rtx x, int *out) { int *id = m_rtx_reuse_ids.get (x); if (id) { if (out) *out = *id; return true; } else return false; } /* Determine if set_seen_def has been called for the given reuse ID. */ bool rtx_reuse_manager::seen_def_p (int reuse_id) { return bitmap_bit_p (m_defs_seen, reuse_id); } /* Record that the definition of the given reuse ID has been seen. */ void rtx_reuse_manager::set_seen_def (int reuse_id) { bitmap_set_bit (m_defs_seen, reuse_id); } #endif /* #ifndef GENERATOR_FILE */ #ifndef GENERATOR_FILE void print_mem_expr (FILE *outfile, const_tree expr) { fputc (' ', outfile); print_generic_expr (outfile, CONST_CAST_TREE (expr), dump_flags); } #endif /* Print X to FILE. */ static void print_poly_int (FILE *file, poly_int64 x) { HOST_WIDE_INT const_x; if (x.is_constant (&const_x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, const_x); else { fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC, x.coeffs[0]); for (int i = 1; i < NUM_POLY_INT_COEFFS; ++i) fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, x.coeffs[i]); fprintf (file, "]"); } } /* Subroutine of print_rtx_operand for handling code '0'. 0 indicates a field for internal use that should not be printed. However there are various special cases, such as the third field of a NOTE, where it indicates that the field has several different valid contents. */ void rtx_writer::print_rtx_operand_code_0 (const_rtx in_rtx ATTRIBUTE_UNUSED, int idx ATTRIBUTE_UNUSED) { #ifndef GENERATOR_FILE if (idx == 1 && GET_CODE (in_rtx) == SYMBOL_REF) { int flags = SYMBOL_REF_FLAGS (in_rtx); if (flags) fprintf (m_outfile, " [flags %#x]", flags); tree decl = SYMBOL_REF_DECL (in_rtx); if (decl) print_node_brief (m_outfile, "", decl, dump_flags); } else if (idx == 3 && NOTE_P (in_rtx)) { switch (NOTE_KIND (in_rtx)) { case NOTE_INSN_EH_REGION_BEG: case NOTE_INSN_EH_REGION_END: if (flag_dump_unnumbered) fprintf (m_outfile, " #"); else fprintf (m_outfile, " %d", NOTE_EH_HANDLER (in_rtx)); m_sawclose = 1; break; case NOTE_INSN_BLOCK_BEG: case NOTE_INSN_BLOCK_END: dump_addr (m_outfile, " ", NOTE_BLOCK (in_rtx)); m_sawclose = 1; break; case NOTE_INSN_BASIC_BLOCK: { basic_block bb = NOTE_BASIC_BLOCK (in_rtx); if (bb != 0) fprintf (m_outfile, " [bb %d]", bb->index); break; } case NOTE_INSN_DELETED_LABEL: case NOTE_INSN_DELETED_DEBUG_LABEL: { const char *label = NOTE_DELETED_LABEL_NAME (in_rtx); if (label) fprintf (m_outfile, " (\"%s\")", label); else fprintf (m_outfile, " \"\""); } break; case NOTE_INSN_SWITCH_TEXT_SECTIONS: { basic_block bb = NOTE_BASIC_BLOCK (in_rtx); if (bb != 0) fprintf (m_outfile, " [bb %d]", bb->index); break; } case NOTE_INSN_VAR_LOCATION: fputc (' ', m_outfile); print_rtx (NOTE_VAR_LOCATION (in_rtx)); break; case NOTE_INSN_CFI: fputc ('\n', m_outfile); output_cfi_directive (m_outfile, NOTE_CFI (in_rtx)); fputc ('\t', m_outfile); break; case NOTE_INSN_BEGIN_STMT: case NOTE_INSN_INLINE_ENTRY: #ifndef GENERATOR_FILE { expanded_location xloc = expand_location (NOTE_MARKER_LOCATION (in_rtx)); fprintf (m_outfile, " %s:%i", xloc.file, xloc.line); } #endif break; default: break; } } else if (idx == 7 && JUMP_P (in_rtx) && JUMP_LABEL (in_rtx) != NULL && !m_compact) { /* Output the JUMP_LABEL reference. */ fprintf (m_outfile, "\n%s%*s -> ", print_rtx_head, m_indent * 2, ""); if (GET_CODE (JUMP_LABEL (in_rtx)) == RETURN) fprintf (m_outfile, "return"); else if (GET_CODE (JUMP_LABEL (in_rtx)) == SIMPLE_RETURN) fprintf (m_outfile, "simple_return"); else fprintf (m_outfile, "%d", INSN_UID (JUMP_LABEL (in_rtx))); } else if (idx == 0 && GET_CODE (in_rtx) == VALUE) { cselib_val *val = CSELIB_VAL_PTR (in_rtx); fprintf (m_outfile, " %u:%u", val->uid, val->hash); dump_addr (m_outfile, " @", in_rtx); dump_addr (m_outfile, "/", (void*)val); } else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_EXPR) { fprintf (m_outfile, " D#%i", DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (in_rtx))); } else if (idx == 0 && GET_CODE (in_rtx) == ENTRY_VALUE) { m_indent += 2; if (!m_sawclose) fprintf (m_outfile, " "); print_rtx (ENTRY_VALUE_EXP (in_rtx)); m_indent -= 2; } #endif } /* Subroutine of print_rtx_operand for handling code 'e'. Also called by print_rtx_operand_code_u for handling code 'u' for LABEL_REFs when they don't reference a CODE_LABEL. */ void rtx_writer::print_rtx_operand_code_e (const_rtx in_rtx, int idx) { m_indent += 2; if (idx == 6 && INSN_P (in_rtx)) /* Put REG_NOTES on their own line. */ fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, ""); if (!m_sawclose) fprintf (m_outfile, " "); if (idx == 7 && CALL_P (in_rtx)) { m_in_call_function_usage = true; print_rtx (XEXP (in_rtx, idx)); m_in_call_function_usage = false; } else print_rtx (XEXP (in_rtx, idx)); m_indent -= 2; } /* Subroutine of print_rtx_operand for handling codes 'E' and 'V'. */ void rtx_writer::print_rtx_operand_codes_E_and_V (const_rtx in_rtx, int idx) { m_indent += 2; if (m_sawclose) { fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, ""); m_sawclose = 0; } fputs (" [", m_outfile); if (XVEC (in_rtx, idx) != NULL) { m_indent += 2; if (XVECLEN (in_rtx, idx)) m_sawclose = 1; for (int j = 0; j < XVECLEN (in_rtx, idx); j++) { int j1; print_rtx (XVECEXP (in_rtx, idx, j)); for (j1 = j + 1; j1 < XVECLEN (in_rtx, idx); j1++) if (XVECEXP (in_rtx, idx, j) != XVECEXP (in_rtx, idx, j1)) break; if (j1 != j + 1) { fprintf (m_outfile, " repeated x%i", j1 - j); j = j1 - 1; } } m_indent -= 2; } if (m_sawclose) fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, ""); fputs ("]", m_outfile); m_sawclose = 1; m_indent -= 2; } /* Subroutine of print_rtx_operand for handling code 'i'. */ void rtx_writer::print_rtx_operand_code_i (const_rtx in_rtx, int idx) { if (idx == 4 && INSN_P (in_rtx)) { #ifndef GENERATOR_FILE const rtx_insn *in_insn = as_a <const rtx_insn *> (in_rtx); /* Pretty-print insn locations. Ignore scoping as it is mostly redundant with line number information and do not print anything when there is no location information available. */ if (INSN_HAS_LOCATION (in_insn)) { expanded_location xloc = insn_location (in_insn); fprintf (m_outfile, " \"%s\":%i:%i", xloc.file, xloc.line, xloc.column); } #endif } else if (idx == 6 && GET_CODE (in_rtx) == ASM_OPERANDS) { #ifndef GENERATOR_FILE if (ASM_OPERANDS_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION) fprintf (m_outfile, " %s:%i", LOCATION_FILE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)), LOCATION_LINE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx))); #endif } else if (idx == 1 && GET_CODE (in_rtx) == ASM_INPUT) { #ifndef GENERATOR_FILE if (ASM_INPUT_SOURCE_LOCATION (in_rtx) != UNKNOWN_LOCATION) fprintf (m_outfile, " %s:%i", LOCATION_FILE (ASM_INPUT_SOURCE_LOCATION (in_rtx)), LOCATION_LINE (ASM_INPUT_SOURCE_LOCATION (in_rtx))); #endif } else if (idx == 5 && NOTE_P (in_rtx)) { /* This field is only used for NOTE_INSN_DELETED_LABEL, and other times often contains garbage from INSN->NOTE death. */ if (NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_LABEL || NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_DEBUG_LABEL) fprintf (m_outfile, " %d", XINT (in_rtx, idx)); } #if !defined(GENERATOR_FILE) && NUM_UNSPECV_VALUES > 0 else if (idx == 1 && GET_CODE (in_rtx) == UNSPEC_VOLATILE && XINT (in_rtx, 1) >= 0 && XINT (in_rtx, 1) < NUM_UNSPECV_VALUES) fprintf (m_outfile, " %s", unspecv_strings[XINT (in_rtx, 1)]); #endif #if !defined(GENERATOR_FILE) && NUM_UNSPEC_VALUES > 0 else if (idx == 1 && (GET_CODE (in_rtx) == UNSPEC || GET_CODE (in_rtx) == UNSPEC_VOLATILE) && XINT (in_rtx, 1) >= 0 && XINT (in_rtx, 1) < NUM_UNSPEC_VALUES) fprintf (m_outfile, " %s", unspec_strings[XINT (in_rtx, 1)]); #endif else { int value = XINT (in_rtx, idx); const char *name; int is_insn = INSN_P (in_rtx); /* Don't print INSN_CODEs in compact mode. */ if (m_compact && is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx)) { m_sawclose = 0; return; } if (flag_dump_unnumbered && (is_insn || NOTE_P (in_rtx))) fputc ('#', m_outfile); else fprintf (m_outfile, " %d", value); if (is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, idx) && XINT (in_rtx, idx) >= 0 && (name = get_insn_name (XINT (in_rtx, idx))) != NULL) fprintf (m_outfile, " {%s}", name); m_sawclose = 0; } } /* Subroutine of print_rtx_operand for handling code 'r'. */ void rtx_writer::print_rtx_operand_code_r (const_rtx in_rtx) { int is_insn = INSN_P (in_rtx); unsigned int regno = REGNO (in_rtx); #ifndef GENERATOR_FILE /* For hard registers and virtuals, always print the regno, except in compact mode. */ if (regno <= LAST_VIRTUAL_REGISTER && !m_compact) fprintf (m_outfile, " %d", regno); if (regno < FIRST_PSEUDO_REGISTER) fprintf (m_outfile, " %s", reg_names[regno]); else if (regno <= LAST_VIRTUAL_REGISTER) { if (regno == VIRTUAL_INCOMING_ARGS_REGNUM) fprintf (m_outfile, " virtual-incoming-args"); else if (regno == VIRTUAL_STACK_VARS_REGNUM) fprintf (m_outfile, " virtual-stack-vars"); else if (regno == VIRTUAL_STACK_DYNAMIC_REGNUM) fprintf (m_outfile, " virtual-stack-dynamic"); else if (regno == VIRTUAL_OUTGOING_ARGS_REGNUM) fprintf (m_outfile, " virtual-outgoing-args"); else if (regno == VIRTUAL_CFA_REGNUM) fprintf (m_outfile, " virtual-cfa"); else if (regno == VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM) fprintf (m_outfile, " virtual-preferred-stack-boundary"); else fprintf (m_outfile, " virtual-reg-%d", regno-FIRST_VIRTUAL_REGISTER); } else #endif if (flag_dump_unnumbered && is_insn) fputc ('#', m_outfile); else if (m_compact) { /* In compact mode, print pseudos with '< and '>' wrapping the regno, offseting it by (LAST_VIRTUAL_REGISTER + 1), so that the first non-virtual pseudo is dumped as "<0>". */ gcc_assert (regno > LAST_VIRTUAL_REGISTER); fprintf (m_outfile, " <%d>", regno - (LAST_VIRTUAL_REGISTER + 1)); } else fprintf (m_outfile, " %d", regno); #ifndef GENERATOR_FILE if (REG_ATTRS (in_rtx)) { fputs (" [", m_outfile); if (regno != ORIGINAL_REGNO (in_rtx)) fprintf (m_outfile, "orig:%i", ORIGINAL_REGNO (in_rtx)); if (REG_EXPR (in_rtx)) print_mem_expr (m_outfile, REG_EXPR (in_rtx)); if (maybe_ne (REG_OFFSET (in_rtx), 0)) { fprintf (m_outfile, "+"); print_poly_int (m_outfile, REG_OFFSET (in_rtx)); } fputs (" ]", m_outfile); } if (regno != ORIGINAL_REGNO (in_rtx)) fprintf (m_outfile, " [%d]", ORIGINAL_REGNO (in_rtx)); #endif } /* Subroutine of print_rtx_operand for handling code 'u'. */ void rtx_writer::print_rtx_operand_code_u (const_rtx in_rtx, int idx) { /* Don't print insn UIDs for PREV/NEXT_INSN in compact mode. */ if (m_compact && INSN_CHAIN_CODE_P (GET_CODE (in_rtx)) && idx < 2) return; if (XEXP (in_rtx, idx) != NULL) { rtx sub = XEXP (in_rtx, idx); enum rtx_code subc = GET_CODE (sub); if (GET_CODE (in_rtx) == LABEL_REF) { if (subc == NOTE && NOTE_KIND (sub) == NOTE_INSN_DELETED_LABEL) { if (flag_dump_unnumbered) fprintf (m_outfile, " [# deleted]"); else fprintf (m_outfile, " [%d deleted]", INSN_UID (sub)); m_sawclose = 0; return; } if (subc != CODE_LABEL) { print_rtx_operand_code_e (in_rtx, idx); return; } } if (flag_dump_unnumbered || (flag_dump_unnumbered_links && idx <= 1 && (INSN_P (in_rtx) || NOTE_P (in_rtx) || LABEL_P (in_rtx) || BARRIER_P (in_rtx)))) fputs (" #", m_outfile); else fprintf (m_outfile, " %d", INSN_UID (sub)); } else fputs (" 0", m_outfile); m_sawclose = 0; } /* Subroutine of print_rtx. Print operand IDX of IN_RTX. */ void rtx_writer::print_rtx_operand (const_rtx in_rtx, int idx) { const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); switch (format_ptr[idx]) { const char *str; case 'T': str = XTMPL (in_rtx, idx); goto string; case 'S': case 's': str = XSTR (in_rtx, idx); string: if (str == 0) fputs (" (nil)", m_outfile); else fprintf (m_outfile, " (\"%s\")", str); m_sawclose = 1; break; case '0': print_rtx_operand_code_0 (in_rtx, idx); break; case 'e': print_rtx_operand_code_e (in_rtx, idx); break; case 'E': case 'V': print_rtx_operand_codes_E_and_V (in_rtx, idx); break; case 'w': if (! m_simple) fprintf (m_outfile, " "); fprintf (m_outfile, HOST_WIDE_INT_PRINT_DEC, XWINT (in_rtx, idx)); if (! m_simple && !m_compact) fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_HEX "]", (unsigned HOST_WIDE_INT) XWINT (in_rtx, idx)); break; case 'i': print_rtx_operand_code_i (in_rtx, idx); break; case 'p': fprintf (m_outfile, " "); print_poly_int (m_outfile, SUBREG_BYTE (in_rtx)); break; case 'r': print_rtx_operand_code_r (in_rtx); break; /* Print NOTE_INSN names rather than integer codes. */ case 'n': fprintf (m_outfile, " %s", GET_NOTE_INSN_NAME (XINT (in_rtx, idx))); m_sawclose = 0; break; case 'u': print_rtx_operand_code_u (in_rtx, idx); break; case 't': #ifndef GENERATOR_FILE if (idx == 0 && GET_CODE (in_rtx) == DEBUG_IMPLICIT_PTR) print_mem_expr (m_outfile, DEBUG_IMPLICIT_PTR_DECL (in_rtx)); else if (idx == 0 && GET_CODE (in_rtx) == DEBUG_PARAMETER_REF) print_mem_expr (m_outfile, DEBUG_PARAMETER_REF_DECL (in_rtx)); else dump_addr (m_outfile, " ", XTREE (in_rtx, idx)); #endif break; case '*': fputs (" Unknown", m_outfile); m_sawclose = 0; break; case 'B': /* Don't print basic block ids in compact mode. */ if (m_compact) break; #ifndef GENERATOR_FILE if (XBBDEF (in_rtx, idx)) fprintf (m_outfile, " %i", XBBDEF (in_rtx, idx)->index); #endif break; default: gcc_unreachable (); } } /* Subroutine of rtx_writer::print_rtx. In compact mode, determine if operand IDX of IN_RTX is interesting to dump, or (if in a trailing position) it can be omitted. */ bool rtx_writer::operand_has_default_value_p (const_rtx in_rtx, int idx) { const char *format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); switch (format_ptr[idx]) { case 'e': case 'u': return XEXP (in_rtx, idx) == NULL_RTX; case 's': return XSTR (in_rtx, idx) == NULL; case '0': switch (GET_CODE (in_rtx)) { case JUMP_INSN: /* JUMP_LABELs are always omitted in compact mode, so treat any value here as omittable, so that earlier operands can potentially be omitted also. */ return m_compact; default: return false; } default: return false; } } /* Print IN_RTX onto m_outfile. This is the recursive part of printing. */ void rtx_writer::print_rtx (const_rtx in_rtx) { int idx = 0; if (m_sawclose) { if (m_simple) fputc (' ', m_outfile); else fprintf (m_outfile, "\n%s%*s", print_rtx_head, m_indent * 2, ""); m_sawclose = 0; } if (in_rtx == 0) { fputs ("(nil)", m_outfile); m_sawclose = 1; return; } else if (GET_CODE (in_rtx) > NUM_RTX_CODE) { fprintf (m_outfile, "(??? bad code %d\n%s%*s)", GET_CODE (in_rtx), print_rtx_head, m_indent * 2, ""); m_sawclose = 1; return; } fputc ('(', m_outfile); /* Print name of expression code. */ /* Handle reuse. */ #ifndef GENERATOR_FILE if (m_rtx_reuse_manager) { int reuse_id; if (m_rtx_reuse_manager->has_reuse_id (in_rtx, &reuse_id)) { /* Have we already seen the defn of this rtx? */ if (m_rtx_reuse_manager->seen_def_p (reuse_id)) { fprintf (m_outfile, "reuse_rtx %i)", reuse_id); m_sawclose = 1; return; } else { /* First time we've seen this reused-rtx. */ fprintf (m_outfile, "%i|", reuse_id); m_rtx_reuse_manager->set_seen_def (reuse_id); } } } #endif /* #ifndef GENERATOR_FILE */ /* In compact mode, prefix the code of insns with "c", giving "cinsn", "cnote" etc. */ if (m_compact && is_a <const rtx_insn *, const struct rtx_def> (in_rtx)) { /* "ccode_label" is slightly awkward, so special-case it as just "clabel". */ rtx_code code = GET_CODE (in_rtx); if (code == CODE_LABEL) fprintf (m_outfile, "clabel"); else fprintf (m_outfile, "c%s", GET_RTX_NAME (code)); } else if (m_simple && CONST_INT_P (in_rtx)) ; /* no code. */ else fprintf (m_outfile, "%s", GET_RTX_NAME (GET_CODE (in_rtx))); if (! m_simple) { if (RTX_FLAG (in_rtx, in_struct)) fputs ("/s", m_outfile); if (RTX_FLAG (in_rtx, volatil)) fputs ("/v", m_outfile); if (RTX_FLAG (in_rtx, unchanging)) fputs ("/u", m_outfile); if (RTX_FLAG (in_rtx, frame_related)) fputs ("/f", m_outfile); if (RTX_FLAG (in_rtx, jump)) fputs ("/j", m_outfile); if (RTX_FLAG (in_rtx, call)) fputs ("/c", m_outfile); if (RTX_FLAG (in_rtx, return_val)) fputs ("/i", m_outfile); /* Print REG_NOTE names for EXPR_LIST and INSN_LIST. */ if ((GET_CODE (in_rtx) == EXPR_LIST || GET_CODE (in_rtx) == INSN_LIST || GET_CODE (in_rtx) == INT_LIST) && (int)GET_MODE (in_rtx) < REG_NOTE_MAX && !m_in_call_function_usage) fprintf (m_outfile, ":%s", GET_REG_NOTE_NAME (GET_MODE (in_rtx))); /* For other rtl, print the mode if it's not VOID. */ else if (GET_MODE (in_rtx) != VOIDmode) fprintf (m_outfile, ":%s", GET_MODE_NAME (GET_MODE (in_rtx))); #ifndef GENERATOR_FILE if (GET_CODE (in_rtx) == VAR_LOCATION) { if (TREE_CODE (PAT_VAR_LOCATION_DECL (in_rtx)) == STRING_CST) fputs (" <debug string placeholder>", m_outfile); else print_mem_expr (m_outfile, PAT_VAR_LOCATION_DECL (in_rtx)); fputc (' ', m_outfile); print_rtx (PAT_VAR_LOCATION_LOC (in_rtx)); if (PAT_VAR_LOCATION_STATUS (in_rtx) == VAR_INIT_STATUS_UNINITIALIZED) fprintf (m_outfile, " [uninit]"); m_sawclose = 1; idx = GET_RTX_LENGTH (VAR_LOCATION); } #endif } #ifndef GENERATOR_FILE if (CONST_DOUBLE_AS_FLOAT_P (in_rtx)) idx = 5; #endif /* For insns, print the INSN_UID. */ if (INSN_CHAIN_CODE_P (GET_CODE (in_rtx))) { if (flag_dump_unnumbered) fprintf (m_outfile, " #"); else fprintf (m_outfile, " %d", INSN_UID (in_rtx)); } /* Determine which is the final operand to print. In compact mode, skip trailing operands that have the default values e.g. trailing "(nil)" values. */ int limit = GET_RTX_LENGTH (GET_CODE (in_rtx)); if (m_compact) while (limit > idx && operand_has_default_value_p (in_rtx, limit - 1)) limit--; /* Get the format string and skip the first elements if we have handled them already. */ for (; idx < limit; idx++) print_rtx_operand (in_rtx, idx); switch (GET_CODE (in_rtx)) { #ifndef GENERATOR_FILE case MEM: if (__builtin_expect (final_insns_dump_p, false)) fprintf (m_outfile, " ["); else fprintf (m_outfile, " [" HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) MEM_ALIAS_SET (in_rtx)); if (MEM_EXPR (in_rtx)) print_mem_expr (m_outfile, MEM_EXPR (in_rtx)); else fputc (' ', m_outfile); if (MEM_OFFSET_KNOWN_P (in_rtx)) { fprintf (m_outfile, "+"); print_poly_int (m_outfile, MEM_OFFSET (in_rtx)); } if (MEM_SIZE_KNOWN_P (in_rtx)) { fprintf (m_outfile, " S"); print_poly_int (m_outfile, MEM_SIZE (in_rtx)); } if (MEM_ALIGN (in_rtx) != 1) fprintf (m_outfile, " A%u", MEM_ALIGN (in_rtx)); if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (in_rtx))) fprintf (m_outfile, " AS%u", MEM_ADDR_SPACE (in_rtx)); fputc (']', m_outfile); break; case CONST_DOUBLE: if (FLOAT_MODE_P (GET_MODE (in_rtx))) { char s[60]; real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx), sizeof (s), 0, 1); fprintf (m_outfile, " %s", s); real_to_hexadecimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx), sizeof (s), 0, 1); fprintf (m_outfile, " [%s]", s); } break; case CONST_WIDE_INT: fprintf (m_outfile, " "); cwi_output_hex (m_outfile, in_rtx); break; case CONST_POLY_INT: fprintf (m_outfile, " ["); print_dec (CONST_POLY_INT_COEFFS (in_rtx)[0], m_outfile, SIGNED); for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i) { fprintf (m_outfile, ", "); print_dec (CONST_POLY_INT_COEFFS (in_rtx)[i], m_outfile, SIGNED); } fprintf (m_outfile, "]"); break; #endif case CODE_LABEL: if (!m_compact) fprintf (m_outfile, " [%d uses]", LABEL_NUSES (in_rtx)); switch (LABEL_KIND (in_rtx)) { case LABEL_NORMAL: break; case LABEL_STATIC_ENTRY: fputs (" [entry]", m_outfile); break; case LABEL_GLOBAL_ENTRY: fputs (" [global entry]", m_outfile); break; case LABEL_WEAK_ENTRY: fputs (" [weak entry]", m_outfile); break; default: gcc_unreachable (); } break; default: break; } fputc (')', m_outfile); m_sawclose = 1; } /* Emit a closing parenthesis and newline. */ void rtx_writer::finish_directive () { fprintf (m_outfile, ")\n"); m_sawclose = 0; } /* Print an rtx on the current line of FILE. Initially indent IND characters. */ void print_inline_rtx (FILE *outf, const_rtx x, int ind) { rtx_writer w (outf, ind, false, false, NULL); w.print_rtx (x); } /* Call this function from the debugger to see what X looks like. */ DEBUG_FUNCTION void debug_rtx (const_rtx x) { rtx_writer w (stderr, 0, false, false, NULL); w.print_rtx (x); fprintf (stderr, "\n"); } /* Dump rtx REF. */ DEBUG_FUNCTION void debug (const rtx_def &ref) { debug_rtx (&ref); } DEBUG_FUNCTION void debug (const rtx_def *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"); } /* Like debug_rtx but with no newline, as debug_helper will add one. Note: No debug_slim(rtx_insn *) variant implemented, as this function can serve for both rtx and rtx_insn. */ static void debug_slim (const_rtx x) { rtx_writer w (stderr, 0, false, false, NULL); w.print_rtx (x); } DEFINE_DEBUG_VEC (rtx_def *) DEFINE_DEBUG_VEC (rtx_insn *) DEFINE_DEBUG_HASH_SET (rtx_def *) DEFINE_DEBUG_HASH_SET (rtx_insn *) /* Count of rtx's to print with debug_rtx_list. This global exists because gdb user defined commands have no arguments. */ DEBUG_VARIABLE int debug_rtx_count = 0; /* 0 is treated as equivalent to 1 */ /* Call this function to print list from X on. N is a count of the rtx's to print. Positive values print from the specified rtx_insn on. Negative values print a window around the rtx_insn. EG: -5 prints 2 rtx_insn's on either side (in addition to the specified rtx_insn). */ DEBUG_FUNCTION void debug_rtx_list (const rtx_insn *x, int n) { int i,count; const rtx_insn *insn; count = n == 0 ? 1 : n < 0 ? -n : n; /* If we are printing a window, back up to the start. */ if (n < 0) for (i = count / 2; i > 0; i--) { if (PREV_INSN (x) == 0) break; x = PREV_INSN (x); } for (i = count, insn = x; i > 0 && insn != 0; i--, insn = NEXT_INSN (insn)) { debug_rtx (insn); fprintf (stderr, "\n"); } } /* Call this function to print an rtx_insn list from START to END inclusive. */ DEBUG_FUNCTION void debug_rtx_range (const rtx_insn *start, const rtx_insn *end) { while (1) { debug_rtx (start); fprintf (stderr, "\n"); if (!start || start == end) break; start = NEXT_INSN (start); } } /* Call this function to search an rtx_insn list to find one with insn uid UID, and then call debug_rtx_list to print it, using DEBUG_RTX_COUNT. The found insn is returned to enable further debugging analysis. */ DEBUG_FUNCTION const rtx_insn * debug_rtx_find (const rtx_insn *x, int uid) { while (x != 0 && INSN_UID (x) != uid) x = NEXT_INSN (x); if (x != 0) { debug_rtx_list (x, debug_rtx_count); return x; } else { fprintf (stderr, "insn uid %d not found\n", uid); return 0; } } /* External entry point for printing a chain of insns starting with RTX_FIRST. A blank line separates insns. If RTX_FIRST is not an insn, then it alone is printed, with no newline. */ void rtx_writer::print_rtl (const_rtx rtx_first) { const rtx_insn *tmp_rtx; if (rtx_first == 0) { fputs (print_rtx_head, m_outfile); fputs ("(nil)\n", m_outfile); } else switch (GET_CODE (rtx_first)) { case INSN: case JUMP_INSN: case CALL_INSN: case NOTE: case CODE_LABEL: case JUMP_TABLE_DATA: case BARRIER: for (tmp_rtx = as_a <const rtx_insn *> (rtx_first); tmp_rtx != 0; tmp_rtx = NEXT_INSN (tmp_rtx)) { fputs (print_rtx_head, m_outfile); print_rtx (tmp_rtx); fprintf (m_outfile, "\n"); } break; default: fputs (print_rtx_head, m_outfile); print_rtx (rtx_first); } } /* External entry point for printing a chain of insns starting with RTX_FIRST onto file OUTF. A blank line separates insns. If RTX_FIRST is not an insn, then it alone is printed, with no newline. */ void print_rtl (FILE *outf, const_rtx rtx_first) { rtx_writer w (outf, 0, false, false, NULL); w.print_rtl (rtx_first); } /* Like print_rtx, except specify a file. */ /* Return nonzero if we actually printed anything. */ int print_rtl_single (FILE *outf, const_rtx x) { rtx_writer w (outf, 0, false, false, NULL); return w.print_rtl_single_with_indent (x, 0); } /* Like print_rtl_single, except specify an indentation. */ int rtx_writer::print_rtl_single_with_indent (const_rtx x, int ind) { char *s_indent = (char *) alloca ((size_t) ind + 1); memset ((void *) s_indent, ' ', (size_t) ind); s_indent[ind] = '\0'; fputs (s_indent, m_outfile); fputs (print_rtx_head, m_outfile); int old_indent = m_indent; m_indent = ind; m_sawclose = 0; print_rtx (x); putc ('\n', m_outfile); m_indent = old_indent; return 1; } /* Like print_rtl except without all the detail; for example, if RTX is a CONST_INT then print in decimal format. */ void print_simple_rtl (FILE *outf, const_rtx x) { rtx_writer w (outf, 0, true, false, NULL); w.print_rtl (x); } /* Print the elements of VEC to FILE. */ void print_rtx_insn_vec (FILE *file, const vec<rtx_insn *> &vec) { fputc('{', file); unsigned int len = vec.length (); for (unsigned int i = 0; i < len; i++) { print_rtl (file, vec[i]); if (i < len - 1) fputs (", ", file); } fputc ('}', file); } #ifndef GENERATOR_FILE /* The functions below try to print RTL in a form resembling assembler mnemonics. Because this form is more concise than the "traditional" form of RTL printing in Lisp-style, the form printed by this file is called "slim". RTL dumps in slim format can be obtained by appending the "-slim" option to -fdump-rtl-<pass>. Control flow graph output as a DOT file is always printed in slim form. The normal interface to the functionality provided in this pretty-printer is through the dump_*_slim functions to print to a stream, or via the print_*_slim functions to print into a user's pretty-printer. It is also possible to obtain a string for a single pattern as a string pointer, via str_pattern_slim, but this usage is discouraged. */ /* For insns we print patterns, and for some patterns we print insns... */ static void print_insn_with_notes (pretty_printer *, const rtx_insn *); /* This recognizes rtx'en classified as expressions. These are always represent some action on values or results of other expression, that may be stored in objects representing values. */ static void print_exp (pretty_printer *pp, const_rtx x, int verbose) { const char *st[4]; const char *fun; rtx op[4]; int i; fun = (char *) 0; for (i = 0; i < 4; i++) { st[i] = (char *) 0; op[i] = NULL_RTX; } switch (GET_CODE (x)) { case PLUS: op[0] = XEXP (x, 0); if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) < 0) { st[1] = "-"; op[1] = GEN_INT (-INTVAL (XEXP (x, 1))); } else { st[1] = "+"; op[1] = XEXP (x, 1); } break; case LO_SUM: op[0] = XEXP (x, 0); st[1] = "+low("; op[1] = XEXP (x, 1); st[2] = ")"; break; case MINUS: op[0] = XEXP (x, 0); st[1] = "-"; op[1] = XEXP (x, 1); break; case COMPARE: fun = "cmp"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case NEG: st[0] = "-"; op[0] = XEXP (x, 0); break; case FMA: st[0] = "{"; op[0] = XEXP (x, 0); st[1] = "*"; op[1] = XEXP (x, 1); st[2] = "+"; op[2] = XEXP (x, 2); st[3] = "}"; break; case MULT: op[0] = XEXP (x, 0); st[1] = "*"; op[1] = XEXP (x, 1); break; case DIV: op[0] = XEXP (x, 0); st[1] = "/"; op[1] = XEXP (x, 1); break; case UDIV: fun = "udiv"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case MOD: op[0] = XEXP (x, 0); st[1] = "%"; op[1] = XEXP (x, 1); break; case UMOD: fun = "umod"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case SMIN: fun = "smin"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case SMAX: fun = "smax"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case UMIN: fun = "umin"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case UMAX: fun = "umax"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); break; case NOT: st[0] = "~"; op[0] = XEXP (x, 0); break; case AND: op[0] = XEXP (x, 0); st[1] = "&"; op[1] = XEXP (x, 1); break; case IOR: op[0] = XEXP (x, 0); st[1] = "|"; op[1] = XEXP (x, 1); break; case XOR: op[0] = XEXP (x, 0); st[1] = "^"; op[1] = XEXP (x, 1); break; case ASHIFT: op[0] = XEXP (x, 0); st[1] = "<<"; op[1] = XEXP (x, 1); break; case LSHIFTRT: op[0] = XEXP (x, 0); st[1] = " 0>>"; op[1] = XEXP (x, 1); break; case ASHIFTRT: op[0] = XEXP (x, 0); st[1] = ">>"; op[1] = XEXP (x, 1); break; case ROTATE: op[0] = XEXP (x, 0); st[1] = "<-<"; op[1] = XEXP (x, 1); break; case ROTATERT: op[0] = XEXP (x, 0); st[1] = ">->"; op[1] = XEXP (x, 1); break; case NE: op[0] = XEXP (x, 0); st[1] = "!="; op[1] = XEXP (x, 1); break; case EQ: op[0] = XEXP (x, 0); st[1] = "=="; op[1] = XEXP (x, 1); break; case GE: op[0] = XEXP (x, 0); st[1] = ">="; op[1] = XEXP (x, 1); break; case GT: op[0] = XEXP (x, 0); st[1] = ">"; op[1] = XEXP (x, 1); break; case LE: op[0] = XEXP (x, 0); st[1] = "<="; op[1] = XEXP (x, 1); break; case LT: op[0] = XEXP (x, 0); st[1] = "<"; op[1] = XEXP (x, 1); break; case SIGN_EXTRACT: fun = (verbose) ? "sign_extract" : "sxt"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); op[2] = XEXP (x, 2); break; case ZERO_EXTRACT: fun = (verbose) ? "zero_extract" : "zxt"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); op[2] = XEXP (x, 2); break; case SIGN_EXTEND: fun = (verbose) ? "sign_extend" : "sxn"; op[0] = XEXP (x, 0); break; case ZERO_EXTEND: fun = (verbose) ? "zero_extend" : "zxn"; op[0] = XEXP (x, 0); break; case FLOAT_EXTEND: fun = (verbose) ? "float_extend" : "fxn"; op[0] = XEXP (x, 0); break; case TRUNCATE: fun = (verbose) ? "trunc" : "trn"; op[0] = XEXP (x, 0); break; case FLOAT_TRUNCATE: fun = (verbose) ? "float_trunc" : "ftr"; op[0] = XEXP (x, 0); break; case FLOAT: fun = (verbose) ? "float" : "flt"; op[0] = XEXP (x, 0); break; case UNSIGNED_FLOAT: fun = (verbose) ? "uns_float" : "ufl"; op[0] = XEXP (x, 0); break; case FIX: fun = "fix"; op[0] = XEXP (x, 0); break; case UNSIGNED_FIX: fun = (verbose) ? "uns_fix" : "ufx"; op[0] = XEXP (x, 0); break; case PRE_DEC: st[0] = "--"; op[0] = XEXP (x, 0); break; case PRE_INC: st[0] = "++"; op[0] = XEXP (x, 0); break; case POST_DEC: op[0] = XEXP (x, 0); st[1] = "--"; break; case POST_INC: op[0] = XEXP (x, 0); st[1] = "++"; break; case PRE_MODIFY: st[0] = "pre "; op[0] = XEXP (XEXP (x, 1), 0); st[1] = "+="; op[1] = XEXP (XEXP (x, 1), 1); break; case POST_MODIFY: st[0] = "post "; op[0] = XEXP (XEXP (x, 1), 0); st[1] = "+="; op[1] = XEXP (XEXP (x, 1), 1); break; case CALL: st[0] = "call "; op[0] = XEXP (x, 0); if (verbose) { st[1] = " argc:"; op[1] = XEXP (x, 1); } break; case IF_THEN_ELSE: st[0] = "{("; op[0] = XEXP (x, 0); st[1] = ")?"; op[1] = XEXP (x, 1); st[2] = ":"; op[2] = XEXP (x, 2); st[3] = "}"; break; case TRAP_IF: fun = "trap_if"; op[0] = TRAP_CONDITION (x); break; case PREFETCH: fun = "prefetch"; op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); op[2] = XEXP (x, 2); break; case UNSPEC: case UNSPEC_VOLATILE: { pp_string (pp, "unspec"); if (GET_CODE (x) == UNSPEC_VOLATILE) pp_string (pp, "/v"); pp_left_bracket (pp); for (i = 0; i < XVECLEN (x, 0); i++) { if (i != 0) pp_comma (pp); print_pattern (pp, XVECEXP (x, 0, i), verbose); } pp_string (pp, "] "); pp_decimal_int (pp, XINT (x, 1)); } break; default: { /* Most unhandled codes can be printed as pseudo-functions. */ if (GET_RTX_CLASS (GET_CODE (x)) == RTX_UNARY) { fun = GET_RTX_NAME (GET_CODE (x)); op[0] = XEXP (x, 0); } else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_COMPARE || GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_COMPARE || GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH || GET_RTX_CLASS (GET_CODE (x)) == RTX_COMM_ARITH) { fun = GET_RTX_NAME (GET_CODE (x)); op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); } else if (GET_RTX_CLASS (GET_CODE (x)) == RTX_TERNARY) { fun = GET_RTX_NAME (GET_CODE (x)); op[0] = XEXP (x, 0); op[1] = XEXP (x, 1); op[2] = XEXP (x, 2); } else /* Give up, just print the RTX name. */ st[0] = GET_RTX_NAME (GET_CODE (x)); } break; } /* Print this as a function? */ if (fun) { pp_string (pp, fun); pp_left_paren (pp); } for (i = 0; i < 4; i++) { if (st[i]) pp_string (pp, st[i]); if (op[i]) { if (fun && i != 0) pp_comma (pp); print_value (pp, op[i], verbose); } } if (fun) pp_right_paren (pp); } /* print_exp */ /* Prints rtxes, I customarily classified as values. They're constants, registers, labels, symbols and memory accesses. */ void print_value (pretty_printer *pp, const_rtx x, int verbose) { char tmp[1024]; if (!x) { pp_string (pp, "(nil)"); return; } switch (GET_CODE (x)) { case CONST_INT: pp_scalar (pp, HOST_WIDE_INT_PRINT_HEX, (unsigned HOST_WIDE_INT) INTVAL (x)); break; case CONST_WIDE_INT: { const char *sep = "<"; int i; for (i = CONST_WIDE_INT_NUNITS (x) - 1; i >= 0; i--) { pp_string (pp, sep); sep = ","; sprintf (tmp, HOST_WIDE_INT_PRINT_HEX, (unsigned HOST_WIDE_INT) CONST_WIDE_INT_ELT (x, i)); pp_string (pp, tmp); } pp_greater (pp); } break; case CONST_POLY_INT: pp_left_bracket (pp); pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[0], SIGNED); for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i) { pp_string (pp, ", "); pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[i], SIGNED); } pp_right_bracket (pp); break; case CONST_DOUBLE: if (FLOAT_MODE_P (GET_MODE (x))) { real_to_decimal (tmp, CONST_DOUBLE_REAL_VALUE (x), sizeof (tmp), 0, 1); pp_string (pp, tmp); } else pp_printf (pp, "<%wx,%wx>", (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x), (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x)); break; case CONST_FIXED: fixed_to_decimal (tmp, CONST_FIXED_VALUE (x), sizeof (tmp)); pp_string (pp, tmp); break; case CONST_STRING: pp_printf (pp, "\"%s\"", XSTR (x, 0)); break; case SYMBOL_REF: pp_printf (pp, "`%s'", XSTR (x, 0)); break; case LABEL_REF: pp_printf (pp, "L%d", INSN_UID (label_ref_label (x))); break; case CONST: case HIGH: case STRICT_LOW_PART: pp_printf (pp, "%s(", GET_RTX_NAME (GET_CODE (x))); print_value (pp, XEXP (x, 0), verbose); pp_right_paren (pp); break; case REG: if (REGNO (x) < FIRST_PSEUDO_REGISTER) { if (ISDIGIT (reg_names[REGNO (x)][0])) pp_modulo (pp); pp_string (pp, reg_names[REGNO (x)]); } else pp_printf (pp, "r%d", REGNO (x)); if (verbose) pp_printf (pp, ":%s", GET_MODE_NAME (GET_MODE (x))); break; case SUBREG: print_value (pp, SUBREG_REG (x), verbose); pp_printf (pp, "#"); pp_wide_integer (pp, SUBREG_BYTE (x)); break; case SCRATCH: case CC0: case PC: pp_string (pp, GET_RTX_NAME (GET_CODE (x))); break; case MEM: pp_left_bracket (pp); print_value (pp, XEXP (x, 0), verbose); pp_right_bracket (pp); break; case DEBUG_EXPR: pp_printf (pp, "D#%i", DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))); break; default: print_exp (pp, x, verbose); break; } } /* print_value */ /* The next step in insn detalization, its pattern recognition. */ void print_pattern (pretty_printer *pp, const_rtx x, int verbose) { if (! x) { pp_string (pp, "(nil)"); return; } switch (GET_CODE (x)) { case SET: print_value (pp, SET_DEST (x), verbose); pp_equal (pp); print_value (pp, SET_SRC (x), verbose); break; case RETURN: case SIMPLE_RETURN: case EH_RETURN: pp_string (pp, GET_RTX_NAME (GET_CODE (x))); break; case CALL: print_exp (pp, x, verbose); break; case CLOBBER: case USE: pp_printf (pp, "%s ", GET_RTX_NAME (GET_CODE (x))); print_value (pp, XEXP (x, 0), verbose); break; case VAR_LOCATION: pp_string (pp, "loc "); print_value (pp, PAT_VAR_LOCATION_LOC (x), verbose); break; case COND_EXEC: pp_left_paren (pp); if (GET_CODE (COND_EXEC_TEST (x)) == NE && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx) print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose); else if (GET_CODE (COND_EXEC_TEST (x)) == EQ && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx) { pp_exclamation (pp); print_value (pp, XEXP (COND_EXEC_TEST (x), 0), verbose); } else print_value (pp, COND_EXEC_TEST (x), verbose); pp_string (pp, ") "); print_pattern (pp, COND_EXEC_CODE (x), verbose); break; case PARALLEL: { int i; pp_left_brace (pp); for (i = 0; i < XVECLEN (x, 0); i++) { print_pattern (pp, XVECEXP (x, 0, i), verbose); pp_semicolon (pp); } pp_right_brace (pp); } break; case SEQUENCE: { const rtx_sequence *seq = as_a <const rtx_sequence *> (x); pp_string (pp, "sequence{"); if (INSN_P (seq->element (0))) { /* Print the sequence insns indented. */ const char * save_print_rtx_head = print_rtx_head; char indented_print_rtx_head[32]; pp_newline (pp); gcc_assert (strlen (print_rtx_head) < sizeof (indented_print_rtx_head) - 4); snprintf (indented_print_rtx_head, sizeof (indented_print_rtx_head), "%s ", print_rtx_head); print_rtx_head = indented_print_rtx_head; for (int i = 0; i < seq->len (); i++) print_insn_with_notes (pp, seq->insn (i)); pp_printf (pp, "%s ", save_print_rtx_head); print_rtx_head = save_print_rtx_head; } else { for (int i = 0; i < seq->len (); i++) { print_pattern (pp, seq->element (i), verbose); pp_semicolon (pp); } } pp_right_brace (pp); } break; case ASM_INPUT: pp_printf (pp, "asm {%s}", XSTR (x, 0)); break; case ADDR_VEC: for (int i = 0; i < XVECLEN (x, 0); i++) { print_value (pp, XVECEXP (x, 0, i), verbose); pp_semicolon (pp); } break; case ADDR_DIFF_VEC: for (int i = 0; i < XVECLEN (x, 1); i++) { print_value (pp, XVECEXP (x, 1, i), verbose); pp_semicolon (pp); } break; case TRAP_IF: pp_string (pp, "trap_if "); print_value (pp, TRAP_CONDITION (x), verbose); break; case UNSPEC: case UNSPEC_VOLATILE: /* Fallthru -- leave UNSPECs to print_exp. */ default: print_value (pp, x, verbose); } } /* print_pattern */ /* This is the main function in slim rtl visualization mechanism. X is an insn, to be printed into PP. This function tries to print it properly in human-readable form, resembling assembler mnemonics (instead of the older Lisp-style form). If VERBOSE is TRUE, insns are printed with more complete (but longer) pattern names and with extra information, and prefixed with their INSN_UIDs. */ void print_insn (pretty_printer *pp, const rtx_insn *x, int verbose) { if (verbose) { /* Blech, pretty-print can't print integers with a specified width. */ char uid_prefix[32]; snprintf (uid_prefix, sizeof uid_prefix, " %4d: ", INSN_UID (x)); pp_string (pp, uid_prefix); } switch (GET_CODE (x)) { case INSN: print_pattern (pp, PATTERN (x), verbose); break; case DEBUG_INSN: { if (DEBUG_MARKER_INSN_P (x)) { switch (INSN_DEBUG_MARKER_KIND (x)) { case NOTE_INSN_BEGIN_STMT: pp_string (pp, "debug begin stmt marker"); break; case NOTE_INSN_INLINE_ENTRY: pp_string (pp, "debug inline entry marker"); break; default: gcc_unreachable (); } break; } const char *name = "?"; char idbuf[32]; if (DECL_P (INSN_VAR_LOCATION_DECL (x))) { tree id = DECL_NAME (INSN_VAR_LOCATION_DECL (x)); if (id) name = IDENTIFIER_POINTER (id); else if (TREE_CODE (INSN_VAR_LOCATION_DECL (x)) == DEBUG_EXPR_DECL) { sprintf (idbuf, "D#%i", DEBUG_TEMP_UID (INSN_VAR_LOCATION_DECL (x))); name = idbuf; } else { sprintf (idbuf, "D.%i", DECL_UID (INSN_VAR_LOCATION_DECL (x))); name = idbuf; } } pp_printf (pp, "debug %s => ", name); if (VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (x))) pp_string (pp, "optimized away"); else print_pattern (pp, INSN_VAR_LOCATION_LOC (x), verbose); } break; case JUMP_INSN: print_pattern (pp, PATTERN (x), verbose); break; case CALL_INSN: if (GET_CODE (PATTERN (x)) == PARALLEL) print_pattern (pp, XVECEXP (PATTERN (x), 0, 0), verbose); else print_pattern (pp, PATTERN (x), verbose); break; case CODE_LABEL: pp_printf (pp, "L%d:", INSN_UID (x)); break; case JUMP_TABLE_DATA: pp_string (pp, "jump_table_data{\n"); print_pattern (pp, PATTERN (x), verbose); pp_right_brace (pp); break; case BARRIER: pp_string (pp, "barrier"); break; case NOTE: { pp_string (pp, GET_NOTE_INSN_NAME (NOTE_KIND (x))); switch (NOTE_KIND (x)) { case NOTE_INSN_EH_REGION_BEG: case NOTE_INSN_EH_REGION_END: pp_printf (pp, " %d", NOTE_EH_HANDLER (x)); break; case NOTE_INSN_BLOCK_BEG: case NOTE_INSN_BLOCK_END: pp_printf (pp, " %d", BLOCK_NUMBER (NOTE_BLOCK (x))); break; case NOTE_INSN_BASIC_BLOCK: pp_printf (pp, " %d", NOTE_BASIC_BLOCK (x)->index); break; case NOTE_INSN_DELETED_LABEL: case NOTE_INSN_DELETED_DEBUG_LABEL: { const char *label = NOTE_DELETED_LABEL_NAME (x); if (label == NULL) label = ""; pp_printf (pp, " (\"%s\")", label); } break; case NOTE_INSN_VAR_LOCATION: pp_left_brace (pp); print_pattern (pp, NOTE_VAR_LOCATION (x), verbose); pp_right_brace (pp); break; default: break; } break; } default: gcc_unreachable (); } } /* print_insn */ /* Pretty-print a slim dump of X (an insn) to PP, including any register note attached to the instruction. */ static void print_insn_with_notes (pretty_printer *pp, const rtx_insn *x) { pp_string (pp, print_rtx_head); print_insn (pp, x, 1); pp_newline (pp); if (INSN_P (x) && REG_NOTES (x)) for (rtx note = REG_NOTES (x); note; note = XEXP (note, 1)) { pp_printf (pp, "%s %s ", print_rtx_head, GET_REG_NOTE_NAME (REG_NOTE_KIND (note))); if (GET_CODE (note) == INT_LIST) pp_printf (pp, "%d", XINT (note, 0)); else print_pattern (pp, XEXP (note, 0), 1); pp_newline (pp); } } /* Print X, an RTL value node, to file F in slim format. Include additional information if VERBOSE is nonzero. Value nodes are constants, registers, labels, symbols and memory. */ void dump_value_slim (FILE *f, const_rtx x, int verbose) { pretty_printer rtl_slim_pp; rtl_slim_pp.buffer->stream = f; print_value (&rtl_slim_pp, x, verbose); pp_flush (&rtl_slim_pp); } /* Emit a slim dump of X (an insn) to the file F, including any register note attached to the instruction. */ void dump_insn_slim (FILE *f, const rtx_insn *x) { pretty_printer rtl_slim_pp; rtl_slim_pp.buffer->stream = f; print_insn_with_notes (&rtl_slim_pp, x); pp_flush (&rtl_slim_pp); } /* Same as above, but stop at LAST or when COUNT == 0. If COUNT < 0 it will stop only at LAST or NULL rtx. */ void dump_rtl_slim (FILE *f, const rtx_insn *first, const rtx_insn *last, int count, int flags ATTRIBUTE_UNUSED) { const rtx_insn *insn, *tail; pretty_printer rtl_slim_pp; rtl_slim_pp.buffer->stream = f; tail = last ? NEXT_INSN (last) : NULL; for (insn = first; (insn != NULL) && (insn != tail) && (count != 0); insn = NEXT_INSN (insn)) { print_insn_with_notes (&rtl_slim_pp, insn); if (count > 0) count--; } pp_flush (&rtl_slim_pp); } /* Dumps basic block BB to pretty-printer PP in slim form and without and no indentation, for use as a label of a DOT graph record-node. */ void rtl_dump_bb_for_graph (pretty_printer *pp, basic_block bb) { rtx_insn *insn; bool first = true; /* TODO: inter-bb stuff. */ FOR_BB_INSNS (bb, insn) { if (! first) { pp_bar (pp); pp_write_text_to_stream (pp); } first = false; print_insn_with_notes (pp, insn); pp_write_text_as_dot_label_to_stream (pp, /*for_record=*/true); } } /* Pretty-print pattern X of some insn in non-verbose mode. Return a string pointer to the pretty-printer buffer. This function is only exported exists only to accommodate some older users of the slim RTL pretty printers. Please do not use it for new code. */ const char * str_pattern_slim (const_rtx x) { pretty_printer rtl_slim_pp; print_pattern (&rtl_slim_pp, x, 0); return ggc_strdup (pp_formatted_text (&rtl_slim_pp)); } /* Emit a slim dump of X (an insn) to stderr. */ extern void debug_insn_slim (const rtx_insn *); DEBUG_FUNCTION void debug_insn_slim (const rtx_insn *x) { dump_insn_slim (stderr, x); } /* Same as above, but using dump_rtl_slim. */ extern void debug_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *, int, int); DEBUG_FUNCTION void debug_rtl_slim (const rtx_insn *first, const rtx_insn *last, int count, int flags) { dump_rtl_slim (stderr, first, last, count, flags); } extern void debug_bb_slim (basic_block); DEBUG_FUNCTION void debug_bb_slim (basic_block bb) { dump_bb (stderr, bb, 0, TDF_SLIM | TDF_BLOCKS); } extern void debug_bb_n_slim (int); DEBUG_FUNCTION void debug_bb_n_slim (int n) { basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n); debug_bb_slim (bb); } #endif #if __GNUC__ >= 10 # pragma GCC diagnostic pop #endif