150
|
1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // This set of linked tablegen backends is responsible for emitting the bits
|
|
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
|
|
11 // and provides a set of types and functions for (more or less) direct access
|
|
12 // to the MVE instruction set, including the scalar shifts as well as the
|
|
13 // vector instructions.
|
|
14 //
|
|
15 // MVE's standard intrinsic functions are unusual in that they have a system of
|
|
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
|
|
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
|
|
18 // arguments you give it.
|
|
19 //
|
|
20 // This constrains the implementation strategies. The usual approach to making
|
|
21 // the user-facing functions polymorphic would be to either use
|
|
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
|
|
23 // all inline wrappers on the underlying clang builtins, or to define a single
|
|
24 // vaddq() macro which expands to an instance of _Generic.
|
|
25 //
|
|
26 // The inline-wrappers approach would work fine for most intrinsics, except for
|
|
27 // the ones that take an argument required to be a compile-time constant,
|
|
28 // because if you wrap an inline function around a call to a builtin, the
|
|
29 // constant nature of the argument is not passed through.
|
|
30 //
|
|
31 // The _Generic approach can be made to work with enough effort, but it takes a
|
|
32 // lot of machinery, because of the design feature of _Generic that even the
|
|
33 // untaken branches are required to pass all front-end validity checks such as
|
|
34 // type-correctness. You can work around that by nesting further _Generics all
|
|
35 // over the place to coerce things to the right type in untaken branches, but
|
|
36 // what you get out is complicated, hard to guarantee its correctness, and
|
|
37 // worst of all, gives _completely unreadable_ error messages if the user gets
|
|
38 // the types wrong for an intrinsic call.
|
|
39 //
|
|
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
|
|
41 // function to be mapped to a clang builtin even though it doesn't have the
|
|
42 // same name, and then declare all the user-facing MVE function names with that
|
|
43 // attribute, mapping each one directly to the clang builtin. And the
|
|
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
|
|
45 // compiler has resolved the overload, it knows the internal builtin ID of the
|
|
46 // selected function, and can check the immediate arguments against that; and
|
|
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
|
|
48 // get a completely clear error message showing all the declarations of that
|
|
49 // function in the header file and explaining why each one doesn't fit their
|
|
50 // call.
|
|
51 //
|
|
52 // The downside of this is that if every clang builtin has to correspond
|
|
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
|
|
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
|
|
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
|
|
56 // description for an MVE intrinsic has to contain a full description of the
|
|
57 // sequence of IRBuilder calls that clang will need to make.
|
|
58 //
|
|
59 //===----------------------------------------------------------------------===//
|
|
60
|
|
61 #include "llvm/ADT/APInt.h"
|
|
62 #include "llvm/ADT/StringRef.h"
|
|
63 #include "llvm/Support/Casting.h"
|
|
64 #include "llvm/Support/raw_ostream.h"
|
|
65 #include "llvm/TableGen/Error.h"
|
|
66 #include "llvm/TableGen/Record.h"
|
|
67 #include "llvm/TableGen/StringToOffsetTable.h"
|
|
68 #include <cassert>
|
|
69 #include <cstddef>
|
|
70 #include <cstdint>
|
|
71 #include <list>
|
|
72 #include <map>
|
|
73 #include <memory>
|
|
74 #include <set>
|
|
75 #include <string>
|
|
76 #include <vector>
|
|
77
|
|
78 using namespace llvm;
|
|
79
|
|
80 namespace {
|
|
81
|
|
82 class MveEmitter;
|
|
83 class Result;
|
|
84
|
|
85 // -----------------------------------------------------------------------------
|
|
86 // A system of classes to represent all the types we'll need to deal with in
|
|
87 // the prototypes of intrinsics.
|
|
88 //
|
|
89 // Query methods include finding out the C name of a type; the "LLVM name" in
|
|
90 // the sense of a C++ code snippet that can be used in the codegen function;
|
|
91 // the suffix that represents the type in the ACLE intrinsic naming scheme
|
|
92 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
|
|
93 // type is floating-point related (hence should be under #ifdef in the MVE
|
|
94 // header so that it isn't included in integer-only MVE mode); and the type's
|
|
95 // size in bits. Not all subtypes support all these queries.
|
|
96
|
|
97 class Type {
|
|
98 public:
|
|
99 enum class TypeKind {
|
|
100 // Void appears as a return type (for store intrinsics, which are pure
|
|
101 // side-effect). It's also used as the parameter type in the Tablegen
|
|
102 // when an intrinsic doesn't need to come in various suffixed forms like
|
|
103 // vfooq_s8,vfooq_u16,vfooq_f32.
|
|
104 Void,
|
|
105
|
|
106 // Scalar is used for ordinary int and float types of all sizes.
|
|
107 Scalar,
|
|
108
|
|
109 // Vector is used for anything that occupies exactly one MVE vector
|
|
110 // register, i.e. {uint,int,float}NxM_t.
|
|
111 Vector,
|
|
112
|
|
113 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
|
|
114 // interleaving load/store intrinsics v{ld,st}{2,4}q.
|
|
115 MultiVector,
|
|
116
|
|
117 // Predicate is used by all the predicated intrinsics. Its C
|
|
118 // representation is mve_pred16_t (which is just an alias for uint16_t).
|
|
119 // But we give more detail here, by indicating that a given predicate
|
|
120 // instruction is logically regarded as a vector of i1 containing the
|
|
121 // same number of lanes as the input vector type. So our Predicate type
|
|
122 // comes with a lane count, which we use to decide which kind of <n x i1>
|
|
123 // we'll invoke the pred_i2v IR intrinsic to translate it into.
|
|
124 Predicate,
|
|
125
|
|
126 // Pointer is used for pointer types (obviously), and comes with a flag
|
|
127 // indicating whether it's a pointer to a const or mutable instance of
|
|
128 // the pointee type.
|
|
129 Pointer,
|
|
130 };
|
|
131
|
|
132 private:
|
|
133 const TypeKind TKind;
|
|
134
|
|
135 protected:
|
|
136 Type(TypeKind K) : TKind(K) {}
|
|
137
|
|
138 public:
|
|
139 TypeKind typeKind() const { return TKind; }
|
|
140 virtual ~Type() = default;
|
|
141 virtual bool requiresFloat() const = 0;
|
|
142 virtual unsigned sizeInBits() const = 0;
|
|
143 virtual std::string cName() const = 0;
|
|
144 virtual std::string llvmName() const {
|
|
145 PrintFatalError("no LLVM type name available for type " + cName());
|
|
146 }
|
|
147 virtual std::string acleSuffix(std::string) const {
|
|
148 PrintFatalError("no ACLE suffix available for this type");
|
|
149 }
|
|
150 };
|
|
151
|
|
152 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
|
|
153 inline std::string toLetter(ScalarTypeKind kind) {
|
|
154 switch (kind) {
|
|
155 case ScalarTypeKind::SignedInt:
|
|
156 return "s";
|
|
157 case ScalarTypeKind::UnsignedInt:
|
|
158 return "u";
|
|
159 case ScalarTypeKind::Float:
|
|
160 return "f";
|
|
161 }
|
|
162 llvm_unreachable("Unhandled ScalarTypeKind enum");
|
|
163 }
|
|
164 inline std::string toCPrefix(ScalarTypeKind kind) {
|
|
165 switch (kind) {
|
|
166 case ScalarTypeKind::SignedInt:
|
|
167 return "int";
|
|
168 case ScalarTypeKind::UnsignedInt:
|
|
169 return "uint";
|
|
170 case ScalarTypeKind::Float:
|
|
171 return "float";
|
|
172 }
|
|
173 llvm_unreachable("Unhandled ScalarTypeKind enum");
|
|
174 }
|
|
175
|
|
176 class VoidType : public Type {
|
|
177 public:
|
|
178 VoidType() : Type(TypeKind::Void) {}
|
|
179 unsigned sizeInBits() const override { return 0; }
|
|
180 bool requiresFloat() const override { return false; }
|
|
181 std::string cName() const override { return "void"; }
|
|
182
|
|
183 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
|
|
184 std::string acleSuffix(std::string) const override { return ""; }
|
|
185 };
|
|
186
|
|
187 class PointerType : public Type {
|
|
188 const Type *Pointee;
|
|
189 bool Const;
|
|
190
|
|
191 public:
|
|
192 PointerType(const Type *Pointee, bool Const)
|
|
193 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
|
|
194 unsigned sizeInBits() const override { return 32; }
|
|
195 bool requiresFloat() const override { return Pointee->requiresFloat(); }
|
|
196 std::string cName() const override {
|
|
197 std::string Name = Pointee->cName();
|
|
198
|
|
199 // The syntax for a pointer in C is different when the pointee is
|
|
200 // itself a pointer. The MVE intrinsics don't contain any double
|
|
201 // pointers, so we don't need to worry about that wrinkle.
|
|
202 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
|
|
203
|
|
204 if (Const)
|
|
205 Name = "const " + Name;
|
|
206 return Name + " *";
|
|
207 }
|
|
208 std::string llvmName() const override {
|
|
209 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
|
|
210 }
|
|
211
|
|
212 static bool classof(const Type *T) {
|
|
213 return T->typeKind() == TypeKind::Pointer;
|
|
214 }
|
|
215 };
|
|
216
|
|
217 // Base class for all the types that have a name of the form
|
|
218 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
|
|
219 //
|
|
220 // For this sub-hierarchy we invent a cNameBase() method which returns the
|
|
221 // whole name except for the trailing "_t", so that Vector and MultiVector can
|
|
222 // append an extra "x2" or whatever to their element type's cNameBase(). Then
|
|
223 // the main cName() query method puts "_t" on the end for the final type name.
|
|
224
|
|
225 class CRegularNamedType : public Type {
|
|
226 using Type::Type;
|
|
227 virtual std::string cNameBase() const = 0;
|
|
228
|
|
229 public:
|
|
230 std::string cName() const override { return cNameBase() + "_t"; }
|
|
231 };
|
|
232
|
|
233 class ScalarType : public CRegularNamedType {
|
|
234 ScalarTypeKind Kind;
|
|
235 unsigned Bits;
|
|
236 std::string NameOverride;
|
|
237
|
|
238 public:
|
|
239 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
|
|
240 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
|
|
241 .Case("s", ScalarTypeKind::SignedInt)
|
|
242 .Case("u", ScalarTypeKind::UnsignedInt)
|
|
243 .Case("f", ScalarTypeKind::Float);
|
|
244 Bits = Record->getValueAsInt("size");
|
|
245 NameOverride = std::string(Record->getValueAsString("nameOverride"));
|
|
246 }
|
|
247 unsigned sizeInBits() const override { return Bits; }
|
|
248 ScalarTypeKind kind() const { return Kind; }
|
|
249 std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
|
|
250 std::string cNameBase() const override {
|
|
251 return toCPrefix(Kind) + utostr(Bits);
|
|
252 }
|
|
253 std::string cName() const override {
|
|
254 if (NameOverride.empty())
|
|
255 return CRegularNamedType::cName();
|
|
256 return NameOverride;
|
|
257 }
|
|
258 std::string llvmName() const override {
|
|
259 if (Kind == ScalarTypeKind::Float) {
|
|
260 if (Bits == 16)
|
|
261 return "HalfTy";
|
|
262 if (Bits == 32)
|
|
263 return "FloatTy";
|
|
264 if (Bits == 64)
|
|
265 return "DoubleTy";
|
|
266 PrintFatalError("bad size for floating type");
|
|
267 }
|
|
268 return "Int" + utostr(Bits) + "Ty";
|
|
269 }
|
|
270 std::string acleSuffix(std::string overrideLetter) const override {
|
|
271 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
|
|
272 + utostr(Bits);
|
|
273 }
|
|
274 bool isInteger() const { return Kind != ScalarTypeKind::Float; }
|
|
275 bool requiresFloat() const override { return !isInteger(); }
|
|
276 bool hasNonstandardName() const { return !NameOverride.empty(); }
|
|
277
|
|
278 static bool classof(const Type *T) {
|
|
279 return T->typeKind() == TypeKind::Scalar;
|
|
280 }
|
|
281 };
|
|
282
|
|
283 class VectorType : public CRegularNamedType {
|
|
284 const ScalarType *Element;
|
|
285 unsigned Lanes;
|
|
286
|
|
287 public:
|
|
288 VectorType(const ScalarType *Element, unsigned Lanes)
|
|
289 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
|
|
290 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
|
|
291 unsigned lanes() const { return Lanes; }
|
|
292 bool requiresFloat() const override { return Element->requiresFloat(); }
|
|
293 std::string cNameBase() const override {
|
|
294 return Element->cNameBase() + "x" + utostr(Lanes);
|
|
295 }
|
|
296 std::string llvmName() const override {
|
|
297 return "llvm::VectorType::get(" + Element->llvmName() + ", " +
|
|
298 utostr(Lanes) + ")";
|
|
299 }
|
|
300
|
|
301 static bool classof(const Type *T) {
|
|
302 return T->typeKind() == TypeKind::Vector;
|
|
303 }
|
|
304 };
|
|
305
|
|
306 class MultiVectorType : public CRegularNamedType {
|
|
307 const VectorType *Element;
|
|
308 unsigned Registers;
|
|
309
|
|
310 public:
|
|
311 MultiVectorType(unsigned Registers, const VectorType *Element)
|
|
312 : CRegularNamedType(TypeKind::MultiVector), Element(Element),
|
|
313 Registers(Registers) {}
|
|
314 unsigned sizeInBits() const override {
|
|
315 return Registers * Element->sizeInBits();
|
|
316 }
|
|
317 unsigned registers() const { return Registers; }
|
|
318 bool requiresFloat() const override { return Element->requiresFloat(); }
|
|
319 std::string cNameBase() const override {
|
|
320 return Element->cNameBase() + "x" + utostr(Registers);
|
|
321 }
|
|
322
|
|
323 // MultiVectorType doesn't override llvmName, because we don't expect to do
|
|
324 // automatic code generation for the MVE intrinsics that use it: the {vld2,
|
|
325 // vld4, vst2, vst4} family are the only ones that use these types, so it was
|
|
326 // easier to hand-write the codegen for dealing with these structs than to
|
|
327 // build in lots of extra automatic machinery that would only be used once.
|
|
328
|
|
329 static bool classof(const Type *T) {
|
|
330 return T->typeKind() == TypeKind::MultiVector;
|
|
331 }
|
|
332 };
|
|
333
|
|
334 class PredicateType : public CRegularNamedType {
|
|
335 unsigned Lanes;
|
|
336
|
|
337 public:
|
|
338 PredicateType(unsigned Lanes)
|
|
339 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
|
|
340 unsigned sizeInBits() const override { return 16; }
|
|
341 std::string cNameBase() const override { return "mve_pred16"; }
|
|
342 bool requiresFloat() const override { return false; };
|
|
343 std::string llvmName() const override {
|
|
344 // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
|
|
345 // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
|
|
346 // explanation.
|
|
347 unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);
|
|
348
|
|
349 return "llvm::VectorType::get(Builder.getInt1Ty(), " +
|
|
350 utostr(ModifiedLanes) + ")";
|
|
351 }
|
|
352
|
|
353 static bool classof(const Type *T) {
|
|
354 return T->typeKind() == TypeKind::Predicate;
|
|
355 }
|
|
356 };
|
|
357
|
|
358 // -----------------------------------------------------------------------------
|
|
359 // Class to facilitate merging together the code generation for many intrinsics
|
|
360 // by means of varying a few constant or type parameters.
|
|
361 //
|
|
362 // Most obviously, the intrinsics in a single parametrised family will have
|
|
363 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
|
|
364 // and vaddq_u16 will look the same apart from putting a different vector type
|
|
365 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
|
|
366 // will often code-generate in the same way, with only a different choice of
|
|
367 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
|
|
368 // marshalling the arguments and return values of the IR intrinsic in exactly
|
|
369 // the same way. And others might differ only in some other kind of constant,
|
|
370 // such as a lane index.
|
|
371 //
|
|
372 // So, when we generate the IR-building code for all these intrinsics, we keep
|
|
373 // track of every value that could possibly be pulled out of the code and
|
|
374 // stored ahead of time in a local variable. Then we group together intrinsics
|
|
375 // by textual equivalence of the code that would result if _all_ those
|
|
376 // parameters were stored in local variables. That gives us maximal sets that
|
|
377 // can be implemented by a single piece of IR-building code by changing
|
|
378 // parameter values ahead of time.
|
|
379 //
|
|
380 // After we've done that, we do a second pass in which we only allocate _some_
|
|
381 // of the parameters into local variables, by tracking which ones have the same
|
|
382 // values as each other (so that a single variable can be reused) and which
|
|
383 // ones are the same across the whole set (so that no variable is needed at
|
|
384 // all).
|
|
385 //
|
|
386 // Hence the class below. Its allocParam method is invoked during code
|
|
387 // generation by every method of a Result subclass (see below) that wants to
|
|
388 // give it the opportunity to pull something out into a switchable parameter.
|
|
389 // It returns a variable name for the parameter, or (if it's being used in the
|
|
390 // second pass once we've decided that some parameters don't need to be stored
|
|
391 // in variables after all) it might just return the input expression unchanged.
|
|
392
|
|
393 struct CodeGenParamAllocator {
|
|
394 // Accumulated during code generation
|
|
395 std::vector<std::string> *ParamTypes = nullptr;
|
|
396 std::vector<std::string> *ParamValues = nullptr;
|
|
397
|
|
398 // Provided ahead of time in pass 2, to indicate which parameters are being
|
|
399 // assigned to what. This vector contains an entry for each call to
|
|
400 // allocParam expected during code gen (which we counted up in pass 1), and
|
|
401 // indicates the number of the parameter variable that should be returned, or
|
|
402 // -1 if this call shouldn't allocate a parameter variable at all.
|
|
403 //
|
|
404 // We rely on the recursive code generation working identically in passes 1
|
|
405 // and 2, so that the same list of calls to allocParam happen in the same
|
|
406 // order. That guarantees that the parameter numbers recorded in pass 1 will
|
|
407 // match the entries in this vector that store what MveEmitter::EmitBuiltinCG
|
|
408 // decided to do about each one in pass 2.
|
|
409 std::vector<int> *ParamNumberMap = nullptr;
|
|
410
|
|
411 // Internally track how many things we've allocated
|
|
412 unsigned nparams = 0;
|
|
413
|
|
414 std::string allocParam(StringRef Type, StringRef Value) {
|
|
415 unsigned ParamNumber;
|
|
416
|
|
417 if (!ParamNumberMap) {
|
|
418 // In pass 1, unconditionally assign a new parameter variable to every
|
|
419 // value we're asked to process.
|
|
420 ParamNumber = nparams++;
|
|
421 } else {
|
|
422 // In pass 2, consult the map provided by the caller to find out which
|
|
423 // variable we should be keeping things in.
|
|
424 int MapValue = (*ParamNumberMap)[nparams++];
|
|
425 if (MapValue < 0)
|
|
426 return std::string(Value);
|
|
427 ParamNumber = MapValue;
|
|
428 }
|
|
429
|
|
430 // If we've allocated a new parameter variable for the first time, store
|
|
431 // its type and value to be retrieved after codegen.
|
|
432 if (ParamTypes && ParamTypes->size() == ParamNumber)
|
|
433 ParamTypes->push_back(std::string(Type));
|
|
434 if (ParamValues && ParamValues->size() == ParamNumber)
|
|
435 ParamValues->push_back(std::string(Value));
|
|
436
|
|
437 // Unimaginative naming scheme for parameter variables.
|
|
438 return "Param" + utostr(ParamNumber);
|
|
439 }
|
|
440 };
|
|
441
|
|
442 // -----------------------------------------------------------------------------
|
|
443 // System of classes that represent all the intermediate values used during
|
|
444 // code-generation for an intrinsic.
|
|
445 //
|
|
446 // The base class 'Result' can represent a value of the LLVM type 'Value', or
|
|
447 // sometimes 'Address' (for loads/stores, including an alignment requirement).
|
|
448 //
|
|
449 // In the case where the Tablegen provides a value in the codegen dag as a
|
|
450 // plain integer literal, the Result object we construct here will be one that
|
|
451 // returns true from hasIntegerConstantValue(). This allows the generated C++
|
|
452 // code to use the constant directly in contexts which can take a literal
|
|
453 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
|
|
454 // effort of calling llvm::ConstantInt::get() and then pulling the constant
|
|
455 // back out of the resulting llvm:Value later.
|
|
456
|
|
457 class Result {
|
|
458 public:
|
|
459 // Convenient shorthand for the pointer type we'll be using everywhere.
|
|
460 using Ptr = std::shared_ptr<Result>;
|
|
461
|
|
462 private:
|
|
463 Ptr Predecessor;
|
|
464 std::string VarName;
|
|
465 bool VarNameUsed = false;
|
|
466 unsigned Visited = 0;
|
|
467
|
|
468 public:
|
|
469 virtual ~Result() = default;
|
|
470 using Scope = std::map<std::string, Ptr>;
|
|
471 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
|
|
472 virtual bool hasIntegerConstantValue() const { return false; }
|
|
473 virtual uint32_t integerConstantValue() const { return 0; }
|
|
474 virtual bool hasIntegerValue() const { return false; }
|
|
475 virtual std::string getIntegerValue(const std::string &) {
|
|
476 llvm_unreachable("non-working Result::getIntegerValue called");
|
|
477 }
|
|
478 virtual std::string typeName() const { return "Value *"; }
|
|
479
|
|
480 // Mostly, when a code-generation operation has a dependency on prior
|
|
481 // operations, it's because it uses the output values of those operations as
|
|
482 // inputs. But there's one exception, which is the use of 'seq' in Tablegen
|
|
483 // to indicate that operations have to be performed in sequence regardless of
|
|
484 // whether they use each others' output values.
|
|
485 //
|
|
486 // So, the actual generation of code is done by depth-first search, using the
|
|
487 // prerequisites() method to get a list of all the other Results that have to
|
|
488 // be computed before this one. That method divides into the 'predecessor',
|
|
489 // set by setPredecessor() while processing a 'seq' dag node, and the list
|
|
490 // returned by 'morePrerequisites', which each subclass implements to return
|
|
491 // a list of the Results it uses as input to whatever its own computation is
|
|
492 // doing.
|
|
493
|
|
494 virtual void morePrerequisites(std::vector<Ptr> &output) const {}
|
|
495 std::vector<Ptr> prerequisites() const {
|
|
496 std::vector<Ptr> ToRet;
|
|
497 if (Predecessor)
|
|
498 ToRet.push_back(Predecessor);
|
|
499 morePrerequisites(ToRet);
|
|
500 return ToRet;
|
|
501 }
|
|
502
|
|
503 void setPredecessor(Ptr p) {
|
|
504 // If the user has nested one 'seq' node inside another, and this
|
|
505 // method is called on the return value of the inner 'seq' (i.e.
|
|
506 // the final item inside it), then we can't link _this_ node to p,
|
|
507 // because it already has a predecessor. Instead, walk the chain
|
|
508 // until we find the first item in the inner seq, and link that to
|
|
509 // p, so that nesting seqs has the obvious effect of linking
|
|
510 // everything together into one long sequential chain.
|
|
511 Result *r = this;
|
|
512 while (r->Predecessor)
|
|
513 r = r->Predecessor.get();
|
|
514 r->Predecessor = p;
|
|
515 }
|
|
516
|
|
517 // Each Result will be assigned a variable name in the output code, but not
|
|
518 // all those variable names will actually be used (e.g. the return value of
|
|
519 // Builder.CreateStore has void type, so nobody will want to refer to it). To
|
|
520 // prevent annoying compiler warnings, we track whether each Result's
|
|
521 // variable name was ever actually mentioned in subsequent statements, so
|
|
522 // that it can be left out of the final generated code.
|
|
523 std::string varname() {
|
|
524 VarNameUsed = true;
|
|
525 return VarName;
|
|
526 }
|
|
527 void setVarname(const StringRef s) { VarName = std::string(s); }
|
|
528 bool varnameUsed() const { return VarNameUsed; }
|
|
529
|
|
530 // Emit code to generate this result as a Value *.
|
|
531 virtual std::string asValue() {
|
|
532 return varname();
|
|
533 }
|
|
534
|
|
535 // Code generation happens in multiple passes. This method tracks whether a
|
|
536 // Result has yet been visited in a given pass, without the need for a
|
|
537 // tedious loop in between passes that goes through and resets a 'visited'
|
|
538 // flag back to false: you just set Pass=1 the first time round, and Pass=2
|
|
539 // the second time.
|
|
540 bool needsVisiting(unsigned Pass) {
|
|
541 bool ToRet = Visited < Pass;
|
|
542 Visited = Pass;
|
|
543 return ToRet;
|
|
544 }
|
|
545 };
|
|
546
|
|
547 // Result subclass that retrieves one of the arguments to the clang builtin
|
|
548 // function. In cases where the argument has pointer type, we call
|
|
549 // EmitPointerWithAlignment and store the result in a variable of type Address,
|
|
550 // so that load and store IR nodes can know the right alignment. Otherwise, we
|
|
551 // call EmitScalarExpr.
|
|
552 //
|
|
553 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
|
|
554 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
|
|
555 // vst2q/vst4q family, which is few enough that we just write the code by hand
|
|
556 // for those in CGBuiltin.cpp.
|
|
557 class BuiltinArgResult : public Result {
|
|
558 public:
|
|
559 unsigned ArgNum;
|
|
560 bool AddressType;
|
|
561 bool Immediate;
|
|
562 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
|
|
563 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
|
|
564 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
|
|
565 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
|
|
566 << "(E->getArg(" << ArgNum << "))";
|
|
567 }
|
|
568 std::string typeName() const override {
|
|
569 return AddressType ? "Address" : Result::typeName();
|
|
570 }
|
|
571 // Emit code to generate this result as a Value *.
|
|
572 std::string asValue() override {
|
|
573 if (AddressType)
|
|
574 return "(" + varname() + ".getPointer())";
|
|
575 return Result::asValue();
|
|
576 }
|
|
577 bool hasIntegerValue() const override { return Immediate; }
|
|
578 std::string getIntegerValue(const std::string &IntType) override {
|
|
579 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
|
|
580 utostr(ArgNum) + "), getContext())";
|
|
581 }
|
|
582 };
|
|
583
|
|
584 // Result subclass for an integer literal appearing in Tablegen. This may need
|
|
585 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
|
|
586 // it may be used directly as an integer, depending on which IRBuilder method
|
|
587 // it's being passed to.
|
|
588 class IntLiteralResult : public Result {
|
|
589 public:
|
|
590 const ScalarType *IntegerType;
|
|
591 uint32_t IntegerValue;
|
|
592 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
|
|
593 : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
|
|
594 void genCode(raw_ostream &OS,
|
|
595 CodeGenParamAllocator &ParamAlloc) const override {
|
|
596 OS << "llvm::ConstantInt::get("
|
|
597 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
|
|
598 << ", ";
|
|
599 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
|
|
600 << ")";
|
|
601 }
|
|
602 bool hasIntegerConstantValue() const override { return true; }
|
|
603 uint32_t integerConstantValue() const override { return IntegerValue; }
|
|
604 };
|
|
605
|
|
606 // Result subclass representing a cast between different integer types. We use
|
|
607 // our own ScalarType abstraction as the representation of the target type,
|
|
608 // which gives both size and signedness.
|
|
609 class IntCastResult : public Result {
|
|
610 public:
|
|
611 const ScalarType *IntegerType;
|
|
612 Ptr V;
|
|
613 IntCastResult(const ScalarType *IntegerType, Ptr V)
|
|
614 : IntegerType(IntegerType), V(V) {}
|
|
615 void genCode(raw_ostream &OS,
|
|
616 CodeGenParamAllocator &ParamAlloc) const override {
|
|
617 OS << "Builder.CreateIntCast(" << V->varname() << ", "
|
|
618 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
|
|
619 << ParamAlloc.allocParam("bool",
|
|
620 IntegerType->kind() == ScalarTypeKind::SignedInt
|
|
621 ? "true"
|
|
622 : "false")
|
|
623 << ")";
|
|
624 }
|
|
625 void morePrerequisites(std::vector<Ptr> &output) const override {
|
|
626 output.push_back(V);
|
|
627 }
|
|
628 };
|
|
629
|
|
630 // Result subclass representing a cast between different pointer types.
|
|
631 class PointerCastResult : public Result {
|
|
632 public:
|
|
633 const PointerType *PtrType;
|
|
634 Ptr V;
|
|
635 PointerCastResult(const PointerType *PtrType, Ptr V)
|
|
636 : PtrType(PtrType), V(V) {}
|
|
637 void genCode(raw_ostream &OS,
|
|
638 CodeGenParamAllocator &ParamAlloc) const override {
|
|
639 OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
|
|
640 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
|
|
641 }
|
|
642 void morePrerequisites(std::vector<Ptr> &output) const override {
|
|
643 output.push_back(V);
|
|
644 }
|
|
645 };
|
|
646
|
|
647 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
|
|
648 // method we want to use will have a Tablegen record giving the method name and
|
|
649 // describing any important details of how to call it, such as whether a
|
|
650 // particular argument should be an integer constant instead of an llvm::Value.
|
|
651 class IRBuilderResult : public Result {
|
|
652 public:
|
|
653 StringRef CallPrefix;
|
|
654 std::vector<Ptr> Args;
|
|
655 std::set<unsigned> AddressArgs;
|
|
656 std::map<unsigned, std::string> IntegerArgs;
|
|
657 IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
|
|
658 std::set<unsigned> AddressArgs,
|
|
659 std::map<unsigned, std::string> IntegerArgs)
|
|
660 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
|
|
661 IntegerArgs(IntegerArgs) {}
|
|
662 void genCode(raw_ostream &OS,
|
|
663 CodeGenParamAllocator &ParamAlloc) const override {
|
|
664 OS << CallPrefix;
|
|
665 const char *Sep = "";
|
|
666 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
|
|
667 Ptr Arg = Args[i];
|
|
668 auto it = IntegerArgs.find(i);
|
|
669
|
|
670 OS << Sep;
|
|
671 Sep = ", ";
|
|
672
|
|
673 if (it != IntegerArgs.end()) {
|
|
674 if (Arg->hasIntegerConstantValue())
|
|
675 OS << "static_cast<" << it->second << ">("
|
|
676 << ParamAlloc.allocParam(it->second,
|
|
677 utostr(Arg->integerConstantValue()))
|
|
678 << ")";
|
|
679 else if (Arg->hasIntegerValue())
|
|
680 OS << ParamAlloc.allocParam(it->second,
|
|
681 Arg->getIntegerValue(it->second));
|
|
682 } else {
|
|
683 OS << Arg->varname();
|
|
684 }
|
|
685 }
|
|
686 OS << ")";
|
|
687 }
|
|
688 void morePrerequisites(std::vector<Ptr> &output) const override {
|
|
689 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
|
|
690 Ptr Arg = Args[i];
|
|
691 if (IntegerArgs.find(i) != IntegerArgs.end())
|
|
692 continue;
|
|
693 output.push_back(Arg);
|
|
694 }
|
|
695 }
|
|
696 };
|
|
697
|
|
698 // Result subclass representing making an Address out of a Value.
|
|
699 class AddressResult : public Result {
|
|
700 public:
|
|
701 Ptr Arg;
|
|
702 unsigned Align;
|
|
703 AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
|
|
704 void genCode(raw_ostream &OS,
|
|
705 CodeGenParamAllocator &ParamAlloc) const override {
|
|
706 OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
|
|
707 << Align << "))";
|
|
708 }
|
|
709 std::string typeName() const override {
|
|
710 return "Address";
|
|
711 }
|
|
712 void morePrerequisites(std::vector<Ptr> &output) const override {
|
|
713 output.push_back(Arg);
|
|
714 }
|
|
715 };
|
|
716
|
|
717 // Result subclass representing a call to an IR intrinsic, which we first have
|
|
718 // to look up using an Intrinsic::ID constant and an array of types.
|
|
719 class IRIntrinsicResult : public Result {
|
|
720 public:
|
|
721 std::string IntrinsicID;
|
|
722 std::vector<const Type *> ParamTypes;
|
|
723 std::vector<Ptr> Args;
|
|
724 IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
|
|
725 std::vector<Ptr> Args)
|
|
726 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
|
|
727 Args(Args) {}
|
|
728 void genCode(raw_ostream &OS,
|
|
729 CodeGenParamAllocator &ParamAlloc) const override {
|
|
730 std::string IntNo = ParamAlloc.allocParam(
|
|
731 "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
|
|
732 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
|
|
733 if (!ParamTypes.empty()) {
|
|
734 OS << ", llvm::SmallVector<llvm::Type *, " << ParamTypes.size() << "> {";
|
|
735 const char *Sep = "";
|
|
736 for (auto T : ParamTypes) {
|
|
737 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
|
|
738 Sep = ", ";
|
|
739 }
|
|
740 OS << "}";
|
|
741 }
|
|
742 OS << "), llvm::SmallVector<Value *, " << Args.size() << "> {";
|
|
743 const char *Sep = "";
|
|
744 for (auto Arg : Args) {
|
|
745 OS << Sep << Arg->asValue();
|
|
746 Sep = ", ";
|
|
747 }
|
|
748 OS << "})";
|
|
749 }
|
|
750 void morePrerequisites(std::vector<Ptr> &output) const override {
|
|
751 output.insert(output.end(), Args.begin(), Args.end());
|
|
752 }
|
|
753 };
|
|
754
|
|
755 // Result subclass that specifies a type, for use in IRBuilder operations such
|
|
756 // as CreateBitCast that take a type argument.
|
|
757 class TypeResult : public Result {
|
|
758 public:
|
|
759 const Type *T;
|
|
760 TypeResult(const Type *T) : T(T) {}
|
|
761 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
|
|
762 OS << T->llvmName();
|
|
763 }
|
|
764 std::string typeName() const override {
|
|
765 return "llvm::Type *";
|
|
766 }
|
|
767 };
|
|
768
|
|
769 // -----------------------------------------------------------------------------
|
|
770 // Class that describes a single ACLE intrinsic.
|
|
771 //
|
|
772 // A Tablegen record will typically describe more than one ACLE intrinsic, by
|
|
773 // means of setting the 'list<Type> Params' field to a list of multiple
|
|
774 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
|
|
775 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
|
|
776 // rather than a single one for all of them. Hence, the constructor takes both
|
|
777 // a Tablegen record and the current value of the parameter type.
|
|
778
|
|
779 class ACLEIntrinsic {
|
|
780 // Structure documenting that one of the intrinsic's arguments is required to
|
|
781 // be a compile-time constant integer, and what constraints there are on its
|
|
782 // value. Used when generating Sema checking code.
|
|
783 struct ImmediateArg {
|
|
784 enum class BoundsType { ExplicitRange, UInt };
|
|
785 BoundsType boundsType;
|
|
786 int64_t i1, i2;
|
|
787 StringRef ExtraCheckType, ExtraCheckArgs;
|
|
788 const Type *ArgType;
|
|
789 };
|
|
790
|
|
791 // For polymorphic intrinsics, FullName is the explicit name that uniquely
|
|
792 // identifies this variant of the intrinsic, and ShortName is the name it
|
|
793 // shares with at least one other intrinsic.
|
|
794 std::string ShortName, FullName;
|
|
795
|
|
796 // A very small number of intrinsics _only_ have a polymorphic
|
|
797 // variant (vuninitializedq taking an unevaluated argument).
|
|
798 bool PolymorphicOnly;
|
|
799
|
|
800 // Another rarely-used flag indicating that the builtin doesn't
|
|
801 // evaluate its argument(s) at all.
|
|
802 bool NonEvaluating;
|
|
803
|
|
804 const Type *ReturnType;
|
|
805 std::vector<const Type *> ArgTypes;
|
|
806 std::map<unsigned, ImmediateArg> ImmediateArgs;
|
|
807 Result::Ptr Code;
|
|
808
|
|
809 std::map<std::string, std::string> CustomCodeGenArgs;
|
|
810
|
|
811 // Recursive function that does the internals of code generation.
|
|
812 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
|
|
813 unsigned Pass) const {
|
|
814 if (!V->needsVisiting(Pass))
|
|
815 return;
|
|
816
|
|
817 for (Result::Ptr W : V->prerequisites())
|
|
818 genCodeDfs(W, Used, Pass);
|
|
819
|
|
820 Used.push_back(V);
|
|
821 }
|
|
822
|
|
823 public:
|
|
824 const std::string &shortName() const { return ShortName; }
|
|
825 const std::string &fullName() const { return FullName; }
|
|
826 const Type *returnType() const { return ReturnType; }
|
|
827 const std::vector<const Type *> &argTypes() const { return ArgTypes; }
|
|
828 bool requiresFloat() const {
|
|
829 if (ReturnType->requiresFloat())
|
|
830 return true;
|
|
831 for (const Type *T : ArgTypes)
|
|
832 if (T->requiresFloat())
|
|
833 return true;
|
|
834 return false;
|
|
835 }
|
|
836 bool polymorphic() const { return ShortName != FullName; }
|
|
837 bool polymorphicOnly() const { return PolymorphicOnly; }
|
|
838 bool nonEvaluating() const { return NonEvaluating; }
|
|
839
|
|
840 // External entry point for code generation, called from MveEmitter.
|
|
841 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
|
|
842 unsigned Pass) const {
|
|
843 if (!hasCode()) {
|
|
844 for (auto kv : CustomCodeGenArgs)
|
|
845 OS << " " << kv.first << " = " << kv.second << ";\n";
|
|
846 OS << " break; // custom code gen\n";
|
|
847 return;
|
|
848 }
|
|
849 std::list<Result::Ptr> Used;
|
|
850 genCodeDfs(Code, Used, Pass);
|
|
851
|
|
852 unsigned varindex = 0;
|
|
853 for (Result::Ptr V : Used)
|
|
854 if (V->varnameUsed())
|
|
855 V->setVarname("Val" + utostr(varindex++));
|
|
856
|
|
857 for (Result::Ptr V : Used) {
|
|
858 OS << " ";
|
|
859 if (V == Used.back()) {
|
|
860 assert(!V->varnameUsed());
|
|
861 OS << "return "; // FIXME: what if the top-level thing is void?
|
|
862 } else if (V->varnameUsed()) {
|
|
863 std::string Type = V->typeName();
|
|
864 OS << V->typeName();
|
|
865 if (!StringRef(Type).endswith("*"))
|
|
866 OS << " ";
|
|
867 OS << V->varname() << " = ";
|
|
868 }
|
|
869 V->genCode(OS, ParamAlloc);
|
|
870 OS << ";\n";
|
|
871 }
|
|
872 }
|
|
873 bool hasCode() const { return Code != nullptr; }
|
|
874
|
|
875 static std::string signedHexLiteral(const llvm::APInt &iOrig) {
|
|
876 llvm::APInt i = iOrig.trunc(64);
|
|
877 SmallString<40> s;
|
|
878 i.toString(s, 16, true, true);
|
|
879 return std::string(s.str());
|
|
880 }
|
|
881
|
|
882 std::string genSema() const {
|
|
883 std::vector<std::string> SemaChecks;
|
|
884
|
|
885 for (const auto &kv : ImmediateArgs) {
|
|
886 const ImmediateArg &IA = kv.second;
|
|
887
|
|
888 llvm::APInt lo(128, 0), hi(128, 0);
|
|
889 switch (IA.boundsType) {
|
|
890 case ImmediateArg::BoundsType::ExplicitRange:
|
|
891 lo = IA.i1;
|
|
892 hi = IA.i2;
|
|
893 break;
|
|
894 case ImmediateArg::BoundsType::UInt:
|
|
895 lo = 0;
|
|
896 hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
|
|
897 break;
|
|
898 }
|
|
899
|
|
900 std::string Index = utostr(kv.first);
|
|
901
|
|
902 // Emit a range check if the legal range of values for the
|
|
903 // immediate is smaller than the _possible_ range of values for
|
|
904 // its type.
|
|
905 unsigned ArgTypeBits = IA.ArgType->sizeInBits();
|
|
906 llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
|
|
907 llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
|
|
908 if (ActualRange.ult(ArgTypeRange))
|
|
909 SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
|
|
910 ", " + signedHexLiteral(lo) + ", " +
|
|
911 signedHexLiteral(hi) + ")");
|
|
912
|
|
913 if (!IA.ExtraCheckType.empty()) {
|
|
914 std::string Suffix;
|
|
915 if (!IA.ExtraCheckArgs.empty()) {
|
|
916 std::string tmp;
|
|
917 StringRef Arg = IA.ExtraCheckArgs;
|
|
918 if (Arg == "!lanesize") {
|
|
919 tmp = utostr(IA.ArgType->sizeInBits());
|
|
920 Arg = tmp;
|
|
921 }
|
|
922 Suffix = (Twine(", ") + Arg).str();
|
|
923 }
|
|
924 SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
|
|
925 IA.ExtraCheckType + "(TheCall, " + Index +
|
|
926 Suffix + ")")
|
|
927 .str());
|
|
928 }
|
|
929
|
|
930 assert(!SemaChecks.empty());
|
|
931 }
|
|
932 if (SemaChecks.empty())
|
|
933 return "";
|
|
934 return (Twine(" return ") +
|
|
935 join(std::begin(SemaChecks), std::end(SemaChecks),
|
|
936 " ||\n ") +
|
|
937 ";\n")
|
|
938 .str();
|
|
939 }
|
|
940
|
|
941 ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param);
|
|
942 };
|
|
943
|
|
944 // -----------------------------------------------------------------------------
|
|
945 // The top-level class that holds all the state from analyzing the entire
|
|
946 // Tablegen input.
|
|
947
|
|
948 class MveEmitter {
|
|
949 // MveEmitter holds a collection of all the types we've instantiated.
|
|
950 VoidType Void;
|
|
951 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
|
|
952 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
|
|
953 std::unique_ptr<VectorType>>
|
|
954 VectorTypes;
|
|
955 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
|
|
956 MultiVectorTypes;
|
|
957 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
|
|
958 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
|
|
959
|
|
960 // And all the ACLEIntrinsic instances we've created.
|
|
961 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
|
|
962
|
|
963 public:
|
|
964 // Methods to create a Type object, or return the right existing one from the
|
|
965 // maps stored in this object.
|
|
966 const VoidType *getVoidType() { return &Void; }
|
|
967 const ScalarType *getScalarType(StringRef Name) {
|
|
968 return ScalarTypes[std::string(Name)].get();
|
|
969 }
|
|
970 const ScalarType *getScalarType(Record *R) {
|
|
971 return getScalarType(R->getName());
|
|
972 }
|
|
973 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
|
|
974 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
|
|
975 ST->sizeInBits(), Lanes);
|
|
976 if (VectorTypes.find(key) == VectorTypes.end())
|
|
977 VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
|
|
978 return VectorTypes[key].get();
|
|
979 }
|
|
980 const VectorType *getVectorType(const ScalarType *ST) {
|
|
981 return getVectorType(ST, 128 / ST->sizeInBits());
|
|
982 }
|
|
983 const MultiVectorType *getMultiVectorType(unsigned Registers,
|
|
984 const VectorType *VT) {
|
|
985 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
|
|
986 if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
|
|
987 MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
|
|
988 return MultiVectorTypes[key].get();
|
|
989 }
|
|
990 const PredicateType *getPredicateType(unsigned Lanes) {
|
|
991 unsigned key = Lanes;
|
|
992 if (PredicateTypes.find(key) == PredicateTypes.end())
|
|
993 PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
|
|
994 return PredicateTypes[key].get();
|
|
995 }
|
|
996 const PointerType *getPointerType(const Type *T, bool Const) {
|
|
997 PointerType PT(T, Const);
|
|
998 std::string key = PT.cName();
|
|
999 if (PointerTypes.find(key) == PointerTypes.end())
|
|
1000 PointerTypes[key] = std::make_unique<PointerType>(PT);
|
|
1001 return PointerTypes[key].get();
|
|
1002 }
|
|
1003
|
|
1004 // Methods to construct a type from various pieces of Tablegen. These are
|
|
1005 // always called in the context of setting up a particular ACLEIntrinsic, so
|
|
1006 // there's always an ambient parameter type (because we're iterating through
|
|
1007 // the Params list in the Tablegen record for the intrinsic), which is used
|
|
1008 // to expand Tablegen classes like 'Vector' which mean something different in
|
|
1009 // each member of a parametric family.
|
|
1010 const Type *getType(Record *R, const Type *Param);
|
|
1011 const Type *getType(DagInit *D, const Type *Param);
|
|
1012 const Type *getType(Init *I, const Type *Param);
|
|
1013
|
|
1014 // Functions that translate the Tablegen representation of an intrinsic's
|
|
1015 // code generation into a collection of Value objects (which will then be
|
|
1016 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
|
|
1017 Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
|
|
1018 const Type *Param);
|
|
1019 Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
|
|
1020 const Result::Scope &Scope, const Type *Param);
|
|
1021 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
|
|
1022 bool Immediate);
|
|
1023
|
|
1024 // Constructor and top-level functions.
|
|
1025
|
|
1026 MveEmitter(RecordKeeper &Records);
|
|
1027
|
|
1028 void EmitHeader(raw_ostream &OS);
|
|
1029 void EmitBuiltinDef(raw_ostream &OS);
|
|
1030 void EmitBuiltinSema(raw_ostream &OS);
|
|
1031 void EmitBuiltinCG(raw_ostream &OS);
|
|
1032 void EmitBuiltinAliases(raw_ostream &OS);
|
|
1033 };
|
|
1034
|
|
1035 const Type *MveEmitter::getType(Init *I, const Type *Param) {
|
|
1036 if (auto Dag = dyn_cast<DagInit>(I))
|
|
1037 return getType(Dag, Param);
|
|
1038 if (auto Def = dyn_cast<DefInit>(I))
|
|
1039 return getType(Def->getDef(), Param);
|
|
1040
|
|
1041 PrintFatalError("Could not convert this value into a type");
|
|
1042 }
|
|
1043
|
|
1044 const Type *MveEmitter::getType(Record *R, const Type *Param) {
|
|
1045 // Pass to a subfield of any wrapper records. We don't expect more than one
|
|
1046 // of these: immediate operands are used as plain numbers rather than as
|
|
1047 // llvm::Value, so it's meaningless to promote their type anyway.
|
|
1048 if (R->isSubClassOf("Immediate"))
|
|
1049 R = R->getValueAsDef("type");
|
|
1050 else if (R->isSubClassOf("unpromoted"))
|
|
1051 R = R->getValueAsDef("underlying_type");
|
|
1052
|
|
1053 if (R->getName() == "Void")
|
|
1054 return getVoidType();
|
|
1055 if (R->isSubClassOf("PrimitiveType"))
|
|
1056 return getScalarType(R);
|
|
1057 if (R->isSubClassOf("ComplexType"))
|
|
1058 return getType(R->getValueAsDag("spec"), Param);
|
|
1059
|
|
1060 PrintFatalError(R->getLoc(), "Could not convert this record into a type");
|
|
1061 }
|
|
1062
|
|
1063 const Type *MveEmitter::getType(DagInit *D, const Type *Param) {
|
|
1064 // The meat of the getType system: types in the Tablegen are represented by a
|
|
1065 // dag whose operators select sub-cases of this function.
|
|
1066
|
|
1067 Record *Op = cast<DefInit>(D->getOperator())->getDef();
|
|
1068 if (!Op->isSubClassOf("ComplexTypeOp"))
|
|
1069 PrintFatalError(
|
|
1070 "Expected ComplexTypeOp as dag operator in type expression");
|
|
1071
|
|
1072 if (Op->getName() == "CTO_Parameter") {
|
|
1073 if (isa<VoidType>(Param))
|
|
1074 PrintFatalError("Parametric type in unparametrised context");
|
|
1075 return Param;
|
|
1076 }
|
|
1077
|
|
1078 if (Op->getName() == "CTO_Vec") {
|
|
1079 const Type *Element = getType(D->getArg(0), Param);
|
|
1080 if (D->getNumArgs() == 1) {
|
|
1081 return getVectorType(cast<ScalarType>(Element));
|
|
1082 } else {
|
|
1083 const Type *ExistingVector = getType(D->getArg(1), Param);
|
|
1084 return getVectorType(cast<ScalarType>(Element),
|
|
1085 cast<VectorType>(ExistingVector)->lanes());
|
|
1086 }
|
|
1087 }
|
|
1088
|
|
1089 if (Op->getName() == "CTO_Pred") {
|
|
1090 const Type *Element = getType(D->getArg(0), Param);
|
|
1091 return getPredicateType(128 / Element->sizeInBits());
|
|
1092 }
|
|
1093
|
|
1094 if (Op->isSubClassOf("CTO_Tuple")) {
|
|
1095 unsigned Registers = Op->getValueAsInt("n");
|
|
1096 const Type *Element = getType(D->getArg(0), Param);
|
|
1097 return getMultiVectorType(Registers, cast<VectorType>(Element));
|
|
1098 }
|
|
1099
|
|
1100 if (Op->isSubClassOf("CTO_Pointer")) {
|
|
1101 const Type *Pointee = getType(D->getArg(0), Param);
|
|
1102 return getPointerType(Pointee, Op->getValueAsBit("const"));
|
|
1103 }
|
|
1104
|
|
1105 if (Op->getName() == "CTO_CopyKind") {
|
|
1106 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
|
|
1107 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
|
|
1108 for (const auto &kv : ScalarTypes) {
|
|
1109 const ScalarType *RT = kv.second.get();
|
|
1110 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
|
|
1111 return RT;
|
|
1112 }
|
|
1113 PrintFatalError("Cannot find a type to satisfy CopyKind");
|
|
1114 }
|
|
1115
|
|
1116 if (Op->isSubClassOf("CTO_ScaleSize")) {
|
|
1117 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
|
|
1118 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
|
|
1119 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
|
|
1120 for (const auto &kv : ScalarTypes) {
|
|
1121 const ScalarType *RT = kv.second.get();
|
|
1122 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
|
|
1123 return RT;
|
|
1124 }
|
|
1125 PrintFatalError("Cannot find a type to satisfy ScaleSize");
|
|
1126 }
|
|
1127
|
|
1128 PrintFatalError("Bad operator in type dag expression");
|
|
1129 }
|
|
1130
|
|
1131 Result::Ptr MveEmitter::getCodeForDag(DagInit *D, const Result::Scope &Scope,
|
|
1132 const Type *Param) {
|
|
1133 Record *Op = cast<DefInit>(D->getOperator())->getDef();
|
|
1134
|
|
1135 if (Op->getName() == "seq") {
|
|
1136 Result::Scope SubScope = Scope;
|
|
1137 Result::Ptr PrevV = nullptr;
|
|
1138 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
|
|
1139 // We don't use getCodeForDagArg here, because the argument name
|
|
1140 // has different semantics in a seq
|
|
1141 Result::Ptr V =
|
|
1142 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
|
|
1143 StringRef ArgName = D->getArgNameStr(i);
|
|
1144 if (!ArgName.empty())
|
|
1145 SubScope[std::string(ArgName)] = V;
|
|
1146 if (PrevV)
|
|
1147 V->setPredecessor(PrevV);
|
|
1148 PrevV = V;
|
|
1149 }
|
|
1150 return PrevV;
|
|
1151 } else if (Op->isSubClassOf("Type")) {
|
|
1152 if (D->getNumArgs() != 1)
|
|
1153 PrintFatalError("Type casts should have exactly one argument");
|
|
1154 const Type *CastType = getType(Op, Param);
|
|
1155 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
|
|
1156 if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
|
|
1157 if (!ST->requiresFloat()) {
|
|
1158 if (Arg->hasIntegerConstantValue())
|
|
1159 return std::make_shared<IntLiteralResult>(
|
|
1160 ST, Arg->integerConstantValue());
|
|
1161 else
|
|
1162 return std::make_shared<IntCastResult>(ST, Arg);
|
|
1163 }
|
|
1164 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
|
|
1165 return std::make_shared<PointerCastResult>(PT, Arg);
|
|
1166 }
|
|
1167 PrintFatalError("Unsupported type cast");
|
|
1168 } else if (Op->getName() == "address") {
|
|
1169 if (D->getNumArgs() != 2)
|
|
1170 PrintFatalError("'address' should have two arguments");
|
|
1171 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
|
|
1172 unsigned Alignment;
|
|
1173 if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
|
|
1174 Alignment = II->getValue();
|
|
1175 } else {
|
|
1176 PrintFatalError("'address' alignment argument should be an integer");
|
|
1177 }
|
|
1178 return std::make_shared<AddressResult>(Arg, Alignment);
|
|
1179 } else if (Op->getName() == "unsignedflag") {
|
|
1180 if (D->getNumArgs() != 1)
|
|
1181 PrintFatalError("unsignedflag should have exactly one argument");
|
|
1182 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
|
|
1183 if (!TypeRec->isSubClassOf("Type"))
|
|
1184 PrintFatalError("unsignedflag's argument should be a type");
|
|
1185 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
|
|
1186 return std::make_shared<IntLiteralResult>(
|
|
1187 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
|
|
1188 } else {
|
|
1189 PrintFatalError("unsignedflag's argument should be a scalar type");
|
|
1190 }
|
|
1191 } else {
|
|
1192 std::vector<Result::Ptr> Args;
|
|
1193 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
|
|
1194 Args.push_back(getCodeForDagArg(D, i, Scope, Param));
|
|
1195 if (Op->isSubClassOf("IRBuilderBase")) {
|
|
1196 std::set<unsigned> AddressArgs;
|
|
1197 std::map<unsigned, std::string> IntegerArgs;
|
|
1198 for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
|
|
1199 unsigned Index = sp->getValueAsInt("index");
|
|
1200 if (sp->isSubClassOf("IRBuilderAddrParam")) {
|
|
1201 AddressArgs.insert(Index);
|
|
1202 } else if (sp->isSubClassOf("IRBuilderIntParam")) {
|
|
1203 IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
|
|
1204 }
|
|
1205 }
|
|
1206 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
|
|
1207 Args, AddressArgs, IntegerArgs);
|
|
1208 } else if (Op->isSubClassOf("IRIntBase")) {
|
|
1209 std::vector<const Type *> ParamTypes;
|
|
1210 for (Record *RParam : Op->getValueAsListOfDefs("params"))
|
|
1211 ParamTypes.push_back(getType(RParam, Param));
|
|
1212 std::string IntName = std::string(Op->getValueAsString("intname"));
|
|
1213 if (Op->getValueAsBit("appendKind"))
|
|
1214 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
|
|
1215 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
|
|
1216 } else {
|
|
1217 PrintFatalError("Unsupported dag node " + Op->getName());
|
|
1218 }
|
|
1219 }
|
|
1220 }
|
|
1221
|
|
1222 Result::Ptr MveEmitter::getCodeForDagArg(DagInit *D, unsigned ArgNum,
|
|
1223 const Result::Scope &Scope,
|
|
1224 const Type *Param) {
|
|
1225 Init *Arg = D->getArg(ArgNum);
|
|
1226 StringRef Name = D->getArgNameStr(ArgNum);
|
|
1227
|
|
1228 if (!Name.empty()) {
|
|
1229 if (!isa<UnsetInit>(Arg))
|
|
1230 PrintFatalError(
|
|
1231 "dag operator argument should not have both a value and a name");
|
|
1232 auto it = Scope.find(std::string(Name));
|
|
1233 if (it == Scope.end())
|
|
1234 PrintFatalError("unrecognized variable name '" + Name + "'");
|
|
1235 return it->second;
|
|
1236 }
|
|
1237
|
|
1238 if (auto *II = dyn_cast<IntInit>(Arg))
|
|
1239 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
|
|
1240 II->getValue());
|
|
1241
|
|
1242 if (auto *DI = dyn_cast<DagInit>(Arg))
|
|
1243 return getCodeForDag(DI, Scope, Param);
|
|
1244
|
|
1245 if (auto *DI = dyn_cast<DefInit>(Arg)) {
|
|
1246 Record *Rec = DI->getDef();
|
|
1247 if (Rec->isSubClassOf("Type")) {
|
|
1248 const Type *T = getType(Rec, Param);
|
|
1249 return std::make_shared<TypeResult>(T);
|
|
1250 }
|
|
1251 }
|
|
1252
|
|
1253 PrintFatalError("bad dag argument type for code generation");
|
|
1254 }
|
|
1255
|
|
1256 Result::Ptr MveEmitter::getCodeForArg(unsigned ArgNum, const Type *ArgType,
|
|
1257 bool Promote, bool Immediate) {
|
|
1258 Result::Ptr V = std::make_shared<BuiltinArgResult>(
|
|
1259 ArgNum, isa<PointerType>(ArgType), Immediate);
|
|
1260
|
|
1261 if (Promote) {
|
|
1262 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
|
|
1263 if (ST->isInteger() && ST->sizeInBits() < 32)
|
|
1264 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
|
|
1265 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
|
|
1266 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
|
|
1267 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
|
|
1268 std::vector<const Type *>{PT},
|
|
1269 std::vector<Result::Ptr>{V});
|
|
1270 }
|
|
1271 }
|
|
1272
|
|
1273 return V;
|
|
1274 }
|
|
1275
|
|
1276 ACLEIntrinsic::ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param)
|
|
1277 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
|
|
1278 // Derive the intrinsic's full name, by taking the name of the
|
|
1279 // Tablegen record (or override) and appending the suffix from its
|
|
1280 // parameter type. (If the intrinsic is unparametrised, its
|
|
1281 // parameter type will be given as Void, which returns the empty
|
|
1282 // string for acleSuffix.)
|
|
1283 StringRef BaseName =
|
|
1284 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
|
|
1285 : R->getName());
|
|
1286 StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
|
|
1287 FullName =
|
|
1288 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
|
|
1289
|
|
1290 // Derive the intrinsic's polymorphic name, by removing components from the
|
|
1291 // full name as specified by its 'pnt' member ('polymorphic name type'),
|
|
1292 // which indicates how many type suffixes to remove, and any other piece of
|
|
1293 // the name that should be removed.
|
|
1294 Record *PolymorphicNameType = R->getValueAsDef("pnt");
|
|
1295 SmallVector<StringRef, 8> NameParts;
|
|
1296 StringRef(FullName).split(NameParts, '_');
|
|
1297 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
|
|
1298 "NumTypeSuffixesToDiscard");
|
|
1299 i < e; ++i)
|
|
1300 NameParts.pop_back();
|
|
1301 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
|
|
1302 StringRef ExtraSuffix =
|
|
1303 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
|
|
1304 auto it = NameParts.end();
|
|
1305 while (it != NameParts.begin()) {
|
|
1306 --it;
|
|
1307 if (*it == ExtraSuffix) {
|
|
1308 NameParts.erase(it);
|
|
1309 break;
|
|
1310 }
|
|
1311 }
|
|
1312 }
|
|
1313 ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
|
|
1314
|
|
1315 PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
|
|
1316 NonEvaluating = R->getValueAsBit("nonEvaluating");
|
|
1317
|
|
1318 // Process the intrinsic's argument list.
|
|
1319 DagInit *ArgsDag = R->getValueAsDag("args");
|
|
1320 Result::Scope Scope;
|
|
1321 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
|
|
1322 Init *TypeInit = ArgsDag->getArg(i);
|
|
1323
|
|
1324 bool Promote = true;
|
|
1325 if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
|
|
1326 if (TypeDI->getDef()->isSubClassOf("unpromoted"))
|
|
1327 Promote = false;
|
|
1328
|
|
1329 // Work out the type of the argument, for use in the function prototype in
|
|
1330 // the header file.
|
|
1331 const Type *ArgType = ME.getType(TypeInit, Param);
|
|
1332 ArgTypes.push_back(ArgType);
|
|
1333
|
|
1334 // If the argument is a subclass of Immediate, record the details about
|
|
1335 // what values it can take, for Sema checking.
|
|
1336 bool Immediate = false;
|
|
1337 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
|
|
1338 Record *TypeRec = TypeDI->getDef();
|
|
1339 if (TypeRec->isSubClassOf("Immediate")) {
|
|
1340 Immediate = true;
|
|
1341
|
|
1342 Record *Bounds = TypeRec->getValueAsDef("bounds");
|
|
1343 ImmediateArg &IA = ImmediateArgs[i];
|
|
1344 if (Bounds->isSubClassOf("IB_ConstRange")) {
|
|
1345 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
|
|
1346 IA.i1 = Bounds->getValueAsInt("lo");
|
|
1347 IA.i2 = Bounds->getValueAsInt("hi");
|
|
1348 } else if (Bounds->getName() == "IB_UEltValue") {
|
|
1349 IA.boundsType = ImmediateArg::BoundsType::UInt;
|
|
1350 IA.i1 = Param->sizeInBits();
|
|
1351 } else if (Bounds->getName() == "IB_LaneIndex") {
|
|
1352 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
|
|
1353 IA.i1 = 0;
|
|
1354 IA.i2 = 128 / Param->sizeInBits() - 1;
|
|
1355 } else if (Bounds->isSubClassOf("IB_EltBit")) {
|
|
1356 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
|
|
1357 IA.i1 = Bounds->getValueAsInt("base");
|
|
1358 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
|
|
1359 IA.i2 = IA.i1 + T->sizeInBits() - 1;
|
|
1360 } else {
|
|
1361 PrintFatalError("unrecognised ImmediateBounds subclass");
|
|
1362 }
|
|
1363
|
|
1364 IA.ArgType = ArgType;
|
|
1365
|
|
1366 if (!TypeRec->isValueUnset("extra")) {
|
|
1367 IA.ExtraCheckType = TypeRec->getValueAsString("extra");
|
|
1368 if (!TypeRec->isValueUnset("extraarg"))
|
|
1369 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
|
|
1370 }
|
|
1371 }
|
|
1372 }
|
|
1373
|
|
1374 // The argument will usually have a name in the arguments dag, which goes
|
|
1375 // into the variable-name scope that the code gen will refer to.
|
|
1376 StringRef ArgName = ArgsDag->getArgNameStr(i);
|
|
1377 if (!ArgName.empty())
|
|
1378 Scope[std::string(ArgName)] =
|
|
1379 ME.getCodeForArg(i, ArgType, Promote, Immediate);
|
|
1380 }
|
|
1381
|
|
1382 // Finally, go through the codegen dag and translate it into a Result object
|
|
1383 // (with an arbitrary DAG of depended-on Results hanging off it).
|
|
1384 DagInit *CodeDag = R->getValueAsDag("codegen");
|
|
1385 Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
|
|
1386 if (MainOp->isSubClassOf("CustomCodegen")) {
|
|
1387 // Or, if it's the special case of CustomCodegen, just accumulate
|
|
1388 // a list of parameters we're going to assign to variables before
|
|
1389 // breaking from the loop.
|
|
1390 CustomCodeGenArgs["CustomCodeGenType"] =
|
|
1391 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
|
|
1392 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
|
|
1393 StringRef Name = CodeDag->getArgNameStr(i);
|
|
1394 if (Name.empty()) {
|
|
1395 PrintFatalError("Operands to CustomCodegen should have names");
|
|
1396 } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
|
|
1397 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
|
|
1398 } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
|
|
1399 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
|
|
1400 } else {
|
|
1401 PrintFatalError("Operands to CustomCodegen should be integers");
|
|
1402 }
|
|
1403 }
|
|
1404 } else {
|
|
1405 Code = ME.getCodeForDag(CodeDag, Scope, Param);
|
|
1406 }
|
|
1407 }
|
|
1408
|
|
1409 MveEmitter::MveEmitter(RecordKeeper &Records) {
|
|
1410 // Construct the whole MveEmitter.
|
|
1411
|
|
1412 // First, look up all the instances of PrimitiveType. This gives us the list
|
|
1413 // of vector typedefs we have to put in arm_mve.h, and also allows us to
|
|
1414 // collect all the useful ScalarType instances into a big list so that we can
|
|
1415 // use it for operations such as 'find the unsigned version of this signed
|
|
1416 // integer type'.
|
|
1417 for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
|
|
1418 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
|
|
1419
|
|
1420 // Now go through the instances of Intrinsic, and for each one, iterate
|
|
1421 // through its list of type parameters making an ACLEIntrinsic for each one.
|
|
1422 for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
|
|
1423 for (Record *RParam : R->getValueAsListOfDefs("params")) {
|
|
1424 const Type *Param = getType(RParam, getVoidType());
|
|
1425 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
|
|
1426 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
|
|
1427 }
|
|
1428 }
|
|
1429 }
|
|
1430
|
|
1431 /// A wrapper on raw_string_ostream that contains its own buffer rather than
|
|
1432 /// having to point it at one elsewhere. (In other words, it works just like
|
|
1433 /// std::ostringstream; also, this makes it convenient to declare a whole array
|
|
1434 /// of them at once.)
|
|
1435 ///
|
|
1436 /// We have to set this up using multiple inheritance, to ensure that the
|
|
1437 /// string member has been constructed before raw_string_ostream's constructor
|
|
1438 /// is given a pointer to it.
|
|
1439 class string_holder {
|
|
1440 protected:
|
|
1441 std::string S;
|
|
1442 };
|
|
1443 class raw_self_contained_string_ostream : private string_holder,
|
|
1444 public raw_string_ostream {
|
|
1445 public:
|
|
1446 raw_self_contained_string_ostream()
|
|
1447 : string_holder(), raw_string_ostream(S) {}
|
|
1448 };
|
|
1449
|
|
1450 void MveEmitter::EmitHeader(raw_ostream &OS) {
|
|
1451 // Accumulate pieces of the header file that will be enabled under various
|
|
1452 // different combinations of #ifdef. The index into parts[] is made up of
|
|
1453 // the following bit flags.
|
|
1454 constexpr unsigned Float = 1;
|
|
1455 constexpr unsigned UseUserNamespace = 2;
|
|
1456
|
|
1457 constexpr unsigned NumParts = 4;
|
|
1458 raw_self_contained_string_ostream parts[NumParts];
|
|
1459
|
|
1460 // Write typedefs for all the required vector types, and a few scalar
|
|
1461 // types that don't already have the name we want them to have.
|
|
1462
|
|
1463 parts[0] << "typedef uint16_t mve_pred16_t;\n";
|
|
1464 parts[Float] << "typedef __fp16 float16_t;\n"
|
|
1465 "typedef float float32_t;\n";
|
|
1466 for (const auto &kv : ScalarTypes) {
|
|
1467 const ScalarType *ST = kv.second.get();
|
|
1468 if (ST->hasNonstandardName())
|
|
1469 continue;
|
|
1470 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
|
|
1471 const VectorType *VT = getVectorType(ST);
|
|
1472
|
|
1473 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
|
|
1474 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
|
|
1475 << VT->cName() << ";\n";
|
|
1476
|
|
1477 // Every vector type also comes with a pair of multi-vector types for
|
|
1478 // the VLD2 and VLD4 instructions.
|
|
1479 for (unsigned n = 2; n <= 4; n += 2) {
|
|
1480 const MultiVectorType *MT = getMultiVectorType(n, VT);
|
|
1481 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
|
|
1482 << MT->cName() << ";\n";
|
|
1483 }
|
|
1484 }
|
|
1485 parts[0] << "\n";
|
|
1486 parts[Float] << "\n";
|
|
1487
|
|
1488 // Write declarations for all the intrinsics.
|
|
1489
|
|
1490 for (const auto &kv : ACLEIntrinsics) {
|
|
1491 const ACLEIntrinsic &Int = *kv.second;
|
|
1492
|
|
1493 // We generate each intrinsic twice, under its full unambiguous
|
|
1494 // name and its shorter polymorphic name (if the latter exists).
|
|
1495 for (bool Polymorphic : {false, true}) {
|
|
1496 if (Polymorphic && !Int.polymorphic())
|
|
1497 continue;
|
|
1498 if (!Polymorphic && Int.polymorphicOnly())
|
|
1499 continue;
|
|
1500
|
|
1501 // We also generate each intrinsic under a name like __arm_vfooq
|
|
1502 // (which is in C language implementation namespace, so it's
|
|
1503 // safe to define in any conforming user program) and a shorter
|
|
1504 // one like vfooq (which is in user namespace, so a user might
|
|
1505 // reasonably have used it for something already). If so, they
|
|
1506 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
|
|
1507 // including the header, which will suppress the shorter names
|
|
1508 // and leave only the implementation-namespace ones. Then they
|
|
1509 // have to write __arm_vfooq everywhere, of course.
|
|
1510
|
|
1511 for (bool UserNamespace : {false, true}) {
|
|
1512 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
|
|
1513 (UserNamespace ? UseUserNamespace : 0)];
|
|
1514
|
|
1515 // Make the name of the function in this declaration.
|
|
1516
|
|
1517 std::string FunctionName =
|
|
1518 Polymorphic ? Int.shortName() : Int.fullName();
|
|
1519 if (!UserNamespace)
|
|
1520 FunctionName = "__arm_" + FunctionName;
|
|
1521
|
|
1522 // Make strings for the types involved in the function's
|
|
1523 // prototype.
|
|
1524
|
|
1525 std::string RetTypeName = Int.returnType()->cName();
|
|
1526 if (!StringRef(RetTypeName).endswith("*"))
|
|
1527 RetTypeName += " ";
|
|
1528
|
|
1529 std::vector<std::string> ArgTypeNames;
|
|
1530 for (const Type *ArgTypePtr : Int.argTypes())
|
|
1531 ArgTypeNames.push_back(ArgTypePtr->cName());
|
|
1532 std::string ArgTypesString =
|
|
1533 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
|
|
1534
|
|
1535 // Emit the actual declaration. All these functions are
|
|
1536 // declared 'static inline' without a body, which is fine
|
|
1537 // provided clang recognizes them as builtins, and has the
|
|
1538 // effect that this type signature is used in place of the one
|
|
1539 // that Builtins.def didn't provide. That's how we can get
|
|
1540 // structure types that weren't defined until this header was
|
|
1541 // included to be part of the type signature of a builtin that
|
|
1542 // was known to clang already.
|
|
1543 //
|
|
1544 // The declarations use __attribute__(__clang_arm_mve_alias),
|
|
1545 // so that each function declared will be recognized as the
|
|
1546 // appropriate MVE builtin in spite of its user-facing name.
|
|
1547 //
|
|
1548 // (That's better than making them all wrapper functions,
|
|
1549 // partly because it avoids any compiler error message citing
|
|
1550 // the wrapper function definition instead of the user's code,
|
|
1551 // and mostly because some MVE intrinsics have arguments
|
|
1552 // required to be compile-time constants, and that property
|
|
1553 // can't be propagated through a wrapper function. It can be
|
|
1554 // propagated through a macro, but macros can't be overloaded
|
|
1555 // on argument types very easily - you have to use _Generic,
|
|
1556 // which makes error messages very confusing when the user
|
|
1557 // gets it wrong.)
|
|
1558 //
|
|
1559 // Finally, the polymorphic versions of the intrinsics are
|
|
1560 // also defined with __attribute__(overloadable), so that when
|
|
1561 // the same name is defined with several type signatures, the
|
|
1562 // right thing happens. Each one of the overloaded
|
|
1563 // declarations is given a different builtin id, which
|
|
1564 // has exactly the effect we want: first clang resolves the
|
|
1565 // overload to the right function, then it knows which builtin
|
|
1566 // it's referring to, and then the Sema checking for that
|
|
1567 // builtin can check further things like the constant
|
|
1568 // arguments.
|
|
1569 //
|
|
1570 // One more subtlety is the newline just before the return
|
|
1571 // type name. That's a cosmetic tweak to make the error
|
|
1572 // messages legible if the user gets the types wrong in a call
|
|
1573 // to a polymorphic function: this way, clang will print just
|
|
1574 // the _final_ line of each declaration in the header, to show
|
|
1575 // the type signatures that would have been legal. So all the
|
|
1576 // confusing machinery with __attribute__ is left out of the
|
|
1577 // error message, and the user sees something that's more or
|
|
1578 // less self-documenting: "here's a list of actually readable
|
|
1579 // type signatures for vfooq(), and here's why each one didn't
|
|
1580 // match your call".
|
|
1581
|
|
1582 OS << "static __inline__ __attribute__(("
|
|
1583 << (Polymorphic ? "overloadable, " : "")
|
|
1584 << "__clang_arm_mve_alias(__builtin_arm_mve_" << Int.fullName()
|
|
1585 << ")))\n"
|
|
1586 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
|
|
1587 }
|
|
1588 }
|
|
1589 }
|
|
1590 for (auto &part : parts)
|
|
1591 part << "\n";
|
|
1592
|
|
1593 // Now we've finished accumulating bits and pieces into the parts[] array.
|
|
1594 // Put it all together to write the final output file.
|
|
1595
|
|
1596 OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
|
|
1597 "-----------------------------------===\n"
|
|
1598 " *\n"
|
|
1599 " *\n"
|
|
1600 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
|
|
1601 "Exceptions.\n"
|
|
1602 " * See https://llvm.org/LICENSE.txt for license information.\n"
|
|
1603 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
|
|
1604 " *\n"
|
|
1605 " *===-------------------------------------------------------------"
|
|
1606 "----"
|
|
1607 "------===\n"
|
|
1608 " */\n"
|
|
1609 "\n"
|
|
1610 "#ifndef __ARM_MVE_H\n"
|
|
1611 "#define __ARM_MVE_H\n"
|
|
1612 "\n"
|
|
1613 "#if !__ARM_FEATURE_MVE\n"
|
|
1614 "#error \"MVE support not enabled\"\n"
|
|
1615 "#endif\n"
|
|
1616 "\n"
|
|
1617 "#include <stdint.h>\n"
|
|
1618 "\n"
|
|
1619 "#ifdef __cplusplus\n"
|
|
1620 "extern \"C\" {\n"
|
|
1621 "#endif\n"
|
|
1622 "\n";
|
|
1623
|
|
1624 for (size_t i = 0; i < NumParts; ++i) {
|
|
1625 std::vector<std::string> conditions;
|
|
1626 if (i & Float)
|
|
1627 conditions.push_back("(__ARM_FEATURE_MVE & 2)");
|
|
1628 if (i & UseUserNamespace)
|
|
1629 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
|
|
1630
|
|
1631 std::string condition =
|
|
1632 join(std::begin(conditions), std::end(conditions), " && ");
|
|
1633 if (!condition.empty())
|
|
1634 OS << "#if " << condition << "\n\n";
|
|
1635 OS << parts[i].str();
|
|
1636 if (!condition.empty())
|
|
1637 OS << "#endif /* " << condition << " */\n\n";
|
|
1638 }
|
|
1639
|
|
1640 OS << "#ifdef __cplusplus\n"
|
|
1641 "} /* extern \"C\" */\n"
|
|
1642 "#endif\n"
|
|
1643 "\n"
|
|
1644 "#endif /* __ARM_MVE_H */\n";
|
|
1645 }
|
|
1646
|
|
1647 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
|
|
1648 for (const auto &kv : ACLEIntrinsics) {
|
|
1649 const ACLEIntrinsic &Int = *kv.second;
|
|
1650 OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
|
|
1651 << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
|
|
1652 }
|
|
1653
|
|
1654 std::set<std::string> ShortNamesSeen;
|
|
1655
|
|
1656 for (const auto &kv : ACLEIntrinsics) {
|
|
1657 const ACLEIntrinsic &Int = *kv.second;
|
|
1658 if (Int.polymorphic()) {
|
|
1659 StringRef Name = Int.shortName();
|
|
1660 if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
|
|
1661 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
|
|
1662 if (Int.nonEvaluating())
|
|
1663 OS << "u"; // indicate that this builtin doesn't evaluate its args
|
|
1664 OS << "\")\n";
|
|
1665 ShortNamesSeen.insert(std::string(Name));
|
|
1666 }
|
|
1667 }
|
|
1668 }
|
|
1669 }
|
|
1670
|
|
1671 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
|
|
1672 std::map<std::string, std::set<std::string>> Checks;
|
|
1673
|
|
1674 for (const auto &kv : ACLEIntrinsics) {
|
|
1675 const ACLEIntrinsic &Int = *kv.second;
|
|
1676 std::string Check = Int.genSema();
|
|
1677 if (!Check.empty())
|
|
1678 Checks[Check].insert(Int.fullName());
|
|
1679 }
|
|
1680
|
|
1681 for (const auto &kv : Checks) {
|
|
1682 for (StringRef Name : kv.second)
|
|
1683 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
|
|
1684 OS << kv.first;
|
|
1685 }
|
|
1686 }
|
|
1687
|
|
1688 // Machinery for the grouping of intrinsics by similar codegen.
|
|
1689 //
|
|
1690 // The general setup is that 'MergeableGroup' stores the things that a set of
|
|
1691 // similarly shaped intrinsics have in common: the text of their code
|
|
1692 // generation, and the number and type of their parameter variables.
|
|
1693 // MergeableGroup is the key in a std::map whose value is a set of
|
|
1694 // OutputIntrinsic, which stores the ways in which a particular intrinsic
|
|
1695 // specializes the MergeableGroup's generic description: the function name and
|
|
1696 // the _values_ of the parameter variables.
|
|
1697
|
|
1698 struct ComparableStringVector : std::vector<std::string> {
|
|
1699 // Infrastructure: a derived class of vector<string> which comes with an
|
|
1700 // ordering, so that it can be used as a key in maps and an element in sets.
|
|
1701 // There's no requirement on the ordering beyond being deterministic.
|
|
1702 bool operator<(const ComparableStringVector &rhs) const {
|
|
1703 if (size() != rhs.size())
|
|
1704 return size() < rhs.size();
|
|
1705 for (size_t i = 0, e = size(); i < e; ++i)
|
|
1706 if ((*this)[i] != rhs[i])
|
|
1707 return (*this)[i] < rhs[i];
|
|
1708 return false;
|
|
1709 }
|
|
1710 };
|
|
1711
|
|
1712 struct OutputIntrinsic {
|
|
1713 const ACLEIntrinsic *Int;
|
|
1714 std::string Name;
|
|
1715 ComparableStringVector ParamValues;
|
|
1716 bool operator<(const OutputIntrinsic &rhs) const {
|
|
1717 if (Name != rhs.Name)
|
|
1718 return Name < rhs.Name;
|
|
1719 return ParamValues < rhs.ParamValues;
|
|
1720 }
|
|
1721 };
|
|
1722 struct MergeableGroup {
|
|
1723 std::string Code;
|
|
1724 ComparableStringVector ParamTypes;
|
|
1725 bool operator<(const MergeableGroup &rhs) const {
|
|
1726 if (Code != rhs.Code)
|
|
1727 return Code < rhs.Code;
|
|
1728 return ParamTypes < rhs.ParamTypes;
|
|
1729 }
|
|
1730 };
|
|
1731
|
|
1732 void MveEmitter::EmitBuiltinCG(raw_ostream &OS) {
|
|
1733 // Pass 1: generate code for all the intrinsics as if every type or constant
|
|
1734 // that can possibly be abstracted out into a parameter variable will be.
|
|
1735 // This identifies the sets of intrinsics we'll group together into a single
|
|
1736 // piece of code generation.
|
|
1737
|
|
1738 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
|
|
1739
|
|
1740 for (const auto &kv : ACLEIntrinsics) {
|
|
1741 const ACLEIntrinsic &Int = *kv.second;
|
|
1742
|
|
1743 MergeableGroup MG;
|
|
1744 OutputIntrinsic OI;
|
|
1745
|
|
1746 OI.Int = ∬
|
|
1747 OI.Name = Int.fullName();
|
|
1748 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
|
|
1749 raw_string_ostream OS(MG.Code);
|
|
1750 Int.genCode(OS, ParamAllocPrelim, 1);
|
|
1751 OS.flush();
|
|
1752
|
|
1753 MergeableGroupsPrelim[MG].insert(OI);
|
|
1754 }
|
|
1755
|
|
1756 // Pass 2: for each of those groups, optimize the parameter variable set by
|
|
1757 // eliminating 'parameters' that are the same for all intrinsics in the
|
|
1758 // group, and merging together pairs of parameter variables that take the
|
|
1759 // same values as each other for all intrinsics in the group.
|
|
1760
|
|
1761 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
|
|
1762
|
|
1763 for (const auto &kv : MergeableGroupsPrelim) {
|
|
1764 const MergeableGroup &MG = kv.first;
|
|
1765 std::vector<int> ParamNumbers;
|
|
1766 std::map<ComparableStringVector, int> ParamNumberMap;
|
|
1767
|
|
1768 // Loop over the parameters for this group.
|
|
1769 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
|
|
1770 // Is this parameter the same for all intrinsics in the group?
|
|
1771 const OutputIntrinsic &OI_first = *kv.second.begin();
|
|
1772 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
|
|
1773 return OI.ParamValues[i] == OI_first.ParamValues[i];
|
|
1774 });
|
|
1775
|
|
1776 // If so, record it as -1, meaning 'no parameter variable needed'. Then
|
|
1777 // the corresponding call to allocParam in pass 2 will not generate a
|
|
1778 // variable at all, and just use the value inline.
|
|
1779 if (Constant) {
|
|
1780 ParamNumbers.push_back(-1);
|
|
1781 continue;
|
|
1782 }
|
|
1783
|
|
1784 // Otherwise, make a list of the values this parameter takes for each
|
|
1785 // intrinsic, and see if that value vector matches anything we already
|
|
1786 // have. We also record the parameter type, so that we don't accidentally
|
|
1787 // match up two parameter variables with different types. (Not that
|
|
1788 // there's much chance of them having textually equivalent values, but in
|
|
1789 // _principle_ it could happen.)
|
|
1790 ComparableStringVector key;
|
|
1791 key.push_back(MG.ParamTypes[i]);
|
|
1792 for (const auto &OI : kv.second)
|
|
1793 key.push_back(OI.ParamValues[i]);
|
|
1794
|
|
1795 auto Found = ParamNumberMap.find(key);
|
|
1796 if (Found != ParamNumberMap.end()) {
|
|
1797 // Yes, an existing parameter variable can be reused for this.
|
|
1798 ParamNumbers.push_back(Found->second);
|
|
1799 continue;
|
|
1800 }
|
|
1801
|
|
1802 // No, we need a new parameter variable.
|
|
1803 int ExistingIndex = ParamNumberMap.size();
|
|
1804 ParamNumberMap[key] = ExistingIndex;
|
|
1805 ParamNumbers.push_back(ExistingIndex);
|
|
1806 }
|
|
1807
|
|
1808 // Now we're ready to do the pass 2 code generation, which will emit the
|
|
1809 // reduced set of parameter variables we've just worked out.
|
|
1810
|
|
1811 for (const auto &OI_prelim : kv.second) {
|
|
1812 const ACLEIntrinsic *Int = OI_prelim.Int;
|
|
1813
|
|
1814 MergeableGroup MG;
|
|
1815 OutputIntrinsic OI;
|
|
1816
|
|
1817 OI.Int = OI_prelim.Int;
|
|
1818 OI.Name = OI_prelim.Name;
|
|
1819 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
|
|
1820 &ParamNumbers};
|
|
1821 raw_string_ostream OS(MG.Code);
|
|
1822 Int->genCode(OS, ParamAlloc, 2);
|
|
1823 OS.flush();
|
|
1824
|
|
1825 MergeableGroups[MG].insert(OI);
|
|
1826 }
|
|
1827 }
|
|
1828
|
|
1829 // Output the actual C++ code.
|
|
1830
|
|
1831 for (const auto &kv : MergeableGroups) {
|
|
1832 const MergeableGroup &MG = kv.first;
|
|
1833
|
|
1834 // List of case statements in the main switch on BuiltinID, and an open
|
|
1835 // brace.
|
|
1836 const char *prefix = "";
|
|
1837 for (const auto &OI : kv.second) {
|
|
1838 OS << prefix << "case ARM::BI__builtin_arm_mve_" << OI.Name << ":";
|
|
1839 prefix = "\n";
|
|
1840 }
|
|
1841 OS << " {\n";
|
|
1842
|
|
1843 if (!MG.ParamTypes.empty()) {
|
|
1844 // If we've got some parameter variables, then emit their declarations...
|
|
1845 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
|
|
1846 StringRef Type = MG.ParamTypes[i];
|
|
1847 OS << " " << Type;
|
|
1848 if (!Type.endswith("*"))
|
|
1849 OS << " ";
|
|
1850 OS << " Param" << utostr(i) << ";\n";
|
|
1851 }
|
|
1852
|
|
1853 // ... and an inner switch on BuiltinID that will fill them in with each
|
|
1854 // individual intrinsic's values.
|
|
1855 OS << " switch (BuiltinID) {\n";
|
|
1856 for (const auto &OI : kv.second) {
|
|
1857 OS << " case ARM::BI__builtin_arm_mve_" << OI.Name << ":\n";
|
|
1858 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
|
|
1859 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
|
|
1860 OS << " break;\n";
|
|
1861 }
|
|
1862 OS << " }\n";
|
|
1863 }
|
|
1864
|
|
1865 // And finally, output the code, and close the outer pair of braces. (The
|
|
1866 // code will always end with a 'return' statement, so we need not insert a
|
|
1867 // 'break' here.)
|
|
1868 OS << MG.Code << "}\n";
|
|
1869 }
|
|
1870 }
|
|
1871
|
|
1872 void MveEmitter::EmitBuiltinAliases(raw_ostream &OS) {
|
|
1873 // Build a sorted table of:
|
|
1874 // - intrinsic id number
|
|
1875 // - full name
|
|
1876 // - polymorphic name or -1
|
|
1877 StringToOffsetTable StringTable;
|
|
1878 OS << "struct IntrinToName {\n"
|
|
1879 " uint32_t Id;\n"
|
|
1880 " int32_t FullName;\n"
|
|
1881 " int32_t ShortName;\n"
|
|
1882 "};\n";
|
|
1883 OS << "static const IntrinToName Map[] = {\n";
|
|
1884 for (const auto &kv : ACLEIntrinsics) {
|
|
1885 const ACLEIntrinsic &Int = *kv.second;
|
|
1886 int32_t ShortNameOffset =
|
|
1887 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
|
|
1888 : -1;
|
|
1889 OS << " { ARM::BI__builtin_arm_mve_" << Int.fullName() << ", "
|
|
1890 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
|
|
1891 << ShortNameOffset << "},\n";
|
|
1892 }
|
|
1893 OS << "};\n\n";
|
|
1894
|
|
1895 OS << "static const char IntrinNames[] = {\n";
|
|
1896 StringTable.EmitString(OS);
|
|
1897 OS << "};\n\n";
|
|
1898
|
|
1899 OS << "auto It = std::lower_bound(std::begin(Map), "
|
|
1900 "std::end(Map), BuiltinID,\n"
|
|
1901 " [](const IntrinToName &L, unsigned Id) {\n"
|
|
1902 " return L.Id < Id;\n"
|
|
1903 " });\n";
|
|
1904 OS << "if (It == std::end(Map) || It->Id != BuiltinID)\n"
|
|
1905 " return false;\n";
|
|
1906 OS << "StringRef FullName(&IntrinNames[It->FullName]);\n";
|
|
1907 OS << "if (AliasName == FullName)\n"
|
|
1908 " return true;\n";
|
|
1909 OS << "if (It->ShortName == -1)\n"
|
|
1910 " return false;\n";
|
|
1911 OS << "StringRef ShortName(&IntrinNames[It->ShortName]);\n";
|
|
1912 OS << "return AliasName == ShortName;\n";
|
|
1913 }
|
|
1914
|
|
1915 } // namespace
|
|
1916
|
|
1917 namespace clang {
|
|
1918
|
|
1919 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
|
|
1920 MveEmitter(Records).EmitHeader(OS);
|
|
1921 }
|
|
1922
|
|
1923 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
|
|
1924 MveEmitter(Records).EmitBuiltinDef(OS);
|
|
1925 }
|
|
1926
|
|
1927 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
|
|
1928 MveEmitter(Records).EmitBuiltinSema(OS);
|
|
1929 }
|
|
1930
|
|
1931 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
|
|
1932 MveEmitter(Records).EmitBuiltinCG(OS);
|
|
1933 }
|
|
1934
|
|
1935 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
|
|
1936 MveEmitter(Records).EmitBuiltinAliases(OS);
|
|
1937 }
|
|
1938
|
|
1939 } // end namespace clang
|