150
|
1 //===- CXXInheritance.cpp - C++ Inheritance -------------------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // This file provides routines that help analyzing C++ inheritance hierarchies.
|
|
10 //
|
|
11 //===----------------------------------------------------------------------===//
|
|
12
|
|
13 #include "clang/AST/CXXInheritance.h"
|
|
14 #include "clang/AST/ASTContext.h"
|
|
15 #include "clang/AST/Decl.h"
|
|
16 #include "clang/AST/DeclBase.h"
|
|
17 #include "clang/AST/DeclCXX.h"
|
|
18 #include "clang/AST/DeclTemplate.h"
|
|
19 #include "clang/AST/RecordLayout.h"
|
|
20 #include "clang/AST/TemplateName.h"
|
|
21 #include "clang/AST/Type.h"
|
|
22 #include "clang/Basic/LLVM.h"
|
|
23 #include "llvm/ADT/DenseMap.h"
|
|
24 #include "llvm/ADT/STLExtras.h"
|
|
25 #include "llvm/ADT/SetVector.h"
|
|
26 #include "llvm/ADT/SmallVector.h"
|
|
27 #include "llvm/ADT/iterator_range.h"
|
|
28 #include "llvm/Support/Casting.h"
|
|
29 #include <algorithm>
|
|
30 #include <utility>
|
|
31 #include <cassert>
|
|
32 #include <vector>
|
|
33
|
|
34 using namespace clang;
|
|
35
|
|
36 /// isAmbiguous - Determines whether the set of paths provided is
|
|
37 /// ambiguous, i.e., there are two or more paths that refer to
|
|
38 /// different base class subobjects of the same type. BaseType must be
|
|
39 /// an unqualified, canonical class type.
|
|
40 bool CXXBasePaths::isAmbiguous(CanQualType BaseType) {
|
|
41 BaseType = BaseType.getUnqualifiedType();
|
|
42 IsVirtBaseAndNumberNonVirtBases Subobjects = ClassSubobjects[BaseType];
|
|
43 return Subobjects.NumberOfNonVirtBases + (Subobjects.IsVirtBase ? 1 : 0) > 1;
|
|
44 }
|
|
45
|
|
46 /// clear - Clear out all prior path information.
|
|
47 void CXXBasePaths::clear() {
|
|
48 Paths.clear();
|
|
49 ClassSubobjects.clear();
|
|
50 VisitedDependentRecords.clear();
|
|
51 ScratchPath.clear();
|
|
52 DetectedVirtual = nullptr;
|
|
53 }
|
|
54
|
|
55 /// Swaps the contents of this CXXBasePaths structure with the
|
|
56 /// contents of Other.
|
|
57 void CXXBasePaths::swap(CXXBasePaths &Other) {
|
|
58 std::swap(Origin, Other.Origin);
|
|
59 Paths.swap(Other.Paths);
|
|
60 ClassSubobjects.swap(Other.ClassSubobjects);
|
|
61 VisitedDependentRecords.swap(Other.VisitedDependentRecords);
|
|
62 std::swap(FindAmbiguities, Other.FindAmbiguities);
|
|
63 std::swap(RecordPaths, Other.RecordPaths);
|
|
64 std::swap(DetectVirtual, Other.DetectVirtual);
|
|
65 std::swap(DetectedVirtual, Other.DetectedVirtual);
|
|
66 }
|
|
67
|
|
68 bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base) const {
|
|
69 CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
|
|
70 /*DetectVirtual=*/false);
|
|
71 return isDerivedFrom(Base, Paths);
|
|
72 }
|
|
73
|
|
74 bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base,
|
|
75 CXXBasePaths &Paths) const {
|
|
76 if (getCanonicalDecl() == Base->getCanonicalDecl())
|
|
77 return false;
|
|
78
|
|
79 Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
|
|
80
|
|
81 const CXXRecordDecl *BaseDecl = Base->getCanonicalDecl();
|
|
82 return lookupInBases(
|
|
83 [BaseDecl](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
|
84 return FindBaseClass(Specifier, Path, BaseDecl);
|
|
85 },
|
|
86 Paths);
|
|
87 }
|
|
88
|
|
89 bool CXXRecordDecl::isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const {
|
|
90 if (!getNumVBases())
|
|
91 return false;
|
|
92
|
|
93 CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
|
|
94 /*DetectVirtual=*/false);
|
|
95
|
|
96 if (getCanonicalDecl() == Base->getCanonicalDecl())
|
|
97 return false;
|
|
98
|
|
99 Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
|
|
100
|
|
101 const CXXRecordDecl *BaseDecl = Base->getCanonicalDecl();
|
|
102 return lookupInBases(
|
|
103 [BaseDecl](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
|
104 return FindVirtualBaseClass(Specifier, Path, BaseDecl);
|
|
105 },
|
|
106 Paths);
|
|
107 }
|
|
108
|
|
109 bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const {
|
|
110 const CXXRecordDecl *TargetDecl = Base->getCanonicalDecl();
|
|
111 return forallBases([TargetDecl](const CXXRecordDecl *Base) {
|
|
112 return Base->getCanonicalDecl() != TargetDecl;
|
|
113 });
|
|
114 }
|
|
115
|
|
116 bool
|
|
117 CXXRecordDecl::isCurrentInstantiation(const DeclContext *CurContext) const {
|
|
118 assert(isDependentContext());
|
|
119
|
|
120 for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
|
|
121 if (CurContext->Equals(this))
|
|
122 return true;
|
|
123
|
|
124 return false;
|
|
125 }
|
|
126
|
173
|
127 bool CXXRecordDecl::forallBases(ForallBasesCallback BaseMatches) const {
|
150
|
128 SmallVector<const CXXRecordDecl*, 8> Queue;
|
|
129
|
|
130 const CXXRecordDecl *Record = this;
|
|
131 while (true) {
|
|
132 for (const auto &I : Record->bases()) {
|
|
133 const RecordType *Ty = I.getType()->getAs<RecordType>();
|
173
|
134 if (!Ty)
|
|
135 return false;
|
150
|
136
|
|
137 CXXRecordDecl *Base =
|
|
138 cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition());
|
|
139 if (!Base ||
|
|
140 (Base->isDependentContext() &&
|
|
141 !Base->isCurrentInstantiation(Record))) {
|
173
|
142 return false;
|
150
|
143 }
|
|
144
|
|
145 Queue.push_back(Base);
|
173
|
146 if (!BaseMatches(Base))
|
|
147 return false;
|
150
|
148 }
|
|
149
|
|
150 if (Queue.empty())
|
|
151 break;
|
|
152 Record = Queue.pop_back_val(); // not actually a queue.
|
|
153 }
|
|
154
|
173
|
155 return true;
|
150
|
156 }
|
|
157
|
|
158 bool CXXBasePaths::lookupInBases(ASTContext &Context,
|
|
159 const CXXRecordDecl *Record,
|
|
160 CXXRecordDecl::BaseMatchesCallback BaseMatches,
|
|
161 bool LookupInDependent) {
|
|
162 bool FoundPath = false;
|
|
163
|
|
164 // The access of the path down to this record.
|
|
165 AccessSpecifier AccessToHere = ScratchPath.Access;
|
|
166 bool IsFirstStep = ScratchPath.empty();
|
|
167
|
|
168 for (const auto &BaseSpec : Record->bases()) {
|
|
169 // Find the record of the base class subobjects for this type.
|
|
170 QualType BaseType =
|
|
171 Context.getCanonicalType(BaseSpec.getType()).getUnqualifiedType();
|
|
172
|
|
173 // C++ [temp.dep]p3:
|
|
174 // In the definition of a class template or a member of a class template,
|
|
175 // if a base class of the class template depends on a template-parameter,
|
|
176 // the base class scope is not examined during unqualified name lookup
|
|
177 // either at the point of definition of the class template or member or
|
|
178 // during an instantiation of the class tem- plate or member.
|
|
179 if (!LookupInDependent && BaseType->isDependentType())
|
|
180 continue;
|
|
181
|
|
182 // Determine whether we need to visit this base class at all,
|
|
183 // updating the count of subobjects appropriately.
|
|
184 IsVirtBaseAndNumberNonVirtBases &Subobjects = ClassSubobjects[BaseType];
|
|
185 bool VisitBase = true;
|
|
186 bool SetVirtual = false;
|
|
187 if (BaseSpec.isVirtual()) {
|
|
188 VisitBase = !Subobjects.IsVirtBase;
|
|
189 Subobjects.IsVirtBase = true;
|
|
190 if (isDetectingVirtual() && DetectedVirtual == nullptr) {
|
|
191 // If this is the first virtual we find, remember it. If it turns out
|
|
192 // there is no base path here, we'll reset it later.
|
|
193 DetectedVirtual = BaseType->getAs<RecordType>();
|
|
194 SetVirtual = true;
|
|
195 }
|
|
196 } else {
|
|
197 ++Subobjects.NumberOfNonVirtBases;
|
|
198 }
|
|
199 if (isRecordingPaths()) {
|
|
200 // Add this base specifier to the current path.
|
|
201 CXXBasePathElement Element;
|
|
202 Element.Base = &BaseSpec;
|
|
203 Element.Class = Record;
|
|
204 if (BaseSpec.isVirtual())
|
|
205 Element.SubobjectNumber = 0;
|
|
206 else
|
|
207 Element.SubobjectNumber = Subobjects.NumberOfNonVirtBases;
|
|
208 ScratchPath.push_back(Element);
|
|
209
|
|
210 // Calculate the "top-down" access to this base class.
|
|
211 // The spec actually describes this bottom-up, but top-down is
|
|
212 // equivalent because the definition works out as follows:
|
|
213 // 1. Write down the access along each step in the inheritance
|
|
214 // chain, followed by the access of the decl itself.
|
|
215 // For example, in
|
|
216 // class A { public: int foo; };
|
|
217 // class B : protected A {};
|
|
218 // class C : public B {};
|
|
219 // class D : private C {};
|
|
220 // we would write:
|
|
221 // private public protected public
|
|
222 // 2. If 'private' appears anywhere except far-left, access is denied.
|
|
223 // 3. Otherwise, overall access is determined by the most restrictive
|
|
224 // access in the sequence.
|
|
225 if (IsFirstStep)
|
|
226 ScratchPath.Access = BaseSpec.getAccessSpecifier();
|
|
227 else
|
|
228 ScratchPath.Access = CXXRecordDecl::MergeAccess(AccessToHere,
|
|
229 BaseSpec.getAccessSpecifier());
|
|
230 }
|
|
231
|
|
232 // Track whether there's a path involving this specific base.
|
|
233 bool FoundPathThroughBase = false;
|
|
234
|
|
235 if (BaseMatches(&BaseSpec, ScratchPath)) {
|
|
236 // We've found a path that terminates at this base.
|
|
237 FoundPath = FoundPathThroughBase = true;
|
|
238 if (isRecordingPaths()) {
|
|
239 // We have a path. Make a copy of it before moving on.
|
|
240 Paths.push_back(ScratchPath);
|
|
241 } else if (!isFindingAmbiguities()) {
|
|
242 // We found a path and we don't care about ambiguities;
|
|
243 // return immediately.
|
|
244 return FoundPath;
|
|
245 }
|
|
246 } else if (VisitBase) {
|
|
247 CXXRecordDecl *BaseRecord;
|
|
248 if (LookupInDependent) {
|
|
249 BaseRecord = nullptr;
|
|
250 const TemplateSpecializationType *TST =
|
|
251 BaseSpec.getType()->getAs<TemplateSpecializationType>();
|
|
252 if (!TST) {
|
|
253 if (auto *RT = BaseSpec.getType()->getAs<RecordType>())
|
|
254 BaseRecord = cast<CXXRecordDecl>(RT->getDecl());
|
|
255 } else {
|
|
256 TemplateName TN = TST->getTemplateName();
|
|
257 if (auto *TD =
|
|
258 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()))
|
|
259 BaseRecord = TD->getTemplatedDecl();
|
|
260 }
|
|
261 if (BaseRecord) {
|
|
262 if (!BaseRecord->hasDefinition() ||
|
|
263 VisitedDependentRecords.count(BaseRecord)) {
|
|
264 BaseRecord = nullptr;
|
|
265 } else {
|
|
266 VisitedDependentRecords.insert(BaseRecord);
|
|
267 }
|
|
268 }
|
|
269 } else {
|
|
270 BaseRecord = cast<CXXRecordDecl>(
|
|
271 BaseSpec.getType()->castAs<RecordType>()->getDecl());
|
|
272 }
|
|
273 if (BaseRecord &&
|
|
274 lookupInBases(Context, BaseRecord, BaseMatches, LookupInDependent)) {
|
|
275 // C++ [class.member.lookup]p2:
|
|
276 // A member name f in one sub-object B hides a member name f in
|
|
277 // a sub-object A if A is a base class sub-object of B. Any
|
|
278 // declarations that are so hidden are eliminated from
|
|
279 // consideration.
|
|
280
|
|
281 // There is a path to a base class that meets the criteria. If we're
|
|
282 // not collecting paths or finding ambiguities, we're done.
|
|
283 FoundPath = FoundPathThroughBase = true;
|
|
284 if (!isFindingAmbiguities())
|
|
285 return FoundPath;
|
|
286 }
|
|
287 }
|
|
288
|
|
289 // Pop this base specifier off the current path (if we're
|
|
290 // collecting paths).
|
|
291 if (isRecordingPaths()) {
|
|
292 ScratchPath.pop_back();
|
|
293 }
|
|
294
|
|
295 // If we set a virtual earlier, and this isn't a path, forget it again.
|
|
296 if (SetVirtual && !FoundPathThroughBase) {
|
|
297 DetectedVirtual = nullptr;
|
|
298 }
|
|
299 }
|
|
300
|
|
301 // Reset the scratch path access.
|
|
302 ScratchPath.Access = AccessToHere;
|
|
303
|
|
304 return FoundPath;
|
|
305 }
|
|
306
|
|
307 bool CXXRecordDecl::lookupInBases(BaseMatchesCallback BaseMatches,
|
|
308 CXXBasePaths &Paths,
|
|
309 bool LookupInDependent) const {
|
|
310 // If we didn't find anything, report that.
|
|
311 if (!Paths.lookupInBases(getASTContext(), this, BaseMatches,
|
|
312 LookupInDependent))
|
|
313 return false;
|
|
314
|
|
315 // If we're not recording paths or we won't ever find ambiguities,
|
|
316 // we're done.
|
|
317 if (!Paths.isRecordingPaths() || !Paths.isFindingAmbiguities())
|
|
318 return true;
|
|
319
|
|
320 // C++ [class.member.lookup]p6:
|
|
321 // When virtual base classes are used, a hidden declaration can be
|
|
322 // reached along a path through the sub-object lattice that does
|
|
323 // not pass through the hiding declaration. This is not an
|
|
324 // ambiguity. The identical use with nonvirtual base classes is an
|
|
325 // ambiguity; in that case there is no unique instance of the name
|
|
326 // that hides all the others.
|
|
327 //
|
|
328 // FIXME: This is an O(N^2) algorithm, but DPG doesn't see an easy
|
|
329 // way to make it any faster.
|
|
330 Paths.Paths.remove_if([&Paths](const CXXBasePath &Path) {
|
|
331 for (const CXXBasePathElement &PE : Path) {
|
|
332 if (!PE.Base->isVirtual())
|
|
333 continue;
|
|
334
|
|
335 CXXRecordDecl *VBase = nullptr;
|
|
336 if (const RecordType *Record = PE.Base->getType()->getAs<RecordType>())
|
|
337 VBase = cast<CXXRecordDecl>(Record->getDecl());
|
|
338 if (!VBase)
|
|
339 break;
|
|
340
|
|
341 // The declaration(s) we found along this path were found in a
|
|
342 // subobject of a virtual base. Check whether this virtual
|
|
343 // base is a subobject of any other path; if so, then the
|
|
344 // declaration in this path are hidden by that patch.
|
|
345 for (const CXXBasePath &HidingP : Paths) {
|
|
346 CXXRecordDecl *HidingClass = nullptr;
|
|
347 if (const RecordType *Record =
|
|
348 HidingP.back().Base->getType()->getAs<RecordType>())
|
|
349 HidingClass = cast<CXXRecordDecl>(Record->getDecl());
|
|
350 if (!HidingClass)
|
|
351 break;
|
|
352
|
|
353 if (HidingClass->isVirtuallyDerivedFrom(VBase))
|
|
354 return true;
|
|
355 }
|
|
356 }
|
|
357 return false;
|
|
358 });
|
|
359
|
|
360 return true;
|
|
361 }
|
|
362
|
|
363 bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier,
|
|
364 CXXBasePath &Path,
|
|
365 const CXXRecordDecl *BaseRecord) {
|
|
366 assert(BaseRecord->getCanonicalDecl() == BaseRecord &&
|
|
367 "User data for FindBaseClass is not canonical!");
|
|
368 return Specifier->getType()->castAs<RecordType>()->getDecl()
|
|
369 ->getCanonicalDecl() == BaseRecord;
|
|
370 }
|
|
371
|
|
372 bool CXXRecordDecl::FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
|
|
373 CXXBasePath &Path,
|
|
374 const CXXRecordDecl *BaseRecord) {
|
|
375 assert(BaseRecord->getCanonicalDecl() == BaseRecord &&
|
|
376 "User data for FindBaseClass is not canonical!");
|
|
377 return Specifier->isVirtual() &&
|
|
378 Specifier->getType()->castAs<RecordType>()->getDecl()
|
|
379 ->getCanonicalDecl() == BaseRecord;
|
|
380 }
|
|
381
|
207
|
382 static bool isOrdinaryMember(const NamedDecl *ND) {
|
|
383 return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag |
|
|
384 Decl::IDNS_Member);
|
|
385 }
|
150
|
386
|
207
|
387 static bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path,
|
|
388 DeclarationName Name) {
|
|
389 Path.Decls = RD->lookup(Name).begin();
|
|
390 for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I)
|
|
391 if (isOrdinaryMember(*I))
|
150
|
392 return true;
|
|
393
|
|
394 return false;
|
|
395 }
|
|
396
|
207
|
397 bool CXXRecordDecl::hasMemberName(DeclarationName Name) const {
|
|
398 CXXBasePath P;
|
|
399 if (findOrdinaryMember(this, P, Name))
|
|
400 return true;
|
150
|
401
|
207
|
402 CXXBasePaths Paths(false, false, false);
|
|
403 return lookupInBases(
|
|
404 [Name](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
|
405 return findOrdinaryMember(Specifier->getType()->getAsCXXRecordDecl(),
|
|
406 Path, Name);
|
|
407 },
|
|
408 Paths);
|
150
|
409 }
|
|
410
|
207
|
411 static bool
|
|
412 findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
|
|
413 CXXBasePath &Path, DeclarationName Name) {
|
150
|
414 const TemplateSpecializationType *TST =
|
|
415 Specifier->getType()->getAs<TemplateSpecializationType>();
|
|
416 if (!TST) {
|
|
417 auto *RT = Specifier->getType()->getAs<RecordType>();
|
|
418 if (!RT)
|
|
419 return false;
|
207
|
420 return findOrdinaryMember(cast<CXXRecordDecl>(RT->getDecl()), Path, Name);
|
150
|
421 }
|
|
422 TemplateName TN = TST->getTemplateName();
|
|
423 const auto *TD = dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
|
|
424 if (!TD)
|
|
425 return false;
|
|
426 CXXRecordDecl *RD = TD->getTemplatedDecl();
|
|
427 if (!RD)
|
|
428 return false;
|
|
429 return findOrdinaryMember(RD, Path, Name);
|
|
430 }
|
|
431
|
|
432 std::vector<const NamedDecl *> CXXRecordDecl::lookupDependentName(
|
207
|
433 DeclarationName Name,
|
150
|
434 llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
|
|
435 std::vector<const NamedDecl *> Results;
|
|
436 // Lookup in the class.
|
207
|
437 bool AnyOrdinaryMembers = false;
|
|
438 for (const NamedDecl *ND : lookup(Name)) {
|
|
439 if (isOrdinaryMember(ND))
|
|
440 AnyOrdinaryMembers = true;
|
|
441 if (Filter(ND))
|
|
442 Results.push_back(ND);
|
|
443 }
|
|
444 if (AnyOrdinaryMembers)
|
150
|
445 return Results;
|
207
|
446
|
150
|
447 // Perform lookup into our base classes.
|
|
448 CXXBasePaths Paths;
|
|
449 Paths.setOrigin(this);
|
|
450 if (!lookupInBases(
|
|
451 [&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
|
207
|
452 return findOrdinaryMemberInDependentClasses(Specifier, Path, Name);
|
150
|
453 },
|
|
454 Paths, /*LookupInDependent=*/true))
|
|
455 return Results;
|
207
|
456 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
|
|
457 I != E; ++I) {
|
|
458 if (isOrdinaryMember(*I) && Filter(*I))
|
|
459 Results.push_back(*I);
|
150
|
460 }
|
|
461 return Results;
|
|
462 }
|
|
463
|
|
464 void OverridingMethods::add(unsigned OverriddenSubobject,
|
|
465 UniqueVirtualMethod Overriding) {
|
|
466 SmallVectorImpl<UniqueVirtualMethod> &SubobjectOverrides
|
|
467 = Overrides[OverriddenSubobject];
|
|
468 if (llvm::find(SubobjectOverrides, Overriding) == SubobjectOverrides.end())
|
|
469 SubobjectOverrides.push_back(Overriding);
|
|
470 }
|
|
471
|
|
472 void OverridingMethods::add(const OverridingMethods &Other) {
|
|
473 for (const_iterator I = Other.begin(), IE = Other.end(); I != IE; ++I) {
|
|
474 for (overriding_const_iterator M = I->second.begin(),
|
|
475 MEnd = I->second.end();
|
|
476 M != MEnd;
|
|
477 ++M)
|
|
478 add(I->first, *M);
|
|
479 }
|
|
480 }
|
|
481
|
|
482 void OverridingMethods::replaceAll(UniqueVirtualMethod Overriding) {
|
|
483 for (iterator I = begin(), IEnd = end(); I != IEnd; ++I) {
|
|
484 I->second.clear();
|
|
485 I->second.push_back(Overriding);
|
|
486 }
|
|
487 }
|
|
488
|
|
489 namespace {
|
|
490
|
|
491 class FinalOverriderCollector {
|
|
492 /// The number of subobjects of a given class type that
|
|
493 /// occur within the class hierarchy.
|
|
494 llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCount;
|
|
495
|
|
496 /// Overriders for each virtual base subobject.
|
|
497 llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *> VirtualOverriders;
|
|
498
|
|
499 CXXFinalOverriderMap FinalOverriders;
|
|
500
|
|
501 public:
|
|
502 ~FinalOverriderCollector();
|
|
503
|
|
504 void Collect(const CXXRecordDecl *RD, bool VirtualBase,
|
|
505 const CXXRecordDecl *InVirtualSubobject,
|
|
506 CXXFinalOverriderMap &Overriders);
|
|
507 };
|
|
508
|
|
509 } // namespace
|
|
510
|
|
511 void FinalOverriderCollector::Collect(const CXXRecordDecl *RD,
|
|
512 bool VirtualBase,
|
|
513 const CXXRecordDecl *InVirtualSubobject,
|
|
514 CXXFinalOverriderMap &Overriders) {
|
|
515 unsigned SubobjectNumber = 0;
|
|
516 if (!VirtualBase)
|
|
517 SubobjectNumber
|
|
518 = ++SubobjectCount[cast<CXXRecordDecl>(RD->getCanonicalDecl())];
|
|
519
|
|
520 for (const auto &Base : RD->bases()) {
|
|
521 if (const RecordType *RT = Base.getType()->getAs<RecordType>()) {
|
|
522 const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
523 if (!BaseDecl->isPolymorphic())
|
|
524 continue;
|
|
525
|
|
526 if (Overriders.empty() && !Base.isVirtual()) {
|
|
527 // There are no other overriders of virtual member functions,
|
|
528 // so let the base class fill in our overriders for us.
|
|
529 Collect(BaseDecl, false, InVirtualSubobject, Overriders);
|
|
530 continue;
|
|
531 }
|
|
532
|
|
533 // Collect all of the overridders from the base class subobject
|
|
534 // and merge them into the set of overridders for this class.
|
|
535 // For virtual base classes, populate or use the cached virtual
|
|
536 // overrides so that we do not walk the virtual base class (and
|
|
537 // its base classes) more than once.
|
|
538 CXXFinalOverriderMap ComputedBaseOverriders;
|
|
539 CXXFinalOverriderMap *BaseOverriders = &ComputedBaseOverriders;
|
|
540 if (Base.isVirtual()) {
|
|
541 CXXFinalOverriderMap *&MyVirtualOverriders = VirtualOverriders[BaseDecl];
|
|
542 BaseOverriders = MyVirtualOverriders;
|
|
543 if (!MyVirtualOverriders) {
|
|
544 MyVirtualOverriders = new CXXFinalOverriderMap;
|
|
545
|
|
546 // Collect may cause VirtualOverriders to reallocate, invalidating the
|
|
547 // MyVirtualOverriders reference. Set BaseOverriders to the right
|
|
548 // value now.
|
|
549 BaseOverriders = MyVirtualOverriders;
|
|
550
|
|
551 Collect(BaseDecl, true, BaseDecl, *MyVirtualOverriders);
|
|
552 }
|
|
553 } else
|
|
554 Collect(BaseDecl, false, InVirtualSubobject, ComputedBaseOverriders);
|
|
555
|
|
556 // Merge the overriders from this base class into our own set of
|
|
557 // overriders.
|
|
558 for (CXXFinalOverriderMap::iterator OM = BaseOverriders->begin(),
|
|
559 OMEnd = BaseOverriders->end();
|
|
560 OM != OMEnd;
|
|
561 ++OM) {
|
|
562 const CXXMethodDecl *CanonOM = OM->first->getCanonicalDecl();
|
|
563 Overriders[CanonOM].add(OM->second);
|
|
564 }
|
|
565 }
|
|
566 }
|
|
567
|
|
568 for (auto *M : RD->methods()) {
|
|
569 // We only care about virtual methods.
|
|
570 if (!M->isVirtual())
|
|
571 continue;
|
|
572
|
|
573 CXXMethodDecl *CanonM = M->getCanonicalDecl();
|
|
574 using OverriddenMethodsRange =
|
|
575 llvm::iterator_range<CXXMethodDecl::method_iterator>;
|
|
576 OverriddenMethodsRange OverriddenMethods = CanonM->overridden_methods();
|
|
577
|
|
578 if (OverriddenMethods.begin() == OverriddenMethods.end()) {
|
|
579 // This is a new virtual function that does not override any
|
|
580 // other virtual function. Add it to the map of virtual
|
|
581 // functions for which we are tracking overridders.
|
|
582
|
|
583 // C++ [class.virtual]p2:
|
|
584 // For convenience we say that any virtual function overrides itself.
|
|
585 Overriders[CanonM].add(SubobjectNumber,
|
|
586 UniqueVirtualMethod(CanonM, SubobjectNumber,
|
|
587 InVirtualSubobject));
|
|
588 continue;
|
|
589 }
|
|
590
|
|
591 // This virtual method overrides other virtual methods, so it does
|
|
592 // not add any new slots into the set of overriders. Instead, we
|
|
593 // replace entries in the set of overriders with the new
|
|
594 // overrider. To do so, we dig down to the original virtual
|
|
595 // functions using data recursion and update all of the methods it
|
|
596 // overrides.
|
|
597 SmallVector<OverriddenMethodsRange, 4> Stack(1, OverriddenMethods);
|
|
598 while (!Stack.empty()) {
|
|
599 for (const CXXMethodDecl *OM : Stack.pop_back_val()) {
|
|
600 const CXXMethodDecl *CanonOM = OM->getCanonicalDecl();
|
|
601
|
|
602 // C++ [class.virtual]p2:
|
|
603 // A virtual member function C::vf of a class object S is
|
|
604 // a final overrider unless the most derived class (1.8)
|
|
605 // of which S is a base class subobject (if any) declares
|
|
606 // or inherits another member function that overrides vf.
|
|
607 //
|
|
608 // Treating this object like the most derived class, we
|
|
609 // replace any overrides from base classes with this
|
|
610 // overriding virtual function.
|
|
611 Overriders[CanonOM].replaceAll(
|
|
612 UniqueVirtualMethod(CanonM, SubobjectNumber,
|
|
613 InVirtualSubobject));
|
|
614
|
|
615 auto OverriddenMethods = CanonOM->overridden_methods();
|
|
616 if (OverriddenMethods.begin() == OverriddenMethods.end())
|
|
617 continue;
|
|
618
|
|
619 // Continue recursion to the methods that this virtual method
|
|
620 // overrides.
|
|
621 Stack.push_back(OverriddenMethods);
|
|
622 }
|
|
623 }
|
|
624
|
|
625 // C++ [class.virtual]p2:
|
|
626 // For convenience we say that any virtual function overrides itself.
|
|
627 Overriders[CanonM].add(SubobjectNumber,
|
|
628 UniqueVirtualMethod(CanonM, SubobjectNumber,
|
|
629 InVirtualSubobject));
|
|
630 }
|
|
631 }
|
|
632
|
|
633 FinalOverriderCollector::~FinalOverriderCollector() {
|
|
634 for (llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *>::iterator
|
|
635 VO = VirtualOverriders.begin(), VOEnd = VirtualOverriders.end();
|
|
636 VO != VOEnd;
|
|
637 ++VO)
|
|
638 delete VO->second;
|
|
639 }
|
|
640
|
|
641 void
|
|
642 CXXRecordDecl::getFinalOverriders(CXXFinalOverriderMap &FinalOverriders) const {
|
|
643 FinalOverriderCollector Collector;
|
|
644 Collector.Collect(this, false, nullptr, FinalOverriders);
|
|
645
|
|
646 // Weed out any final overriders that come from virtual base class
|
|
647 // subobjects that were hidden by other subobjects along any path.
|
|
648 // This is the final-overrider variant of C++ [class.member.lookup]p10.
|
|
649 for (auto &OM : FinalOverriders) {
|
|
650 for (auto &SO : OM.second) {
|
|
651 SmallVectorImpl<UniqueVirtualMethod> &Overriding = SO.second;
|
|
652 if (Overriding.size() < 2)
|
|
653 continue;
|
|
654
|
|
655 auto IsHidden = [&Overriding](const UniqueVirtualMethod &M) {
|
|
656 if (!M.InVirtualSubobject)
|
|
657 return false;
|
|
658
|
|
659 // We have an overriding method in a virtual base class
|
|
660 // subobject (or non-virtual base class subobject thereof);
|
|
661 // determine whether there exists an other overriding method
|
|
662 // in a base class subobject that hides the virtual base class
|
|
663 // subobject.
|
|
664 for (const UniqueVirtualMethod &OP : Overriding)
|
|
665 if (&M != &OP &&
|
|
666 OP.Method->getParent()->isVirtuallyDerivedFrom(
|
|
667 M.InVirtualSubobject))
|
|
668 return true;
|
|
669 return false;
|
|
670 };
|
|
671
|
|
672 // FIXME: IsHidden reads from Overriding from the middle of a remove_if
|
|
673 // over the same sequence! Is this guaranteed to work?
|
|
674 Overriding.erase(
|
|
675 std::remove_if(Overriding.begin(), Overriding.end(), IsHidden),
|
|
676 Overriding.end());
|
|
677 }
|
|
678 }
|
|
679 }
|
|
680
|
|
681 static void
|
|
682 AddIndirectPrimaryBases(const CXXRecordDecl *RD, ASTContext &Context,
|
|
683 CXXIndirectPrimaryBaseSet& Bases) {
|
|
684 // If the record has a virtual primary base class, add it to our set.
|
|
685 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
686 if (Layout.isPrimaryBaseVirtual())
|
|
687 Bases.insert(Layout.getPrimaryBase());
|
|
688
|
|
689 for (const auto &I : RD->bases()) {
|
|
690 assert(!I.getType()->isDependentType() &&
|
|
691 "Cannot get indirect primary bases for class with dependent bases.");
|
|
692
|
|
693 const CXXRecordDecl *BaseDecl =
|
|
694 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
695
|
|
696 // Only bases with virtual bases participate in computing the
|
|
697 // indirect primary virtual base classes.
|
|
698 if (BaseDecl->getNumVBases())
|
|
699 AddIndirectPrimaryBases(BaseDecl, Context, Bases);
|
|
700 }
|
|
701
|
|
702 }
|
|
703
|
|
704 void
|
|
705 CXXRecordDecl::getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const {
|
|
706 ASTContext &Context = getASTContext();
|
|
707
|
|
708 if (!getNumVBases())
|
|
709 return;
|
|
710
|
|
711 for (const auto &I : bases()) {
|
|
712 assert(!I.getType()->isDependentType() &&
|
|
713 "Cannot get indirect primary bases for class with dependent bases.");
|
|
714
|
|
715 const CXXRecordDecl *BaseDecl =
|
|
716 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
717
|
|
718 // Only bases with virtual bases participate in computing the
|
|
719 // indirect primary virtual base classes.
|
|
720 if (BaseDecl->getNumVBases())
|
|
721 AddIndirectPrimaryBases(BaseDecl, Context, Bases);
|
|
722 }
|
|
723 }
|