121
|
1 //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
|
120
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // This file implements a MachineFunctionPass that inserts the appropriate
|
|
11 // XRay instrumentation instructions. We look for XRay-specific attributes
|
|
12 // on the function to determine whether we should insert the replacement
|
|
13 // operations.
|
|
14 //
|
|
15 //===---------------------------------------------------------------------===//
|
|
16
|
121
|
17 #include "llvm/ADT/STLExtras.h"
|
|
18 #include "llvm/ADT/SmallVector.h"
|
|
19 #include "llvm/ADT/Triple.h"
|
|
20 #include "llvm/CodeGen/MachineBasicBlock.h"
|
|
21 #include "llvm/CodeGen/MachineDominators.h"
|
120
|
22 #include "llvm/CodeGen/MachineFunction.h"
|
|
23 #include "llvm/CodeGen/MachineFunctionPass.h"
|
|
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
|
121
|
25 #include "llvm/CodeGen/MachineLoopInfo.h"
|
134
|
26 #include "llvm/CodeGen/TargetInstrInfo.h"
|
|
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
|
121
|
28 #include "llvm/IR/Attributes.h"
|
|
29 #include "llvm/IR/Function.h"
|
|
30 #include "llvm/Pass.h"
|
|
31 #include "llvm/Target/TargetMachine.h"
|
120
|
32
|
|
33 using namespace llvm;
|
|
34
|
|
35 namespace {
|
121
|
36
|
|
37 struct InstrumentationOptions {
|
|
38 // Whether to emit PATCHABLE_TAIL_CALL.
|
|
39 bool HandleTailcall;
|
|
40
|
|
41 // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
|
|
42 // return, e.g. conditional return.
|
|
43 bool HandleAllReturns;
|
|
44 };
|
|
45
|
120
|
46 struct XRayInstrumentation : public MachineFunctionPass {
|
|
47 static char ID;
|
|
48
|
|
49 XRayInstrumentation() : MachineFunctionPass(ID) {
|
|
50 initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
|
|
51 }
|
|
52
|
121
|
53 void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
54 AU.setPreservesCFG();
|
|
55 AU.addRequired<MachineLoopInfo>();
|
|
56 AU.addPreserved<MachineLoopInfo>();
|
|
57 AU.addPreserved<MachineDominatorTree>();
|
|
58 MachineFunctionPass::getAnalysisUsage(AU);
|
|
59 }
|
|
60
|
120
|
61 bool runOnMachineFunction(MachineFunction &MF) override;
|
|
62
|
|
63 private:
|
|
64 // Replace the original RET instruction with the exit sled code ("patchable
|
|
65 // ret" pseudo-instruction), so that at runtime XRay can replace the sled
|
|
66 // with a code jumping to XRay trampoline, which calls the tracing handler
|
|
67 // and, in the end, issues the RET instruction.
|
|
68 // This is the approach to go on CPUs which have a single RET instruction,
|
|
69 // like x86/x86_64.
|
|
70 void replaceRetWithPatchableRet(MachineFunction &MF,
|
121
|
71 const TargetInstrInfo *TII,
|
|
72 InstrumentationOptions);
|
120
|
73
|
|
74 // Prepend the original return instruction with the exit sled code ("patchable
|
|
75 // function exit" pseudo-instruction), preserving the original return
|
|
76 // instruction just after the exit sled code.
|
|
77 // This is the approach to go on CPUs which have multiple options for the
|
|
78 // return instruction, like ARM. For such CPUs we can't just jump into the
|
|
79 // XRay trampoline and issue a single return instruction there. We rather
|
|
80 // have to call the trampoline and return from it to the original return
|
|
81 // instruction of the function being instrumented.
|
|
82 void prependRetWithPatchableExit(MachineFunction &MF,
|
121
|
83 const TargetInstrInfo *TII,
|
|
84 InstrumentationOptions);
|
120
|
85 };
|
|
86
|
121
|
87 } // end anonymous namespace
|
|
88
|
|
89 void XRayInstrumentation::replaceRetWithPatchableRet(
|
|
90 MachineFunction &MF, const TargetInstrInfo *TII,
|
|
91 InstrumentationOptions op) {
|
120
|
92 // We look for *all* terminators and returns, then replace those with
|
|
93 // PATCHABLE_RET instructions.
|
|
94 SmallVector<MachineInstr *, 4> Terminators;
|
|
95 for (auto &MBB : MF) {
|
|
96 for (auto &T : MBB.terminators()) {
|
|
97 unsigned Opc = 0;
|
121
|
98 if (T.isReturn() &&
|
|
99 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
120
|
100 // Replace return instructions with:
|
|
101 // PATCHABLE_RET <Opcode>, <Operand>...
|
|
102 Opc = TargetOpcode::PATCHABLE_RET;
|
|
103 }
|
121
|
104 if (TII->isTailCall(T) && op.HandleTailcall) {
|
120
|
105 // Treat the tail call as a return instruction, which has a
|
|
106 // different-looking sled than the normal return case.
|
|
107 Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
108 }
|
|
109 if (Opc != 0) {
|
|
110 auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
|
|
111 .addImm(T.getOpcode());
|
|
112 for (auto &MO : T.operands())
|
121
|
113 MIB.add(MO);
|
120
|
114 Terminators.push_back(&T);
|
|
115 }
|
|
116 }
|
|
117 }
|
|
118
|
|
119 for (auto &I : Terminators)
|
|
120 I->eraseFromParent();
|
|
121 }
|
|
122
|
121
|
123 void XRayInstrumentation::prependRetWithPatchableExit(
|
|
124 MachineFunction &MF, const TargetInstrInfo *TII,
|
|
125 InstrumentationOptions op) {
|
|
126 for (auto &MBB : MF)
|
120
|
127 for (auto &T : MBB.terminators()) {
|
|
128 unsigned Opc = 0;
|
121
|
129 if (T.isReturn() &&
|
|
130 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
120
|
131 Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
|
|
132 }
|
121
|
133 if (TII->isTailCall(T) && op.HandleTailcall) {
|
120
|
134 Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
135 }
|
|
136 if (Opc != 0) {
|
|
137 // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
|
|
138 // PATCHABLE_TAIL_CALL .
|
121
|
139 BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
|
120
|
140 }
|
|
141 }
|
|
142 }
|
|
143
|
|
144 bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
|
134
|
145 auto &F = MF.getFunction();
|
120
|
146 auto InstrAttr = F.getFnAttribute("function-instrument");
|
|
147 bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) &&
|
|
148 InstrAttr.isStringAttribute() &&
|
|
149 InstrAttr.getValueAsString() == "xray-always";
|
|
150 Attribute Attr = F.getFnAttribute("xray-instruction-threshold");
|
|
151 unsigned XRayThreshold = 0;
|
|
152 if (!AlwaysInstrument) {
|
|
153 if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute())
|
|
154 return false; // XRay threshold attribute not found.
|
|
155 if (Attr.getValueAsString().getAsInteger(10, XRayThreshold))
|
|
156 return false; // Invalid value for threshold.
|
121
|
157
|
|
158 // Count the number of MachineInstr`s in MachineFunction
|
|
159 int64_t MICount = 0;
|
|
160 for (const auto &MBB : MF)
|
|
161 MICount += MBB.size();
|
|
162
|
|
163 // Check if we have a loop.
|
|
164 // FIXME: Maybe make this smarter, and see whether the loops are dependent
|
|
165 // on inputs or side-effects?
|
|
166 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
|
|
167 if (MLI.empty() && MICount < XRayThreshold)
|
|
168 return false; // Function is too small and has no loops.
|
120
|
169 }
|
|
170
|
121
|
171 // We look for the first non-empty MachineBasicBlock, so that we can insert
|
|
172 // the function instrumentation in the appropriate place.
|
|
173 auto MBI = llvm::find_if(
|
|
174 MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
|
|
175 if (MBI == MF.end())
|
|
176 return false; // The function is empty.
|
|
177
|
|
178 auto *TII = MF.getSubtarget().getInstrInfo();
|
|
179 auto &FirstMBB = *MBI;
|
120
|
180 auto &FirstMI = *FirstMBB.begin();
|
|
181
|
|
182 if (!MF.getSubtarget().isXRaySupported()) {
|
|
183 FirstMI.emitError("An attempt to perform XRay instrumentation for an"
|
121
|
184 " unsupported target.");
|
120
|
185 return false;
|
|
186 }
|
|
187
|
|
188 // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
|
|
189 // MachineFunction.
|
|
190 BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
|
|
191 TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
|
|
192
|
|
193 switch (MF.getTarget().getTargetTriple().getArch()) {
|
|
194 case Triple::ArchType::arm:
|
|
195 case Triple::ArchType::thumb:
|
|
196 case Triple::ArchType::aarch64:
|
121
|
197 case Triple::ArchType::mips:
|
|
198 case Triple::ArchType::mipsel:
|
|
199 case Triple::ArchType::mips64:
|
|
200 case Triple::ArchType::mips64el: {
|
120
|
201 // For the architectures which don't have a single return instruction
|
121
|
202 InstrumentationOptions op;
|
|
203 op.HandleTailcall = false;
|
|
204 op.HandleAllReturns = true;
|
|
205 prependRetWithPatchableExit(MF, TII, op);
|
120
|
206 break;
|
121
|
207 }
|
|
208 case Triple::ArchType::ppc64le: {
|
|
209 // PPC has conditional returns. Turn them into branch and plain returns.
|
|
210 InstrumentationOptions op;
|
|
211 op.HandleTailcall = false;
|
|
212 op.HandleAllReturns = true;
|
|
213 replaceRetWithPatchableRet(MF, TII, op);
|
|
214 break;
|
|
215 }
|
|
216 default: {
|
120
|
217 // For the architectures that have a single return instruction (such as
|
|
218 // RETQ on x86_64).
|
121
|
219 InstrumentationOptions op;
|
|
220 op.HandleTailcall = true;
|
|
221 op.HandleAllReturns = false;
|
|
222 replaceRetWithPatchableRet(MF, TII, op);
|
120
|
223 break;
|
|
224 }
|
121
|
225 }
|
120
|
226 return true;
|
|
227 }
|
|
228
|
|
229 char XRayInstrumentation::ID = 0;
|
|
230 char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
|
121
|
231 INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
|
|
232 "Insert XRay ops", false, false)
|
|
233 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
234 INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
|
|
235 "Insert XRay ops", false, false)
|