83
|
1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
|
|
11 // copies.
|
|
12 //
|
|
13 //===----------------------------------------------------------------------===//
|
|
14
|
|
15 #include "PPCInstrInfo.h"
|
|
16 #include "MCTargetDesc/PPCPredicates.h"
|
|
17 #include "PPC.h"
|
|
18 #include "PPCInstrBuilder.h"
|
|
19 #include "PPCMachineFunctionInfo.h"
|
|
20 #include "PPCTargetMachine.h"
|
|
21 #include "llvm/ADT/STLExtras.h"
|
|
22 #include "llvm/ADT/Statistic.h"
|
|
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
24 #include "llvm/CodeGen/MachineFrameInfo.h"
|
|
25 #include "llvm/CodeGen/MachineFunctionPass.h"
|
|
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
27 #include "llvm/CodeGen/MachineMemOperand.h"
|
|
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
29 #include "llvm/CodeGen/PseudoSourceValue.h"
|
|
30 #include "llvm/CodeGen/ScheduleDAG.h"
|
|
31 #include "llvm/CodeGen/SlotIndexes.h"
|
|
32 #include "llvm/MC/MCAsmInfo.h"
|
|
33 #include "llvm/Support/CommandLine.h"
|
|
34 #include "llvm/Support/Debug.h"
|
|
35 #include "llvm/Support/ErrorHandling.h"
|
|
36 #include "llvm/Support/TargetRegistry.h"
|
|
37 #include "llvm/Support/raw_ostream.h"
|
|
38
|
|
39 using namespace llvm;
|
|
40
|
|
41 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
|
|
42 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
|
|
43
|
|
44 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
|
|
45
|
|
46 namespace llvm { namespace PPC {
|
|
47 int getAltVSXFMAOpcode(uint16_t Opcode);
|
|
48 } }
|
|
49
|
|
50 namespace {
|
|
51 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
|
|
52 // (Altivec and scalar floating-point registers), we need to transform the
|
|
53 // copies into subregister copies with other restrictions.
|
|
54 struct PPCVSXFMAMutate : public MachineFunctionPass {
|
|
55 static char ID;
|
|
56 PPCVSXFMAMutate() : MachineFunctionPass(ID) {
|
|
57 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
|
|
58 }
|
|
59
|
|
60 LiveIntervals *LIS;
|
|
61 const PPCInstrInfo *TII;
|
|
62
|
|
63 protected:
|
|
64 bool processBlock(MachineBasicBlock &MBB) {
|
|
65 bool Changed = false;
|
|
66
|
|
67 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
68 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
|
|
69 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
70 I != IE; ++I) {
|
|
71 MachineInstr *MI = I;
|
|
72
|
|
73 // The default (A-type) VSX FMA form kills the addend (it is taken from
|
|
74 // the target register, which is then updated to reflect the result of
|
|
75 // the FMA). If the instruction, however, kills one of the registers
|
|
76 // used for the product, then we can use the M-form instruction (which
|
|
77 // will take that value from the to-be-defined register).
|
|
78
|
|
79 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
|
|
80 if (AltOpc == -1)
|
|
81 continue;
|
|
82
|
|
83 // This pass is run after register coalescing, and so we're looking for
|
|
84 // a situation like this:
|
|
85 // ...
|
|
86 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
87 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
88 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
89 // ...
|
|
90 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
|
|
91 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
|
|
92 // ...
|
|
93 // Where we can eliminate the copy by changing from the A-type to the
|
|
94 // M-type instruction. Specifically, for this example, this means:
|
|
95 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
96 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
97 // is replaced by:
|
|
98 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
|
|
99 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
|
|
100 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
101
|
|
102 SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
|
|
103
|
|
104 VNInfo *AddendValNo =
|
|
105 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
|
95
|
106
|
|
107 // This can be null if the register is undef.
|
|
108 if (!AddendValNo)
|
|
109 continue;
|
|
110
|
83
|
111 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
|
|
112
|
|
113 // The addend and this instruction must be in the same block.
|
|
114
|
|
115 if (!AddendMI || AddendMI->getParent() != MI->getParent())
|
|
116 continue;
|
|
117
|
|
118 // The addend must be a full copy within the same register class.
|
|
119
|
|
120 if (!AddendMI->isFullCopy())
|
|
121 continue;
|
|
122
|
|
123 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
|
|
124 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
|
|
125 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
|
|
126 MRI.getRegClass(AddendSrcReg))
|
|
127 continue;
|
|
128 } else {
|
|
129 // If AddendSrcReg is a physical register, make sure the destination
|
|
130 // register class contains it.
|
|
131 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
|
|
132 ->contains(AddendSrcReg))
|
|
133 continue;
|
|
134 }
|
|
135
|
|
136 // In theory, there could be other uses of the addend copy before this
|
|
137 // fma. We could deal with this, but that would require additional
|
|
138 // logic below and I suspect it will not occur in any relevant
|
|
139 // situations. Additionally, check whether the copy source is killed
|
|
140 // prior to the fma. In order to replace the addend here with the
|
|
141 // source of the copy, it must still be live here. We can't use
|
|
142 // interval testing for a physical register, so as long as we're
|
|
143 // walking the MIs we may as well test liveness here.
|
95
|
144 //
|
|
145 // FIXME: There is a case that occurs in practice, like this:
|
|
146 // %vreg9<def> = COPY %F1; VSSRC:%vreg9
|
|
147 // ...
|
|
148 // %vreg6<def> = COPY %vreg9; VSSRC:%vreg6,%vreg9
|
|
149 // %vreg7<def> = COPY %vreg9; VSSRC:%vreg7,%vreg9
|
|
150 // %vreg9<def,tied1> = XSMADDASP %vreg9<tied0>, %vreg1, %vreg4; VSSRC:
|
|
151 // %vreg6<def,tied1> = XSMADDASP %vreg6<tied0>, %vreg1, %vreg2; VSSRC:
|
|
152 // %vreg7<def,tied1> = XSMADDASP %vreg7<tied0>, %vreg1, %vreg3; VSSRC:
|
|
153 // which prevents an otherwise-profitable transformation.
|
83
|
154 bool OtherUsers = false, KillsAddendSrc = false;
|
|
155 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
|
|
156 J != JE; --J) {
|
|
157 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
|
|
158 OtherUsers = true;
|
|
159 break;
|
|
160 }
|
|
161 if (J->modifiesRegister(AddendSrcReg, TRI) ||
|
|
162 J->killsRegister(AddendSrcReg, TRI)) {
|
|
163 KillsAddendSrc = true;
|
|
164 break;
|
|
165 }
|
|
166 }
|
|
167
|
|
168 if (OtherUsers || KillsAddendSrc)
|
|
169 continue;
|
|
170
|
|
171 // Find one of the product operands that is killed by this instruction.
|
|
172
|
|
173 unsigned KilledProdOp = 0, OtherProdOp = 0;
|
|
174 if (LIS->getInterval(MI->getOperand(2).getReg())
|
|
175 .Query(FMAIdx).isKill()) {
|
|
176 KilledProdOp = 2;
|
|
177 OtherProdOp = 3;
|
|
178 } else if (LIS->getInterval(MI->getOperand(3).getReg())
|
|
179 .Query(FMAIdx).isKill()) {
|
|
180 KilledProdOp = 3;
|
|
181 OtherProdOp = 2;
|
|
182 }
|
|
183
|
|
184 // If there are no killed product operands, then this transformation is
|
|
185 // likely not profitable.
|
|
186 if (!KilledProdOp)
|
|
187 continue;
|
|
188
|
95
|
189 // If the addend copy is used only by this MI, then the addend source
|
|
190 // register is likely not live here. This could be fixed (based on the
|
|
191 // legality checks above, the live range for the addend source register
|
|
192 // could be extended), but it seems likely that such a trivial copy can
|
|
193 // be coalesced away later, and thus is not worth the effort.
|
|
194 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
|
|
195 !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
|
|
196 continue;
|
83
|
197
|
|
198 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
|
|
199
|
|
200 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
|
|
201 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg();
|
|
202
|
|
203 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
|
|
204 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
|
|
205 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg();
|
|
206
|
|
207 bool AddRegKill = AddendMI->getOperand(1).isKill();
|
|
208 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
|
|
209 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill();
|
|
210
|
|
211 bool AddRegUndef = AddendMI->getOperand(1).isUndef();
|
|
212 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
|
|
213 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef();
|
|
214
|
|
215 unsigned OldFMAReg = MI->getOperand(0).getReg();
|
|
216
|
|
217 // The transformation doesn't work well with things like:
|
|
218 // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
|
|
219 // so leave such things alone.
|
|
220 if (OldFMAReg == KilledProdReg)
|
|
221 continue;
|
|
222
|
100
|
223 // If there isn't a class that fits, we can't perform the transform.
|
|
224 // This is needed for correctness with a mixture of VSX and Altivec
|
|
225 // instructions to make sure that a low VSX register is not assigned to
|
|
226 // the Altivec instruction.
|
|
227 if (!MRI.constrainRegClass(KilledProdReg,
|
|
228 MRI.getRegClass(OldFMAReg)))
|
|
229 continue;
|
|
230
|
83
|
231 assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
|
|
232 "Addend copy not tied to old FMA output!");
|
|
233
|
|
234 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;);
|
|
235
|
|
236 MI->getOperand(0).setReg(KilledProdReg);
|
|
237 MI->getOperand(1).setReg(KilledProdReg);
|
95
|
238 MI->getOperand(3).setReg(AddendSrcReg);
|
83
|
239 MI->getOperand(2).setReg(OtherProdReg);
|
|
240
|
|
241 MI->getOperand(0).setSubReg(KilledProdSubReg);
|
|
242 MI->getOperand(1).setSubReg(KilledProdSubReg);
|
|
243 MI->getOperand(3).setSubReg(AddSubReg);
|
|
244 MI->getOperand(2).setSubReg(OtherProdSubReg);
|
|
245
|
|
246 MI->getOperand(1).setIsKill(KilledProdRegKill);
|
|
247 MI->getOperand(3).setIsKill(AddRegKill);
|
|
248 MI->getOperand(2).setIsKill(OtherProdRegKill);
|
|
249
|
|
250 MI->getOperand(1).setIsUndef(KilledProdRegUndef);
|
|
251 MI->getOperand(3).setIsUndef(AddRegUndef);
|
|
252 MI->getOperand(2).setIsUndef(OtherProdRegUndef);
|
|
253
|
|
254 MI->setDesc(TII->get(AltOpc));
|
|
255
|
|
256 DEBUG(dbgs() << " -> " << *MI);
|
|
257
|
|
258 // The killed product operand was killed here, so we can reuse it now
|
|
259 // for the result of the fma.
|
|
260
|
|
261 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
|
|
262 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
|
|
263 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
|
|
264 UI != UE;) {
|
|
265 MachineOperand &UseMO = *UI;
|
|
266 MachineInstr *UseMI = UseMO.getParent();
|
|
267 ++UI;
|
|
268
|
|
269 // Don't replace the result register of the copy we're about to erase.
|
|
270 if (UseMI == AddendMI)
|
|
271 continue;
|
|
272
|
100
|
273 UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
|
83
|
274 }
|
|
275
|
|
276 // Extend the live intervals of the killed product operand to hold the
|
|
277 // fma result.
|
|
278
|
|
279 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
|
|
280 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
|
|
281 AI != AE; ++AI) {
|
|
282 // Don't add the segment that corresponds to the original copy.
|
|
283 if (AI->valno == AddendValNo)
|
|
284 continue;
|
|
285
|
|
286 VNInfo *NewFMAValNo =
|
|
287 NewFMAInt.getNextValue(AI->start,
|
|
288 LIS->getVNInfoAllocator());
|
|
289
|
|
290 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
|
|
291 NewFMAValNo));
|
|
292 }
|
|
293 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
|
|
294
|
95
|
295 // Extend the live interval of the addend source (it might end at the
|
|
296 // copy to be removed, or somewhere in between there and here). This
|
|
297 // is necessary only if it is a physical register.
|
|
298 if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
|
|
299 for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
|
|
300 ++Units) {
|
|
301 unsigned Unit = *Units;
|
|
302
|
|
303 LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
|
|
304 AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
|
|
305 FMAIdx.getRegSlot());
|
|
306 DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n');
|
|
307 }
|
|
308
|
83
|
309 FMAInt.removeValNo(FMAValNo);
|
|
310 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
|
|
311
|
|
312 // Remove the (now unused) copy.
|
|
313
|
|
314 DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
|
|
315 LIS->RemoveMachineInstrFromMaps(AddendMI);
|
|
316 AddendMI->eraseFromParent();
|
|
317
|
|
318 Changed = true;
|
|
319 }
|
|
320
|
|
321 return Changed;
|
|
322 }
|
|
323
|
|
324 public:
|
|
325 bool runOnMachineFunction(MachineFunction &MF) override {
|
|
326 // If we don't have VSX then go ahead and return without doing
|
|
327 // anything.
|
|
328 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
|
|
329 if (!STI.hasVSX())
|
|
330 return false;
|
|
331
|
|
332 LIS = &getAnalysis<LiveIntervals>();
|
|
333
|
|
334 TII = STI.getInstrInfo();
|
|
335
|
|
336 bool Changed = false;
|
|
337
|
|
338 if (DisableVSXFMAMutate)
|
|
339 return Changed;
|
|
340
|
|
341 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
342 MachineBasicBlock &B = *I++;
|
|
343 if (processBlock(B))
|
|
344 Changed = true;
|
|
345 }
|
|
346
|
|
347 return Changed;
|
|
348 }
|
|
349
|
|
350 void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
351 AU.addRequired<LiveIntervals>();
|
|
352 AU.addPreserved<LiveIntervals>();
|
|
353 AU.addRequired<SlotIndexes>();
|
|
354 AU.addPreserved<SlotIndexes>();
|
|
355 MachineFunctionPass::getAnalysisUsage(AU);
|
|
356 }
|
|
357 };
|
|
358 }
|
|
359
|
|
360 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
361 "PowerPC VSX FMA Mutation", false, false)
|
|
362 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
363 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
364 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
365 "PowerPC VSX FMA Mutation", false, false)
|
|
366
|
|
367 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
|
|
368
|
|
369 char PPCVSXFMAMutate::ID = 0;
|
95
|
370 FunctionPass *llvm::createPPCVSXFMAMutatePass() {
|
|
371 return new PPCVSXFMAMutate();
|
|
372 }
|