83
|
1 //===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // This file contains the custom lowering code required by the shadow-stack GC
|
100
|
11 // strategy.
|
|
12 //
|
|
13 // This pass implements the code transformation described in this paper:
|
|
14 // "Accurate Garbage Collection in an Uncooperative Environment"
|
|
15 // Fergus Henderson, ISMM, 2002
|
83
|
16 //
|
|
17 //===----------------------------------------------------------------------===//
|
|
18
|
|
19 #include "llvm/CodeGen/Passes.h"
|
|
20 #include "llvm/ADT/StringExtras.h"
|
|
21 #include "llvm/CodeGen/GCStrategy.h"
|
|
22 #include "llvm/IR/CallSite.h"
|
|
23 #include "llvm/IR/IRBuilder.h"
|
|
24 #include "llvm/IR/IntrinsicInst.h"
|
|
25 #include "llvm/IR/Module.h"
|
|
26
|
|
27 using namespace llvm;
|
|
28
|
|
29 #define DEBUG_TYPE "shadowstackgclowering"
|
|
30
|
|
31 namespace {
|
|
32
|
|
33 class ShadowStackGCLowering : public FunctionPass {
|
|
34 /// RootChain - This is the global linked-list that contains the chain of GC
|
|
35 /// roots.
|
|
36 GlobalVariable *Head;
|
|
37
|
|
38 /// StackEntryTy - Abstract type of a link in the shadow stack.
|
|
39 ///
|
|
40 StructType *StackEntryTy;
|
|
41 StructType *FrameMapTy;
|
|
42
|
|
43 /// Roots - GC roots in the current function. Each is a pair of the
|
|
44 /// intrinsic call and its corresponding alloca.
|
|
45 std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
|
|
46
|
|
47 public:
|
|
48 static char ID;
|
|
49 ShadowStackGCLowering();
|
|
50
|
|
51 bool doInitialization(Module &M) override;
|
|
52 bool runOnFunction(Function &F) override;
|
|
53
|
|
54 private:
|
|
55 bool IsNullValue(Value *V);
|
|
56 Constant *GetFrameMap(Function &F);
|
|
57 Type *GetConcreteStackEntryType(Function &F);
|
|
58 void CollectRoots(Function &F);
|
|
59 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
|
95
|
60 Type *Ty, Value *BasePtr, int Idx1,
|
83
|
61 const char *Name);
|
|
62 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
|
95
|
63 Type *Ty, Value *BasePtr, int Idx1, int Idx2,
|
83
|
64 const char *Name);
|
|
65 };
|
|
66 }
|
|
67
|
|
68 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering",
|
|
69 "Shadow Stack GC Lowering", false, false)
|
|
70 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
|
|
71 INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering",
|
|
72 "Shadow Stack GC Lowering", false, false)
|
|
73
|
|
74 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
|
|
75
|
|
76 char ShadowStackGCLowering::ID = 0;
|
|
77
|
|
78 ShadowStackGCLowering::ShadowStackGCLowering()
|
|
79 : FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr),
|
|
80 FrameMapTy(nullptr) {
|
|
81 initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
|
|
82 }
|
|
83
|
|
84 namespace {
|
|
85 /// EscapeEnumerator - This is a little algorithm to find all escape points
|
|
86 /// from a function so that "finally"-style code can be inserted. In addition
|
|
87 /// to finding the existing return and unwind instructions, it also (if
|
|
88 /// necessary) transforms any call instructions into invokes and sends them to
|
|
89 /// a landing pad.
|
|
90 ///
|
|
91 /// It's wrapped up in a state machine using the same transform C# uses for
|
|
92 /// 'yield return' enumerators, This transform allows it to be non-allocating.
|
|
93 class EscapeEnumerator {
|
|
94 Function &F;
|
|
95 const char *CleanupBBName;
|
|
96
|
|
97 // State.
|
|
98 int State;
|
|
99 Function::iterator StateBB, StateE;
|
|
100 IRBuilder<> Builder;
|
|
101
|
|
102 public:
|
|
103 EscapeEnumerator(Function &F, const char *N = "cleanup")
|
|
104 : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
|
|
105
|
|
106 IRBuilder<> *Next() {
|
|
107 switch (State) {
|
|
108 default:
|
|
109 return nullptr;
|
|
110
|
|
111 case 0:
|
|
112 StateBB = F.begin();
|
|
113 StateE = F.end();
|
|
114 State = 1;
|
|
115
|
|
116 case 1:
|
|
117 // Find all 'return', 'resume', and 'unwind' instructions.
|
|
118 while (StateBB != StateE) {
|
95
|
119 BasicBlock *CurBB = &*StateBB++;
|
83
|
120
|
|
121 // Branches and invokes do not escape, only unwind, resume, and return
|
|
122 // do.
|
|
123 TerminatorInst *TI = CurBB->getTerminator();
|
|
124 if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
|
|
125 continue;
|
|
126
|
95
|
127 Builder.SetInsertPoint(TI);
|
83
|
128 return &Builder;
|
|
129 }
|
|
130
|
|
131 State = 2;
|
|
132
|
|
133 // Find all 'call' instructions.
|
|
134 SmallVector<Instruction *, 16> Calls;
|
|
135 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
136 for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
|
|
137 ++II)
|
|
138 if (CallInst *CI = dyn_cast<CallInst>(II))
|
|
139 if (!CI->getCalledFunction() ||
|
|
140 !CI->getCalledFunction()->getIntrinsicID())
|
|
141 Calls.push_back(CI);
|
|
142
|
|
143 if (Calls.empty())
|
|
144 return nullptr;
|
|
145
|
|
146 // Create a cleanup block.
|
|
147 LLVMContext &C = F.getContext();
|
|
148 BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
|
|
149 Type *ExnTy =
|
|
150 StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
|
95
|
151 if (!F.hasPersonalityFn()) {
|
|
152 Constant *PersFn = F.getParent()->getOrInsertFunction(
|
|
153 "__gcc_personality_v0",
|
|
154 FunctionType::get(Type::getInt32Ty(C), true));
|
|
155 F.setPersonalityFn(PersFn);
|
|
156 }
|
83
|
157 LandingPadInst *LPad =
|
95
|
158 LandingPadInst::Create(ExnTy, 1, "cleanup.lpad", CleanupBB);
|
83
|
159 LPad->setCleanup(true);
|
|
160 ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
|
|
161
|
|
162 // Transform the 'call' instructions into 'invoke's branching to the
|
|
163 // cleanup block. Go in reverse order to make prettier BB names.
|
|
164 SmallVector<Value *, 16> Args;
|
|
165 for (unsigned I = Calls.size(); I != 0;) {
|
|
166 CallInst *CI = cast<CallInst>(Calls[--I]);
|
|
167
|
|
168 // Split the basic block containing the function call.
|
|
169 BasicBlock *CallBB = CI->getParent();
|
95
|
170 BasicBlock *NewBB = CallBB->splitBasicBlock(
|
|
171 CI->getIterator(), CallBB->getName() + ".cont");
|
83
|
172
|
|
173 // Remove the unconditional branch inserted at the end of CallBB.
|
|
174 CallBB->getInstList().pop_back();
|
|
175 NewBB->getInstList().remove(CI);
|
|
176
|
|
177 // Create a new invoke instruction.
|
|
178 Args.clear();
|
|
179 CallSite CS(CI);
|
|
180 Args.append(CS.arg_begin(), CS.arg_end());
|
|
181
|
|
182 InvokeInst *II =
|
|
183 InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
|
|
184 CI->getName(), CallBB);
|
|
185 II->setCallingConv(CI->getCallingConv());
|
|
186 II->setAttributes(CI->getAttributes());
|
|
187 CI->replaceAllUsesWith(II);
|
|
188 delete CI;
|
|
189 }
|
|
190
|
95
|
191 Builder.SetInsertPoint(RI);
|
83
|
192 return &Builder;
|
|
193 }
|
|
194 }
|
|
195 };
|
|
196 }
|
|
197
|
|
198
|
|
199 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
|
|
200 // doInitialization creates the abstract type of this value.
|
|
201 Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
|
|
202
|
|
203 // Truncate the ShadowStackDescriptor if some metadata is null.
|
|
204 unsigned NumMeta = 0;
|
|
205 SmallVector<Constant *, 16> Metadata;
|
|
206 for (unsigned I = 0; I != Roots.size(); ++I) {
|
|
207 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
|
|
208 if (!C->isNullValue())
|
|
209 NumMeta = I + 1;
|
|
210 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
|
|
211 }
|
|
212 Metadata.resize(NumMeta);
|
|
213
|
|
214 Type *Int32Ty = Type::getInt32Ty(F.getContext());
|
|
215
|
|
216 Constant *BaseElts[] = {
|
|
217 ConstantInt::get(Int32Ty, Roots.size(), false),
|
|
218 ConstantInt::get(Int32Ty, NumMeta, false),
|
|
219 };
|
|
220
|
|
221 Constant *DescriptorElts[] = {
|
|
222 ConstantStruct::get(FrameMapTy, BaseElts),
|
|
223 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
|
|
224
|
|
225 Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
|
|
226 StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
|
|
227
|
|
228 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
|
|
229
|
|
230 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
|
|
231 // that, short of multithreaded LLVM, it should be safe; all that is
|
|
232 // necessary is that a simple Module::iterator loop not be invalidated.
|
|
233 // Appending to the GlobalVariable list is safe in that sense.
|
|
234 //
|
|
235 // All of the output passes emit globals last. The ExecutionEngine
|
|
236 // explicitly supports adding globals to the module after
|
|
237 // initialization.
|
|
238 //
|
|
239 // Still, if it isn't deemed acceptable, then this transformation needs
|
|
240 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
|
|
241 // (which uses a FunctionPassManager (which segfaults (not asserts) if
|
|
242 // provided a ModulePass))).
|
|
243 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
|
|
244 GlobalVariable::InternalLinkage, FrameMap,
|
|
245 "__gc_" + F.getName());
|
|
246
|
|
247 Constant *GEPIndices[2] = {
|
|
248 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
|
|
249 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
|
95
|
250 return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
|
83
|
251 }
|
|
252
|
|
253 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
|
|
254 // doInitialization creates the generic version of this type.
|
|
255 std::vector<Type *> EltTys;
|
|
256 EltTys.push_back(StackEntryTy);
|
|
257 for (size_t I = 0; I != Roots.size(); I++)
|
|
258 EltTys.push_back(Roots[I].second->getAllocatedType());
|
|
259
|
95
|
260 return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
|
83
|
261 }
|
|
262
|
|
263 /// doInitialization - If this module uses the GC intrinsics, find them now. If
|
|
264 /// not, exit fast.
|
|
265 bool ShadowStackGCLowering::doInitialization(Module &M) {
|
|
266 bool Active = false;
|
|
267 for (Function &F : M) {
|
|
268 if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
|
|
269 Active = true;
|
|
270 break;
|
|
271 }
|
|
272 }
|
|
273 if (!Active)
|
|
274 return false;
|
|
275
|
|
276 // struct FrameMap {
|
|
277 // int32_t NumRoots; // Number of roots in stack frame.
|
|
278 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
|
|
279 // void *Meta[]; // May be absent for roots without metadata.
|
|
280 // };
|
|
281 std::vector<Type *> EltTys;
|
|
282 // 32 bits is ok up to a 32GB stack frame. :)
|
|
283 EltTys.push_back(Type::getInt32Ty(M.getContext()));
|
|
284 // Specifies length of variable length array.
|
|
285 EltTys.push_back(Type::getInt32Ty(M.getContext()));
|
|
286 FrameMapTy = StructType::create(EltTys, "gc_map");
|
|
287 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
|
|
288
|
|
289 // struct StackEntry {
|
|
290 // ShadowStackEntry *Next; // Caller's stack entry.
|
|
291 // FrameMap *Map; // Pointer to constant FrameMap.
|
|
292 // void *Roots[]; // Stack roots (in-place array, so we pretend).
|
|
293 // };
|
|
294
|
|
295 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
|
|
296
|
|
297 EltTys.clear();
|
|
298 EltTys.push_back(PointerType::getUnqual(StackEntryTy));
|
|
299 EltTys.push_back(FrameMapPtrTy);
|
|
300 StackEntryTy->setBody(EltTys);
|
|
301 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
|
|
302
|
|
303 // Get the root chain if it already exists.
|
|
304 Head = M.getGlobalVariable("llvm_gc_root_chain");
|
|
305 if (!Head) {
|
|
306 // If the root chain does not exist, insert a new one with linkonce
|
|
307 // linkage!
|
|
308 Head = new GlobalVariable(
|
|
309 M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
|
|
310 Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
|
|
311 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
|
|
312 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
|
|
313 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
|
|
314 }
|
|
315
|
|
316 return true;
|
|
317 }
|
|
318
|
|
319 bool ShadowStackGCLowering::IsNullValue(Value *V) {
|
|
320 if (Constant *C = dyn_cast<Constant>(V))
|
|
321 return C->isNullValue();
|
|
322 return false;
|
|
323 }
|
|
324
|
|
325 void ShadowStackGCLowering::CollectRoots(Function &F) {
|
|
326 // FIXME: Account for original alignment. Could fragment the root array.
|
|
327 // Approach 1: Null initialize empty slots at runtime. Yuck.
|
|
328 // Approach 2: Emit a map of the array instead of just a count.
|
|
329
|
|
330 assert(Roots.empty() && "Not cleaned up?");
|
|
331
|
|
332 SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
|
|
333
|
|
334 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
335 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
|
|
336 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
|
|
337 if (Function *F = CI->getCalledFunction())
|
|
338 if (F->getIntrinsicID() == Intrinsic::gcroot) {
|
|
339 std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
|
|
340 CI,
|
|
341 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
|
|
342 if (IsNullValue(CI->getArgOperand(1)))
|
|
343 Roots.push_back(Pair);
|
|
344 else
|
|
345 MetaRoots.push_back(Pair);
|
|
346 }
|
|
347
|
|
348 // Number roots with metadata (usually empty) at the beginning, so that the
|
|
349 // FrameMap::Meta array can be elided.
|
|
350 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
|
|
351 }
|
|
352
|
|
353 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
|
95
|
354 IRBuilder<> &B, Type *Ty,
|
|
355 Value *BasePtr, int Idx,
|
|
356 int Idx2,
|
|
357 const char *Name) {
|
83
|
358 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
|
|
359 ConstantInt::get(Type::getInt32Ty(Context), Idx),
|
|
360 ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
|
95
|
361 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
|
83
|
362
|
|
363 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
|
|
364
|
|
365 return dyn_cast<GetElementPtrInst>(Val);
|
|
366 }
|
|
367
|
|
368 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
|
95
|
369 IRBuilder<> &B, Type *Ty, Value *BasePtr,
|
83
|
370 int Idx, const char *Name) {
|
|
371 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
|
|
372 ConstantInt::get(Type::getInt32Ty(Context), Idx)};
|
95
|
373 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
|
83
|
374
|
|
375 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
|
|
376
|
|
377 return dyn_cast<GetElementPtrInst>(Val);
|
|
378 }
|
|
379
|
|
380 /// runOnFunction - Insert code to maintain the shadow stack.
|
|
381 bool ShadowStackGCLowering::runOnFunction(Function &F) {
|
|
382 // Quick exit for functions that do not use the shadow stack GC.
|
|
383 if (!F.hasGC() ||
|
|
384 F.getGC() != std::string("shadow-stack"))
|
|
385 return false;
|
|
386
|
|
387 LLVMContext &Context = F.getContext();
|
|
388
|
|
389 // Find calls to llvm.gcroot.
|
|
390 CollectRoots(F);
|
|
391
|
|
392 // If there are no roots in this function, then there is no need to add a
|
|
393 // stack map entry for it.
|
|
394 if (Roots.empty())
|
|
395 return false;
|
|
396
|
|
397 // Build the constant map and figure the type of the shadow stack entry.
|
|
398 Value *FrameMap = GetFrameMap(F);
|
|
399 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
|
|
400
|
|
401 // Build the shadow stack entry at the very start of the function.
|
|
402 BasicBlock::iterator IP = F.getEntryBlock().begin();
|
|
403 IRBuilder<> AtEntry(IP->getParent(), IP);
|
|
404
|
|
405 Instruction *StackEntry =
|
|
406 AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
|
|
407
|
|
408 while (isa<AllocaInst>(IP))
|
|
409 ++IP;
|
|
410 AtEntry.SetInsertPoint(IP->getParent(), IP);
|
|
411
|
|
412 // Initialize the map pointer and load the current head of the shadow stack.
|
|
413 Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
|
95
|
414 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
415 StackEntry, 0, 1, "gc_frame.map");
|
83
|
416 AtEntry.CreateStore(FrameMap, EntryMapPtr);
|
|
417
|
|
418 // After all the allocas...
|
|
419 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
|
|
420 // For each root, find the corresponding slot in the aggregate...
|
95
|
421 Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
422 StackEntry, 1 + I, "gc_root");
|
83
|
423
|
|
424 // And use it in lieu of the alloca.
|
|
425 AllocaInst *OriginalAlloca = Roots[I].second;
|
|
426 SlotPtr->takeName(OriginalAlloca);
|
|
427 OriginalAlloca->replaceAllUsesWith(SlotPtr);
|
|
428 }
|
|
429
|
|
430 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
|
|
431 // really necessary (the collector would never see the intermediate state at
|
|
432 // runtime), but it's nicer not to push the half-initialized entry onto the
|
|
433 // shadow stack.
|
|
434 while (isa<StoreInst>(IP))
|
|
435 ++IP;
|
|
436 AtEntry.SetInsertPoint(IP->getParent(), IP);
|
|
437
|
|
438 // Push the entry onto the shadow stack.
|
95
|
439 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
440 StackEntry, 0, 0, "gc_frame.next");
|
|
441 Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
442 StackEntry, 0, "gc_newhead");
|
83
|
443 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
|
|
444 AtEntry.CreateStore(NewHeadVal, Head);
|
|
445
|
|
446 // For each instruction that escapes...
|
|
447 EscapeEnumerator EE(F, "gc_cleanup");
|
|
448 while (IRBuilder<> *AtExit = EE.Next()) {
|
|
449 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
|
|
450 // AtEntry, since that would make the value live for the entire function.
|
|
451 Instruction *EntryNextPtr2 =
|
95
|
452 CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
|
|
453 "gc_frame.next");
|
83
|
454 Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
|
|
455 AtExit->CreateStore(SavedHead, Head);
|
|
456 }
|
|
457
|
|
458 // Delete the original allocas (which are no longer used) and the intrinsic
|
|
459 // calls (which are no longer valid). Doing this last avoids invalidating
|
|
460 // iterators.
|
|
461 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
|
|
462 Roots[I].first->eraseFromParent();
|
|
463 Roots[I].second->eraseFromParent();
|
|
464 }
|
|
465
|
|
466 Roots.clear();
|
|
467 return true;
|
|
468 }
|