150
|
1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #include "FindTarget.h"
|
|
10 #include "AST.h"
|
221
|
11 #include "HeuristicResolver.h"
|
173
|
12 #include "support/Logger.h"
|
150
|
13 #include "clang/AST/ASTTypeTraits.h"
|
|
14 #include "clang/AST/Decl.h"
|
221
|
15 #include "clang/AST/DeclBase.h"
|
150
|
16 #include "clang/AST/DeclCXX.h"
|
|
17 #include "clang/AST/DeclTemplate.h"
|
|
18 #include "clang/AST/DeclVisitor.h"
|
|
19 #include "clang/AST/DeclarationName.h"
|
|
20 #include "clang/AST/Expr.h"
|
|
21 #include "clang/AST/ExprCXX.h"
|
|
22 #include "clang/AST/ExprConcepts.h"
|
|
23 #include "clang/AST/ExprObjC.h"
|
|
24 #include "clang/AST/NestedNameSpecifier.h"
|
|
25 #include "clang/AST/PrettyPrinter.h"
|
|
26 #include "clang/AST/RecursiveASTVisitor.h"
|
|
27 #include "clang/AST/StmtVisitor.h"
|
|
28 #include "clang/AST/TemplateBase.h"
|
|
29 #include "clang/AST/Type.h"
|
|
30 #include "clang/AST/TypeLoc.h"
|
|
31 #include "clang/AST/TypeLocVisitor.h"
|
|
32 #include "clang/AST/TypeVisitor.h"
|
|
33 #include "clang/Basic/LangOptions.h"
|
|
34 #include "clang/Basic/SourceLocation.h"
|
236
|
35 #include "clang/Basic/SourceManager.h"
|
173
|
36 #include "clang/Basic/Specifiers.h"
|
150
|
37 #include "llvm/ADT/STLExtras.h"
|
|
38 #include "llvm/ADT/SmallVector.h"
|
236
|
39 #include "llvm/ADT/StringExtras.h"
|
150
|
40 #include "llvm/Support/Casting.h"
|
|
41 #include "llvm/Support/Compiler.h"
|
|
42 #include "llvm/Support/raw_ostream.h"
|
173
|
43 #include <iterator>
|
236
|
44 #include <string>
|
150
|
45 #include <utility>
|
|
46 #include <vector>
|
|
47
|
|
48 namespace clang {
|
|
49 namespace clangd {
|
|
50 namespace {
|
|
51
|
221
|
52 LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
|
150
|
53 std::string S = std::string(N.getNodeKind().asStringRef());
|
|
54 {
|
|
55 llvm::raw_string_ostream OS(S);
|
|
56 OS << ": ";
|
|
57 N.print(OS, PrintingPolicy(LangOptions()));
|
|
58 }
|
|
59 std::replace(S.begin(), S.end(), '\n', ' ');
|
|
60 return S;
|
|
61 }
|
|
62
|
|
63 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
|
|
64 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
|
173
|
65 if (const auto *Result = CRD->getTemplateInstantiationPattern())
|
|
66 return Result;
|
|
67 // getTemplateInstantiationPattern returns null if the Specialization is
|
|
68 // incomplete (e.g. the type didn't need to be complete), fall back to the
|
|
69 // primary template.
|
|
70 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
|
|
71 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
|
|
72 return Spec->getSpecializedTemplate()->getTemplatedDecl();
|
150
|
73 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
74 return FD->getTemplateInstantiationPattern();
|
|
75 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
|
|
76 // Hmm: getTIP returns its arg if it's not an instantiation?!
|
|
77 VarDecl *T = VD->getTemplateInstantiationPattern();
|
|
78 return (T == D) ? nullptr : T;
|
|
79 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
80 return ED->getInstantiatedFromMemberEnum();
|
|
81 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
|
|
82 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
|
|
83 if (const DeclContext *ParentPat =
|
|
84 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
|
|
85 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
|
|
86 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
|
|
87 return BaseND;
|
|
88 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
|
|
89 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
|
|
90 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
|
|
91 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
|
|
92 return BaseECD;
|
|
93 }
|
|
94 }
|
|
95 }
|
|
96 return nullptr;
|
|
97 }
|
|
98
|
236
|
99 // Returns true if the `TypedefNameDecl` should not be reported.
|
|
100 bool shouldSkipTypedef(const TypedefNameDecl *TD) {
|
|
101 // These should be treated as keywords rather than decls - the typedef is an
|
|
102 // odd implementation detail.
|
|
103 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
|
|
104 TD == TD->getASTContext().getObjCIdDecl())
|
|
105 return true;
|
|
106 return false;
|
|
107 }
|
|
108
|
150
|
109 // TargetFinder locates the entities that an AST node refers to.
|
|
110 //
|
|
111 // Typically this is (possibly) one declaration and (possibly) one type, but
|
|
112 // may be more:
|
|
113 // - for ambiguous nodes like OverloadExpr
|
|
114 // - if we want to include e.g. both typedefs and the underlying type
|
|
115 //
|
|
116 // This is organized as a set of mutually recursive helpers for particular node
|
|
117 // types, but for most nodes this is a short walk rather than a deep traversal.
|
|
118 //
|
|
119 // It's tempting to do e.g. typedef resolution as a second normalization step,
|
|
120 // after finding the 'primary' decl etc. But we do this monolithically instead
|
|
121 // because:
|
|
122 // - normalization may require these traversals again (e.g. unwrapping a
|
|
123 // typedef reveals a decltype which must be traversed)
|
|
124 // - it doesn't simplify that much, e.g. the first stage must still be able
|
|
125 // to yield multiple decls to handle OverloadExpr
|
|
126 // - there are cases where it's required for correctness. e.g:
|
|
127 // template<class X> using pvec = vector<x*>; pvec<int> x;
|
|
128 // There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
|
|
129 // and both are lossy. We must know upfront what the caller ultimately wants.
|
|
130 struct TargetFinder {
|
|
131 using RelSet = DeclRelationSet;
|
|
132 using Rel = DeclRelation;
|
|
133
|
|
134 private:
|
221
|
135 const HeuristicResolver *Resolver;
|
150
|
136 llvm::SmallDenseMap<const NamedDecl *,
|
|
137 std::pair<RelSet, /*InsertionOrder*/ size_t>>
|
|
138 Decls;
|
221
|
139 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
|
150
|
140 RelSet Flags;
|
|
141
|
|
142 template <typename T> void debug(T &Node, RelSet Flags) {
|
221
|
143 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
|
150
|
144 }
|
|
145
|
|
146 void report(const NamedDecl *D, RelSet Flags) {
|
221
|
147 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
|
150
|
148 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
|
|
149 // If already exists, update the flags.
|
|
150 if (!It.second)
|
|
151 It.first->second.first |= Flags;
|
|
152 }
|
|
153
|
|
154 public:
|
221
|
155 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
156
|
150
|
157 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
|
|
158 using ValTy = std::pair<const NamedDecl *, RelSet>;
|
|
159 llvm::SmallVector<ValTy, 1> Result;
|
|
160 Result.resize(Decls.size());
|
|
161 for (const auto &Elem : Decls)
|
|
162 Result[Elem.second.second] = {Elem.first, Elem.second.first};
|
|
163 return Result;
|
|
164 }
|
|
165
|
|
166 void add(const Decl *Dcl, RelSet Flags) {
|
|
167 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
|
|
168 if (!D)
|
|
169 return;
|
|
170 debug(*D, Flags);
|
221
|
171
|
|
172 // Avoid recursion (which can arise in the presence of heuristic
|
|
173 // resolution of dependent names) by exiting early if we have
|
|
174 // already seen this decl with all flags in Flags.
|
|
175 auto Res = Seen.try_emplace(D);
|
|
176 if (!Res.second && Res.first->second.contains(Flags))
|
|
177 return;
|
|
178 Res.first->second |= Flags;
|
|
179
|
150
|
180 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
|
|
181 D = UDD->getNominatedNamespaceAsWritten();
|
|
182
|
|
183 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
|
|
184 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
|
|
185 Flags |= Rel::Alias; // continue with the alias.
|
|
186 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
|
221
|
187 // no Underlying as this is a non-renaming alias.
|
150
|
188 for (const UsingShadowDecl *S : UD->shadows())
|
221
|
189 add(S->getUnderlyingDecl(), Flags);
|
150
|
190 Flags |= Rel::Alias; // continue with the alias.
|
223
|
191 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
|
236
|
192 // UsingEnumDecl is not an alias at all, just a reference.
|
|
193 D = UED->getEnumDecl();
|
150
|
194 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
|
|
195 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
|
|
196 Flags |= Rel::Alias; // continue with the alias
|
221
|
197 } else if (const UnresolvedUsingValueDecl *UUVD =
|
|
198 dyn_cast<UnresolvedUsingValueDecl>(D)) {
|
|
199 if (Resolver) {
|
|
200 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
|
|
201 add(Target, Flags); // no Underlying as this is a non-renaming alias
|
|
202 }
|
|
203 }
|
|
204 Flags |= Rel::Alias; // continue with the alias
|
236
|
205 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
|
|
206 // FIXME: improve common dependent scope using name lookup in primary
|
|
207 // templates.
|
|
208 Flags |= Rel::Alias;
|
150
|
209 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
|
236
|
210 // Include the introducing UsingDecl, but don't traverse it. This may end
|
|
211 // up including *all* shadows, which we don't want.
|
|
212 // Don't apply this logic to UsingEnumDecl, which can't easily be
|
|
213 // conflated with the aliases it introduces.
|
|
214 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
|
|
215 report(USD->getIntroducer(), Flags | Rel::Alias);
|
150
|
216 // Shadow decls are synthetic and not themselves interesting.
|
|
217 // Record the underlying decl instead, if allowed.
|
|
218 D = USD->getTargetDecl();
|
221
|
219 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
|
|
220 D = DG->getDeducedTemplate();
|
|
221 } else if (const ObjCImplementationDecl *IID =
|
|
222 dyn_cast<ObjCImplementationDecl>(D)) {
|
|
223 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
|
|
224 // pair as long as the interface isn't implicit.
|
|
225 if (const auto *CID = IID->getClassInterface())
|
|
226 if (const auto *DD = CID->getDefinition())
|
|
227 if (!DD->isImplicitInterfaceDecl())
|
|
228 D = DD;
|
|
229 } else if (const ObjCCategoryImplDecl *CID =
|
|
230 dyn_cast<ObjCCategoryImplDecl>(D)) {
|
|
231 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
|
|
232 D = CID->getCategoryDecl();
|
150
|
233 }
|
221
|
234 if (!D)
|
|
235 return;
|
150
|
236
|
|
237 if (const Decl *Pat = getTemplatePattern(D)) {
|
|
238 assert(Pat != D);
|
|
239 add(Pat, Flags | Rel::TemplatePattern);
|
|
240 // Now continue with the instantiation.
|
|
241 Flags |= Rel::TemplateInstantiation;
|
|
242 }
|
|
243
|
|
244 report(D, Flags);
|
|
245 }
|
|
246
|
|
247 void add(const Stmt *S, RelSet Flags) {
|
|
248 if (!S)
|
|
249 return;
|
|
250 debug(*S, Flags);
|
|
251 struct Visitor : public ConstStmtVisitor<Visitor> {
|
|
252 TargetFinder &Outer;
|
|
253 RelSet Flags;
|
|
254 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
|
|
255
|
|
256 void VisitCallExpr(const CallExpr *CE) {
|
|
257 Outer.add(CE->getCalleeDecl(), Flags);
|
|
258 }
|
|
259 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
|
|
260 Outer.add(E->getNamedConcept(), Flags);
|
|
261 }
|
|
262 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
|
|
263 const Decl *D = DRE->getDecl();
|
|
264 // UsingShadowDecl allows us to record the UsingDecl.
|
|
265 // getFoundDecl() returns the wrong thing in other cases (templates).
|
|
266 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
|
|
267 D = USD;
|
|
268 Outer.add(D, Flags);
|
|
269 }
|
|
270 void VisitMemberExpr(const MemberExpr *ME) {
|
|
271 const Decl *D = ME->getMemberDecl();
|
|
272 if (auto *USD =
|
|
273 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
|
|
274 D = USD;
|
|
275 Outer.add(D, Flags);
|
|
276 }
|
|
277 void VisitOverloadExpr(const OverloadExpr *OE) {
|
|
278 for (auto *D : OE->decls())
|
|
279 Outer.add(D, Flags);
|
|
280 }
|
|
281 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
|
|
282 Outer.add(SE->getPack(), Flags);
|
|
283 }
|
|
284 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
|
|
285 Outer.add(CCE->getConstructor(), Flags);
|
|
286 }
|
|
287 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
|
|
288 for (const DesignatedInitExpr::Designator &D :
|
|
289 llvm::reverse(DIE->designators()))
|
|
290 if (D.isFieldDesignator()) {
|
|
291 Outer.add(D.getField(), Flags);
|
|
292 // We don't know which designator was intended, we assume the outer.
|
|
293 break;
|
|
294 }
|
|
295 }
|
173
|
296 void VisitGotoStmt(const GotoStmt *Goto) {
|
|
297 if (auto *LabelDecl = Goto->getLabel())
|
|
298 Outer.add(LabelDecl, Flags);
|
|
299 }
|
|
300 void VisitLabelStmt(const LabelStmt *Label) {
|
|
301 if (auto *LabelDecl = Label->getDecl())
|
|
302 Outer.add(LabelDecl, Flags);
|
|
303 }
|
150
|
304 void
|
|
305 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
|
221
|
306 if (Outer.Resolver) {
|
|
307 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
|
|
308 Outer.add(D, Flags);
|
|
309 }
|
150
|
310 }
|
|
311 }
|
|
312 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
|
221
|
313 if (Outer.Resolver) {
|
|
314 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
|
|
315 Outer.add(D, Flags);
|
|
316 }
|
150
|
317 }
|
|
318 }
|
|
319 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
|
|
320 Outer.add(OIRE->getDecl(), Flags);
|
|
321 }
|
|
322 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
|
|
323 Outer.add(OME->getMethodDecl(), Flags);
|
|
324 }
|
|
325 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
|
|
326 if (OPRE->isExplicitProperty())
|
|
327 Outer.add(OPRE->getExplicitProperty(), Flags);
|
|
328 else {
|
|
329 if (OPRE->isMessagingGetter())
|
|
330 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
|
|
331 if (OPRE->isMessagingSetter())
|
|
332 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
|
|
333 }
|
|
334 }
|
|
335 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
|
|
336 Outer.add(OPE->getProtocol(), Flags);
|
|
337 }
|
|
338 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
|
|
339 Outer.add(OVE->getSourceExpr(), Flags);
|
|
340 }
|
|
341 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
|
|
342 Outer.add(POE->getSyntacticForm(), Flags);
|
|
343 }
|
221
|
344 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
|
|
345 Outer.add(CNE->getOperatorNew(), Flags);
|
|
346 }
|
|
347 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
|
|
348 Outer.add(CDE->getOperatorDelete(), Flags);
|
|
349 }
|
150
|
350 };
|
|
351 Visitor(*this, Flags).Visit(S);
|
|
352 }
|
|
353
|
|
354 void add(QualType T, RelSet Flags) {
|
|
355 if (T.isNull())
|
|
356 return;
|
|
357 debug(T, Flags);
|
|
358 struct Visitor : public TypeVisitor<Visitor> {
|
|
359 TargetFinder &Outer;
|
|
360 RelSet Flags;
|
|
361 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
|
|
362
|
|
363 void VisitTagType(const TagType *TT) {
|
|
364 Outer.add(TT->getAsTagDecl(), Flags);
|
|
365 }
|
|
366
|
|
367 void VisitElaboratedType(const ElaboratedType *ET) {
|
|
368 Outer.add(ET->desugar(), Flags);
|
|
369 }
|
|
370
|
236
|
371 void VisitUsingType(const UsingType *ET) {
|
|
372 Outer.add(ET->getFoundDecl(), Flags);
|
|
373 }
|
|
374
|
150
|
375 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
|
|
376 Outer.add(ICNT->getDecl(), Flags);
|
|
377 }
|
|
378
|
|
379 void VisitDecltypeType(const DecltypeType *DTT) {
|
|
380 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
|
|
381 }
|
|
382 void VisitDeducedType(const DeducedType *DT) {
|
|
383 // FIXME: In practice this doesn't work: the AutoType you find inside
|
|
384 // TypeLoc never has a deduced type. https://llvm.org/PR42914
|
236
|
385 Outer.add(DT->getDeducedType(), Flags);
|
|
386 }
|
|
387 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
|
|
388 Outer.add(UUT->getDecl(), Flags);
|
150
|
389 }
|
|
390 void VisitDeducedTemplateSpecializationType(
|
|
391 const DeducedTemplateSpecializationType *DTST) {
|
236
|
392 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
|
|
393 Outer.add(USD, Flags);
|
|
394
|
150
|
395 // FIXME: This is a workaround for https://llvm.org/PR42914,
|
|
396 // which is causing DTST->getDeducedType() to be empty. We
|
|
397 // fall back to the template pattern and miss the instantiation
|
|
398 // even when it's known in principle. Once that bug is fixed,
|
236
|
399 // the following code can be removed (the existing handling in
|
150
|
400 // VisitDeducedType() is sufficient).
|
|
401 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
|
|
402 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
|
|
403 }
|
221
|
404 void VisitDependentNameType(const DependentNameType *DNT) {
|
|
405 if (Outer.Resolver) {
|
|
406 for (const NamedDecl *ND :
|
|
407 Outer.Resolver->resolveDependentNameType(DNT)) {
|
|
408 Outer.add(ND, Flags);
|
|
409 }
|
|
410 }
|
|
411 }
|
|
412 void VisitDependentTemplateSpecializationType(
|
|
413 const DependentTemplateSpecializationType *DTST) {
|
|
414 if (Outer.Resolver) {
|
|
415 for (const NamedDecl *ND :
|
|
416 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
|
|
417 Outer.add(ND, Flags);
|
|
418 }
|
|
419 }
|
|
420 }
|
150
|
421 void VisitTypedefType(const TypedefType *TT) {
|
236
|
422 if (shouldSkipTypedef(TT->getDecl()))
|
|
423 return;
|
150
|
424 Outer.add(TT->getDecl(), Flags);
|
|
425 }
|
|
426 void
|
|
427 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
|
|
428 // Have to handle these case-by-case.
|
|
429
|
236
|
430 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
|
|
431 Outer.add(UTN, Flags);
|
|
432
|
150
|
433 // templated type aliases: there's no specialized/instantiated using
|
|
434 // decl to point to. So try to find a decl for the underlying type
|
|
435 // (after substitution), and failing that point to the (templated) using
|
|
436 // decl.
|
|
437 if (TST->isTypeAlias()) {
|
|
438 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
|
|
439 // Don't *traverse* the alias, which would result in traversing the
|
|
440 // template of the underlying type.
|
|
441 Outer.report(
|
|
442 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
|
|
443 Flags | Rel::Alias | Rel::TemplatePattern);
|
|
444 }
|
|
445 // specializations of template template parameters aren't instantiated
|
|
446 // into decls, so they must refer to the parameter itself.
|
|
447 else if (const auto *Parm =
|
|
448 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
449 TST->getTemplateName().getAsTemplateDecl()))
|
|
450 Outer.add(Parm, Flags);
|
|
451 // class template specializations have a (specialized) CXXRecordDecl.
|
|
452 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
|
|
453 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
|
|
454 else {
|
|
455 // fallback: the (un-specialized) declaration from primary template.
|
|
456 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
|
|
457 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
|
|
458 }
|
|
459 }
|
236
|
460 void
|
|
461 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
|
|
462 Outer.add(STTPT->getReplacementType(), Flags);
|
|
463 }
|
150
|
464 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
|
|
465 Outer.add(TTPT->getDecl(), Flags);
|
|
466 }
|
|
467 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
|
|
468 Outer.add(OIT->getDecl(), Flags);
|
|
469 }
|
|
470 };
|
|
471 Visitor(*this, Flags).Visit(T.getTypePtr());
|
|
472 }
|
|
473
|
|
474 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
|
|
475 if (!NNS)
|
|
476 return;
|
|
477 debug(*NNS, Flags);
|
|
478 switch (NNS->getKind()) {
|
|
479 case NestedNameSpecifier::Namespace:
|
|
480 add(NNS->getAsNamespace(), Flags);
|
|
481 return;
|
|
482 case NestedNameSpecifier::NamespaceAlias:
|
|
483 add(NNS->getAsNamespaceAlias(), Flags);
|
|
484 return;
|
221
|
485 case NestedNameSpecifier::Identifier:
|
|
486 if (Resolver) {
|
|
487 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
|
|
488 Flags);
|
|
489 }
|
|
490 return;
|
150
|
491 case NestedNameSpecifier::TypeSpec:
|
|
492 case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
493 add(QualType(NNS->getAsType(), 0), Flags);
|
|
494 return;
|
|
495 case NestedNameSpecifier::Global:
|
|
496 // This should be TUDecl, but we can't get a pointer to it!
|
|
497 return;
|
|
498 case NestedNameSpecifier::Super:
|
|
499 add(NNS->getAsRecordDecl(), Flags);
|
|
500 return;
|
|
501 }
|
|
502 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
|
|
503 }
|
|
504
|
|
505 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
|
|
506 if (!CCI)
|
|
507 return;
|
|
508 debug(*CCI, Flags);
|
|
509
|
|
510 if (CCI->isAnyMemberInitializer())
|
|
511 add(CCI->getAnyMember(), Flags);
|
|
512 // Constructor calls contain a TypeLoc node, so we don't handle them here.
|
|
513 }
|
221
|
514
|
|
515 void add(const TemplateArgument &Arg, RelSet Flags) {
|
|
516 // Only used for template template arguments.
|
|
517 // For type and non-type template arguments, SelectionTree
|
|
518 // will hit a more specific node (e.g. a TypeLoc or a
|
|
519 // DeclRefExpr).
|
|
520 if (Arg.getKind() == TemplateArgument::Template ||
|
|
521 Arg.getKind() == TemplateArgument::TemplateExpansion) {
|
236
|
522 if (TemplateDecl *TD =
|
|
523 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
|
221
|
524 report(TD, Flags);
|
|
525 }
|
236
|
526 if (const auto *USD =
|
|
527 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
|
|
528 add(USD, Flags);
|
221
|
529 }
|
|
530 }
|
150
|
531 };
|
|
532
|
|
533 } // namespace
|
|
534
|
|
535 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
|
221
|
536 allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
|
150
|
537 dlog("allTargetDecls({0})", nodeToString(N));
|
221
|
538 TargetFinder Finder(Resolver);
|
150
|
539 DeclRelationSet Flags;
|
|
540 if (const Decl *D = N.get<Decl>())
|
|
541 Finder.add(D, Flags);
|
|
542 else if (const Stmt *S = N.get<Stmt>())
|
|
543 Finder.add(S, Flags);
|
|
544 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
|
|
545 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
|
|
546 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
|
|
547 Finder.add(NNS, Flags);
|
|
548 else if (const TypeLoc *TL = N.get<TypeLoc>())
|
|
549 Finder.add(TL->getType(), Flags);
|
|
550 else if (const QualType *QT = N.get<QualType>())
|
|
551 Finder.add(*QT, Flags);
|
|
552 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
|
|
553 Finder.add(CCI, Flags);
|
221
|
554 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
|
|
555 Finder.add(TAL->getArgument(), Flags);
|
|
556 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
|
|
557 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
|
236
|
558 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
|
|
559 Finder.add(PL->getProtocol(), Flags);
|
150
|
560 return Finder.takeDecls();
|
|
561 }
|
|
562
|
|
563 llvm::SmallVector<const NamedDecl *, 1>
|
221
|
564 targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
|
|
565 const HeuristicResolver *Resolver) {
|
150
|
566 llvm::SmallVector<const NamedDecl *, 1> Result;
|
221
|
567 for (const auto &Entry : allTargetDecls(N, Resolver)) {
|
150
|
568 if (!(Entry.second & ~Mask))
|
|
569 Result.push_back(Entry.first);
|
|
570 }
|
|
571 return Result;
|
|
572 }
|
|
573
|
|
574 llvm::SmallVector<const NamedDecl *, 1>
|
221
|
575 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
|
|
576 const HeuristicResolver *Resolver) {
|
150
|
577 assert(!(Mask & (DeclRelation::TemplatePattern |
|
|
578 DeclRelation::TemplateInstantiation)) &&
|
173
|
579 "explicitReferenceTargets handles templates on its own");
|
221
|
580 auto Decls = allTargetDecls(N, Resolver);
|
150
|
581
|
|
582 // We prefer to return template instantiation, but fallback to template
|
|
583 // pattern if instantiation is not available.
|
|
584 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
|
|
585
|
|
586 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
|
|
587 llvm::SmallVector<const NamedDecl *, 1> Targets;
|
|
588 bool SeenTemplateInstantiations = false;
|
|
589 for (auto &D : Decls) {
|
|
590 if (D.second & ~Mask)
|
|
591 continue;
|
|
592 if (D.second & DeclRelation::TemplatePattern) {
|
|
593 TemplatePatterns.push_back(D.first);
|
|
594 continue;
|
|
595 }
|
|
596 if (D.second & DeclRelation::TemplateInstantiation)
|
|
597 SeenTemplateInstantiations = true;
|
|
598 Targets.push_back(D.first);
|
|
599 }
|
|
600 if (!SeenTemplateInstantiations)
|
|
601 Targets.insert(Targets.end(), TemplatePatterns.begin(),
|
|
602 TemplatePatterns.end());
|
|
603 return Targets;
|
|
604 }
|
|
605
|
|
606 namespace {
|
221
|
607 llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
|
|
608 const HeuristicResolver *Resolver) {
|
150
|
609 struct Visitor : ConstDeclVisitor<Visitor> {
|
221
|
610 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
611
|
|
612 const HeuristicResolver *Resolver;
|
|
613 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
614
|
|
615 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
|
|
616 // We want to keep it as non-declaration references, as the
|
|
617 // "using namespace" declaration doesn't have a name.
|
|
618 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
|
|
619 D->getIdentLocation(),
|
|
620 /*IsDecl=*/false,
|
|
621 {D->getNominatedNamespaceAsWritten()}});
|
|
622 }
|
|
623
|
|
624 void VisitUsingDecl(const UsingDecl *D) {
|
|
625 // "using ns::identifier;" is a non-declaration reference.
|
221
|
626 Refs.push_back(ReferenceLoc{
|
|
627 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
|
|
628 explicitReferenceTargets(DynTypedNode::create(*D),
|
|
629 DeclRelation::Underlying, Resolver)});
|
150
|
630 }
|
|
631
|
236
|
632 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
|
|
633 // "using enum ns::E" is a non-declaration reference.
|
|
634 // The reference is covered by the embedded typeloc.
|
|
635 // Don't use the default VisitNamedDecl, which would report a declaration.
|
|
636 }
|
|
637
|
150
|
638 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
|
|
639 // For namespace alias, "namespace Foo = Target;", we add two references.
|
|
640 // Add a declaration reference for Foo.
|
|
641 VisitNamedDecl(D);
|
|
642 // Add a non-declaration reference for Target.
|
|
643 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
|
|
644 D->getTargetNameLoc(),
|
|
645 /*IsDecl=*/false,
|
|
646 {D->getAliasedNamespace()}});
|
|
647 }
|
|
648
|
|
649 void VisitNamedDecl(const NamedDecl *ND) {
|
|
650 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
|
|
651 // as their underlying decls, covering the same range, will be visited.
|
|
652 if (llvm::isa<ClassTemplateDecl>(ND) ||
|
|
653 llvm::isa<FunctionTemplateDecl>(ND) ||
|
|
654 llvm::isa<VarTemplateDecl>(ND) ||
|
|
655 llvm::isa<TypeAliasTemplateDecl>(ND))
|
|
656 return;
|
|
657 // FIXME: decide on how to surface destructors when we need them.
|
|
658 if (llvm::isa<CXXDestructorDecl>(ND))
|
|
659 return;
|
|
660 // Filter anonymous decls, name location will point outside the name token
|
|
661 // and the clients are not prepared to handle that.
|
|
662 if (ND->getDeclName().isIdentifier() &&
|
|
663 !ND->getDeclName().getAsIdentifierInfo())
|
|
664 return;
|
|
665 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
|
|
666 ND->getLocation(),
|
|
667 /*IsDecl=*/true,
|
|
668 {ND}});
|
|
669 }
|
221
|
670
|
|
671 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
|
|
672 // The class template name in a deduction guide targets the class
|
|
673 // template.
|
|
674 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
|
|
675 DG->getNameInfo().getLoc(),
|
|
676 /*IsDecl=*/false,
|
|
677 {DG->getDeducedTemplate()}});
|
|
678 }
|
|
679
|
|
680 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
|
|
681 // The name may have several tokens, we can only report the first.
|
|
682 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
683 OMD->getSelectorStartLoc(),
|
|
684 /*IsDecl=*/true,
|
|
685 {OMD}});
|
|
686 }
|
|
687
|
|
688 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
|
|
689 // getLocation is the extended class's location, not the category's.
|
|
690 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
691 OCD->getLocation(),
|
|
692 /*IsDecl=*/false,
|
|
693 {OCD->getClassInterface()}});
|
|
694 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
695 OCD->getCategoryNameLoc(),
|
|
696 /*IsDecl=*/true,
|
|
697 {OCD}});
|
|
698 }
|
|
699
|
|
700 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
|
|
701 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
702 OCID->getLocation(),
|
|
703 /*IsDecl=*/false,
|
|
704 {OCID->getClassInterface()}});
|
|
705 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
706 OCID->getCategoryNameLoc(),
|
|
707 /*IsDecl=*/true,
|
|
708 {OCID->getCategoryDecl()}});
|
|
709 }
|
150
|
710 };
|
|
711
|
221
|
712 Visitor V{Resolver};
|
150
|
713 V.Visit(D);
|
|
714 return V.Refs;
|
|
715 }
|
|
716
|
221
|
717 llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
|
|
718 const HeuristicResolver *Resolver) {
|
150
|
719 struct Visitor : ConstStmtVisitor<Visitor> {
|
221
|
720 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
721
|
|
722 const HeuristicResolver *Resolver;
|
150
|
723 // FIXME: handle more complicated cases: more ObjC, designated initializers.
|
221
|
724 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
725
|
|
726 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
|
|
727 Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
|
|
728 E->getConceptNameLoc(),
|
|
729 /*IsDecl=*/false,
|
|
730 {E->getNamedConcept()}});
|
|
731 }
|
173
|
732
|
150
|
733 void VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
734 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
735 E->getNameInfo().getLoc(),
|
|
736 /*IsDecl=*/false,
|
|
737 {E->getFoundDecl()}});
|
|
738 }
|
|
739
|
173
|
740 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
|
|
741 Refs.push_back(ReferenceLoc{
|
|
742 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
|
221
|
743 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
173
|
744 }
|
|
745
|
150
|
746 void VisitMemberExpr(const MemberExpr *E) {
|
|
747 // Skip destructor calls to avoid duplication: TypeLoc within will be
|
|
748 // visited separately.
|
221
|
749 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
|
150
|
750 return;
|
|
751 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
752 E->getMemberNameInfo().getLoc(),
|
|
753 /*IsDecl=*/false,
|
|
754 {E->getFoundDecl()}});
|
|
755 }
|
|
756
|
173
|
757 void
|
|
758 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
|
221
|
759 Refs.push_back(ReferenceLoc{
|
|
760 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
|
|
761 /*IsDecl=*/false,
|
|
762 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
173
|
763 }
|
|
764
|
150
|
765 void VisitOverloadExpr(const OverloadExpr *E) {
|
|
766 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
767 E->getNameInfo().getLoc(),
|
|
768 /*IsDecl=*/false,
|
|
769 llvm::SmallVector<const NamedDecl *, 1>(
|
|
770 E->decls().begin(), E->decls().end())});
|
|
771 }
|
|
772
|
|
773 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
|
|
774 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
775 E->getPackLoc(),
|
|
776 /*IsDecl=*/false,
|
|
777 {E->getPack()}});
|
|
778 }
|
|
779
|
|
780 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
|
|
781 Refs.push_back(ReferenceLoc{
|
|
782 NestedNameSpecifierLoc(), E->getLocation(),
|
|
783 /*IsDecl=*/false,
|
|
784 // Select the getter, setter, or @property depending on the call.
|
221
|
785 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
|
786 }
|
|
787
|
|
788 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
|
|
789 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
790 OIRE->getLocation(),
|
|
791 /*IsDecl=*/false,
|
|
792 {OIRE->getDecl()}});
|
|
793 }
|
|
794
|
|
795 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
|
|
796 // The name may have several tokens, we can only report the first.
|
|
797 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
798 E->getSelectorStartLoc(),
|
|
799 /*IsDecl=*/false,
|
|
800 {E->getMethodDecl()}});
|
150
|
801 }
|
|
802
|
|
803 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
|
|
804 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
|
|
805 if (!D.isFieldDesignator())
|
|
806 continue;
|
173
|
807
|
221
|
808 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
809 D.getFieldLoc(),
|
|
810 /*IsDecl=*/false,
|
|
811 {D.getField()}});
|
150
|
812 }
|
|
813 }
|
173
|
814
|
|
815 void VisitGotoStmt(const GotoStmt *GS) {
|
221
|
816 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
817 GS->getLabelLoc(),
|
|
818 /*IsDecl=*/false,
|
|
819 {GS->getLabel()}});
|
173
|
820 }
|
|
821
|
|
822 void VisitLabelStmt(const LabelStmt *LS) {
|
|
823 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
824 LS->getIdentLoc(),
|
|
825 /*IsDecl=*/true,
|
|
826 {LS->getDecl()}});
|
|
827 }
|
150
|
828 };
|
|
829
|
221
|
830 Visitor V{Resolver};
|
173
|
831 V.Visit(S);
|
150
|
832 return V.Refs;
|
|
833 }
|
|
834
|
221
|
835 llvm::SmallVector<ReferenceLoc>
|
|
836 refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
|
150
|
837 struct Visitor : TypeLocVisitor<Visitor> {
|
221
|
838 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
839
|
|
840 const HeuristicResolver *Resolver;
|
|
841 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
842
|
|
843 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
|
|
844 // We only know about qualifier, rest if filled by inner locations.
|
221
|
845 size_t InitialSize = Refs.size();
|
150
|
846 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
|
221
|
847 size_t NewSize = Refs.size();
|
|
848 // Add qualifier for the newly-added refs.
|
|
849 for (unsigned I = InitialSize; I < NewSize; ++I) {
|
|
850 ReferenceLoc *Ref = &Refs[I];
|
|
851 // Fill in the qualifier.
|
|
852 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
|
|
853 Ref->Qualifier = L.getQualifierLoc();
|
|
854 }
|
150
|
855 }
|
|
856
|
236
|
857 void VisitUsingTypeLoc(UsingTypeLoc L) {
|
|
858 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
859 L.getLocalSourceRange().getBegin(),
|
|
860 /*IsDecl=*/false,
|
|
861 {L.getFoundDecl()}});
|
|
862 }
|
|
863
|
150
|
864 void VisitTagTypeLoc(TagTypeLoc L) {
|
221
|
865 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
866 L.getNameLoc(),
|
|
867 /*IsDecl=*/false,
|
|
868 {L.getDecl()}});
|
150
|
869 }
|
|
870
|
|
871 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
|
221
|
872 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
873 L.getNameLoc(),
|
|
874 /*IsDecl=*/false,
|
|
875 {L.getDecl()}});
|
150
|
876 }
|
|
877
|
|
878 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
|
|
879 // We must ensure template type aliases are included in results if they
|
|
880 // were written in the source code, e.g. in
|
|
881 // template <class T> using valias = vector<T>;
|
|
882 // ^valias<int> x;
|
|
883 // 'explicitReferenceTargets' will return:
|
|
884 // 1. valias with mask 'Alias'.
|
|
885 // 2. 'vector<int>' with mask 'Underlying'.
|
|
886 // we want to return only #1 in this case.
|
221
|
887 Refs.push_back(ReferenceLoc{
|
150
|
888 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
|
|
889 explicitReferenceTargets(DynTypedNode::create(L.getType()),
|
221
|
890 DeclRelation::Alias, Resolver)});
|
150
|
891 }
|
|
892 void VisitDeducedTemplateSpecializationTypeLoc(
|
|
893 DeducedTemplateSpecializationTypeLoc L) {
|
221
|
894 Refs.push_back(ReferenceLoc{
|
150
|
895 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
|
|
896 explicitReferenceTargets(DynTypedNode::create(L.getType()),
|
221
|
897 DeclRelation::Alias, Resolver)});
|
150
|
898 }
|
|
899
|
|
900 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
|
221
|
901 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
902 TL.getNameLoc(),
|
|
903 /*IsDecl=*/false,
|
|
904 {TL.getDecl()}});
|
150
|
905 }
|
|
906
|
|
907 void VisitDependentTemplateSpecializationTypeLoc(
|
|
908 DependentTemplateSpecializationTypeLoc L) {
|
221
|
909 Refs.push_back(
|
|
910 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
|
|
911 /*IsDecl=*/false,
|
|
912 explicitReferenceTargets(
|
|
913 DynTypedNode::create(L.getType()), {}, Resolver)});
|
150
|
914 }
|
|
915
|
|
916 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
|
221
|
917 Refs.push_back(
|
|
918 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
|
|
919 /*IsDecl=*/false,
|
|
920 explicitReferenceTargets(
|
|
921 DynTypedNode::create(L.getType()), {}, Resolver)});
|
150
|
922 }
|
|
923
|
|
924 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
|
236
|
925 if (shouldSkipTypedef(L.getTypedefNameDecl()))
|
|
926 return;
|
221
|
927 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
928 L.getNameLoc(),
|
|
929 /*IsDecl=*/false,
|
|
930 {L.getTypedefNameDecl()}});
|
|
931 }
|
|
932
|
|
933 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
|
|
934 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
935 L.getNameLoc(),
|
|
936 /*IsDecl=*/false,
|
|
937 {L.getIFaceDecl()}});
|
|
938 }
|
150
|
939 };
|
|
940
|
221
|
941 Visitor V{Resolver};
|
150
|
942 V.Visit(L.getUnqualifiedLoc());
|
221
|
943 return V.Refs;
|
150
|
944 }
|
|
945
|
|
946 class ExplicitReferenceCollector
|
|
947 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
|
|
948 public:
|
221
|
949 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
|
|
950 const HeuristicResolver *Resolver)
|
|
951 : Out(Out), Resolver(Resolver) {
|
150
|
952 assert(Out);
|
|
953 }
|
|
954
|
|
955 bool VisitTypeLoc(TypeLoc TTL) {
|
221
|
956 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
|
150
|
957 return true;
|
|
958 visitNode(DynTypedNode::create(TTL));
|
|
959 return true;
|
|
960 }
|
|
961
|
|
962 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
|
|
963 // ElaboratedTypeLoc will reports information for its inner type loc.
|
|
964 // Otherwise we loose information about inner types loc's qualifier.
|
|
965 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
|
236
|
966 if (L.getBeginLoc() == Inner.getBeginLoc())
|
|
967 return RecursiveASTVisitor::TraverseTypeLoc(Inner);
|
|
968 else
|
|
969 TypeLocsToSkip.insert(Inner.getBeginLoc());
|
150
|
970 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
|
|
971 }
|
|
972
|
173
|
973 bool VisitStmt(Stmt *S) {
|
|
974 visitNode(DynTypedNode::create(*S));
|
150
|
975 return true;
|
|
976 }
|
|
977
|
|
978 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
|
|
979 visitNode(DynTypedNode::create(*OVE));
|
|
980 // Not clear why the source expression is skipped by default...
|
|
981 // FIXME: can we just make RecursiveASTVisitor do this?
|
|
982 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
|
|
983 }
|
|
984
|
|
985 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
|
|
986 visitNode(DynTypedNode::create(*POE));
|
|
987 // Traverse only the syntactic form to find the *written* references.
|
|
988 // (The semantic form also contains lots of duplication)
|
|
989 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
|
|
990 }
|
|
991
|
|
992 // We re-define Traverse*, since there's no corresponding Visit*.
|
|
993 // TemplateArgumentLoc is the only way to get locations for references to
|
|
994 // template template parameters.
|
|
995 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
|
|
996 switch (A.getArgument().getKind()) {
|
|
997 case TemplateArgument::Template:
|
|
998 case TemplateArgument::TemplateExpansion:
|
|
999 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
|
|
1000 A.getTemplateNameLoc(),
|
221
|
1001 /*IsDecl=*/false,
|
|
1002 {A.getArgument()
|
|
1003 .getAsTemplateOrTemplatePattern()
|
|
1004 .getAsTemplateDecl()}},
|
150
|
1005 DynTypedNode::create(A.getArgument()));
|
|
1006 break;
|
|
1007 case TemplateArgument::Declaration:
|
|
1008 break; // FIXME: can this actually happen in TemplateArgumentLoc?
|
|
1009 case TemplateArgument::Integral:
|
|
1010 case TemplateArgument::Null:
|
|
1011 case TemplateArgument::NullPtr:
|
|
1012 break; // no references.
|
|
1013 case TemplateArgument::Pack:
|
|
1014 case TemplateArgument::Type:
|
|
1015 case TemplateArgument::Expression:
|
|
1016 break; // Handled by VisitType and VisitExpression.
|
|
1017 };
|
|
1018 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
|
|
1019 }
|
|
1020
|
|
1021 bool VisitDecl(Decl *D) {
|
|
1022 visitNode(DynTypedNode::create(*D));
|
|
1023 return true;
|
|
1024 }
|
|
1025
|
|
1026 // We have to use Traverse* because there is no corresponding Visit*.
|
|
1027 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
|
|
1028 if (!L.getNestedNameSpecifier())
|
|
1029 return true;
|
|
1030 visitNode(DynTypedNode::create(L));
|
|
1031 // Inner type is missing information about its qualifier, skip it.
|
|
1032 if (auto TL = L.getTypeLoc())
|
221
|
1033 TypeLocsToSkip.insert(TL.getBeginLoc());
|
150
|
1034 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
|
|
1035 }
|
|
1036
|
236
|
1037 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
|
|
1038 visitNode(DynTypedNode::create(ProtocolLoc));
|
|
1039 return true;
|
|
1040 }
|
|
1041
|
150
|
1042 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
|
|
1043 visitNode(DynTypedNode::create(*Init));
|
|
1044 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
|
|
1045 }
|
|
1046
|
|
1047 private:
|
|
1048 /// Obtain information about a reference directly defined in \p N. Does not
|
|
1049 /// recurse into child nodes, e.g. do not expect references for constructor
|
|
1050 /// initializers
|
|
1051 ///
|
|
1052 /// Any of the fields in the returned structure can be empty, but not all of
|
|
1053 /// them, e.g.
|
|
1054 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
|
|
1055 /// source location information may be missing,
|
|
1056 /// - for dependent code, targets may be empty.
|
|
1057 ///
|
|
1058 /// (!) For the purposes of this function declarations are not considered to
|
|
1059 /// be references. However, declarations can have references inside them,
|
|
1060 /// e.g. 'namespace foo = std' references namespace 'std' and this
|
|
1061 /// function will return the corresponding reference.
|
221
|
1062 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
|
150
|
1063 if (auto *D = N.get<Decl>())
|
221
|
1064 return refInDecl(D, Resolver);
|
173
|
1065 if (auto *S = N.get<Stmt>())
|
221
|
1066 return refInStmt(S, Resolver);
|
150
|
1067 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
|
|
1068 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
|
|
1069 return {ReferenceLoc{
|
|
1070 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
|
|
1071 explicitReferenceTargets(
|
|
1072 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
|
221
|
1073 DeclRelation::Alias, Resolver)}};
|
150
|
1074 }
|
|
1075 if (const TypeLoc *TL = N.get<TypeLoc>())
|
221
|
1076 return refInTypeLoc(*TL, Resolver);
|
150
|
1077 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
|
|
1078 // Other type initializers (e.g. base initializer) are handled by visiting
|
|
1079 // the typeLoc.
|
|
1080 if (CCI->isAnyMemberInitializer()) {
|
|
1081 return {ReferenceLoc{NestedNameSpecifierLoc(),
|
|
1082 CCI->getMemberLocation(),
|
|
1083 /*IsDecl=*/false,
|
|
1084 {CCI->getAnyMember()}}};
|
|
1085 }
|
|
1086 }
|
236
|
1087 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
|
|
1088 return {ReferenceLoc{NestedNameSpecifierLoc(),
|
|
1089 PL->getLocation(),
|
|
1090 /*IsDecl=*/false,
|
|
1091 {PL->getProtocol()}}};
|
|
1092
|
150
|
1093 // We do not have location information for other nodes (QualType, etc)
|
|
1094 return {};
|
|
1095 }
|
|
1096
|
|
1097 void visitNode(DynTypedNode N) {
|
221
|
1098 for (auto &R : explicitReference(N))
|
|
1099 reportReference(std::move(R), N);
|
150
|
1100 }
|
|
1101
|
221
|
1102 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
|
|
1103 // Strip null targets that can arise from invalid code.
|
|
1104 // (This avoids having to check for null everywhere we insert)
|
|
1105 llvm::erase_value(Ref.Targets, nullptr);
|
150
|
1106 // Our promise is to return only references from the source code. If we lack
|
|
1107 // location information, skip these nodes.
|
|
1108 // Normally this should not happen in practice, unless there are bugs in the
|
|
1109 // traversals or users started the traversal at an implicit node.
|
|
1110 if (Ref.NameLoc.isInvalid()) {
|
|
1111 dlog("invalid location at node {0}", nodeToString(N));
|
|
1112 return;
|
|
1113 }
|
|
1114 Out(Ref);
|
|
1115 }
|
|
1116
|
|
1117 llvm::function_ref<void(ReferenceLoc)> Out;
|
221
|
1118 const HeuristicResolver *Resolver;
|
150
|
1119 /// TypeLocs starting at these locations must be skipped, see
|
|
1120 /// TraverseElaboratedTypeSpecifierLoc for details.
|
221
|
1121 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
|
150
|
1122 };
|
|
1123 } // namespace
|
|
1124
|
|
1125 void findExplicitReferences(const Stmt *S,
|
221
|
1126 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1127 const HeuristicResolver *Resolver) {
|
150
|
1128 assert(S);
|
221
|
1129 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
|
150
|
1130 }
|
|
1131 void findExplicitReferences(const Decl *D,
|
221
|
1132 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1133 const HeuristicResolver *Resolver) {
|
150
|
1134 assert(D);
|
221
|
1135 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
|
150
|
1136 }
|
|
1137 void findExplicitReferences(const ASTContext &AST,
|
221
|
1138 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1139 const HeuristicResolver *Resolver) {
|
|
1140 ExplicitReferenceCollector(Out, Resolver)
|
|
1141 .TraverseAST(const_cast<ASTContext &>(AST));
|
150
|
1142 }
|
|
1143
|
|
1144 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
|
|
1145 switch (R) {
|
|
1146 #define REL_CASE(X) \
|
|
1147 case DeclRelation::X: \
|
|
1148 return OS << #X;
|
|
1149 REL_CASE(Alias);
|
|
1150 REL_CASE(Underlying);
|
|
1151 REL_CASE(TemplateInstantiation);
|
|
1152 REL_CASE(TemplatePattern);
|
|
1153 #undef REL_CASE
|
|
1154 }
|
|
1155 llvm_unreachable("Unhandled DeclRelation enum");
|
|
1156 }
|
|
1157 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
|
|
1158 const char *Sep = "";
|
|
1159 for (unsigned I = 0; I < RS.S.size(); ++I) {
|
|
1160 if (RS.S.test(I)) {
|
|
1161 OS << Sep << static_cast<DeclRelation>(I);
|
|
1162 Sep = "|";
|
|
1163 }
|
|
1164 }
|
|
1165 return OS;
|
|
1166 }
|
|
1167
|
|
1168 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
|
|
1169 // note we cannot print R.NameLoc without a source manager.
|
|
1170 OS << "targets = {";
|
236
|
1171 llvm::SmallVector<std::string> Targets;
|
150
|
1172 for (const NamedDecl *T : R.Targets) {
|
236
|
1173 llvm::raw_string_ostream Target(Targets.emplace_back());
|
|
1174 Target << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
|
150
|
1175 }
|
236
|
1176 llvm::sort(Targets);
|
|
1177 OS << llvm::join(Targets, ", ");
|
150
|
1178 OS << "}";
|
|
1179 if (R.Qualifier) {
|
|
1180 OS << ", qualifier = '";
|
|
1181 R.Qualifier.getNestedNameSpecifier()->print(OS,
|
|
1182 PrintingPolicy(LangOptions()));
|
|
1183 OS << "'";
|
|
1184 }
|
|
1185 if (R.IsDecl)
|
|
1186 OS << ", decl";
|
|
1187 return OS;
|
|
1188 }
|
|
1189
|
|
1190 } // namespace clangd
|
|
1191 } // namespace clang
|