150
|
1 //===- ARMErrataFix.cpp ---------------------------------------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 // This file implements Section Patching for the purpose of working around the
|
|
9 // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
|
|
10 // can result in an incorrect instruction fetch or processor deadlock." The
|
|
11 // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
|
|
12 // Cortex-A8. A high level description of the patching technique is given in
|
|
13 // the opening comment of AArch64ErrataFix.cpp.
|
|
14 //===----------------------------------------------------------------------===//
|
|
15
|
|
16 #include "ARMErrataFix.h"
|
|
17
|
|
18 #include "Config.h"
|
|
19 #include "LinkerScript.h"
|
|
20 #include "OutputSections.h"
|
|
21 #include "Relocations.h"
|
|
22 #include "Symbols.h"
|
|
23 #include "SyntheticSections.h"
|
|
24 #include "Target.h"
|
|
25 #include "lld/Common/Memory.h"
|
|
26 #include "lld/Common/Strings.h"
|
|
27 #include "llvm/Support/Endian.h"
|
|
28 #include "llvm/Support/raw_ostream.h"
|
|
29 #include <algorithm>
|
|
30
|
|
31 using namespace llvm;
|
|
32 using namespace llvm::ELF;
|
|
33 using namespace llvm::object;
|
|
34 using namespace llvm::support;
|
|
35 using namespace llvm::support::endian;
|
173
|
36 using namespace lld;
|
|
37 using namespace lld::elf;
|
150
|
38
|
|
39 // The documented title for Erratum 657417 is:
|
|
40 // "A 32bit branch instruction that spans two 4K regions can result in an
|
|
41 // incorrect instruction fetch or processor deadlock". Graphically using a
|
|
42 // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
|
|
43 // xxxxxx000 // Memory region 1 start
|
|
44 // target:
|
|
45 // ...
|
|
46 // xxxxxxffe f7fe // First halfword of branch to target:
|
|
47 // xxxxxx000 // Memory region 2 start
|
|
48 // xxxxxx002 bfff // Second halfword of branch to target:
|
|
49 //
|
|
50 // The specific trigger conditions that can be detected at link time are:
|
|
51 // - There is a 32-bit Thumb-2 branch instruction with an address of the form
|
|
52 // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
|
|
53 // second 2 bytes are in region 2.
|
|
54 // - The branch instruction is one of BLX, BL, B.w BCC.w
|
|
55 // - The instruction preceding the branch is a 32-bit non-branch instruction.
|
|
56 // - The target of the branch is in region 1.
|
|
57 //
|
|
58 // The linker mitigation for the fix is to redirect any branch that meets the
|
|
59 // erratum conditions to a patch section containing a branch to the target.
|
|
60 //
|
|
61 // As adding patch sections may move branches onto region boundaries the patch
|
|
62 // must iterate until no more patches are added.
|
|
63 //
|
|
64 // Example, before:
|
|
65 // 00000FFA func: NOP.w // 32-bit Thumb function
|
|
66 // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
|
|
67 // Example, after:
|
|
68 // 00000FFA func: NOP.w // 32-bit Thumb function
|
|
69 // 00000FFE B.w __CortexA8657417_00000FFE
|
|
70 // 00001002 2 - bytes padding
|
|
71 // 00001004 __CortexA8657417_00000FFE: B.w func
|
|
72
|
173
|
73 class elf::Patch657417Section : public SyntheticSection {
|
150
|
74 public:
|
|
75 Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
|
|
76
|
|
77 void writeTo(uint8_t *buf) override;
|
|
78
|
|
79 size_t getSize() const override { return 4; }
|
|
80
|
|
81 // Get the virtual address of the branch instruction at patcheeOffset.
|
|
82 uint64_t getBranchAddr() const;
|
|
83
|
|
84 static bool classof(const SectionBase *d) {
|
|
85 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
|
|
86 }
|
|
87
|
|
88 // The Section we are patching.
|
|
89 const InputSection *patchee;
|
|
90 // The offset of the instruction in the Patchee section we are patching.
|
|
91 uint64_t patcheeOffset;
|
|
92 // A label for the start of the Patch that we can use as a relocation target.
|
|
93 Symbol *patchSym;
|
|
94 // A decoding of the branch instruction at patcheeOffset.
|
|
95 uint32_t instr;
|
|
96 // True If the patch is to be written in ARM state, otherwise the patch will
|
|
97 // be written in Thumb state.
|
|
98 bool isARM;
|
|
99 };
|
|
100
|
|
101 // Return true if the half-word, when taken as the first of a pair of halfwords
|
|
102 // is the first half of a 32-bit instruction.
|
|
103 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
|
|
104 // section A6.3: 32-bit Thumb instruction encoding
|
|
105 // | HW1 | HW2 |
|
|
106 // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
|
|
107 // With op1 == 0b00, a 16-bit instruction is encoded.
|
|
108 //
|
|
109 // We test only the first halfword, looking for op != 0b00.
|
|
110 static bool is32bitInstruction(uint16_t hw) {
|
|
111 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
|
|
112 }
|
|
113
|
|
114 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
|
|
115 // section A6.3.4 Branches and miscellaneous control.
|
|
116 // | HW1 | HW2 |
|
|
117 // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
|
|
118 // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
|
|
119 // op1 == 0x1 | Branch (B.W)
|
|
120 // op1 == 1x0 | Branch with Link and Exchange (BLX.w)
|
|
121 // op1 == 1x1 | Branch with Link (BL.W)
|
|
122
|
|
123 static bool isBcc(uint32_t instr) {
|
|
124 return (instr & 0xf800d000) == 0xf0008000 &&
|
|
125 (instr & 0x03800000) != 0x03800000;
|
|
126 }
|
|
127
|
|
128 static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
|
|
129
|
|
130 static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
|
|
131
|
|
132 static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
|
|
133
|
|
134 static bool is32bitBranch(uint32_t instr) {
|
|
135 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
|
|
136 }
|
|
137
|
|
138 Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
|
|
139 uint32_t instr, bool isARM)
|
|
140 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
|
|
141 ".text.patch"),
|
|
142 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
|
|
143 parent = p->getParent();
|
|
144 patchSym = addSyntheticLocal(
|
|
145 saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
|
|
146 isARM ? 0 : 1, getSize(), *this);
|
|
147 addSyntheticLocal(saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
|
|
148 }
|
|
149
|
|
150 uint64_t Patch657417Section::getBranchAddr() const {
|
|
151 return patchee->getVA(patcheeOffset);
|
|
152 }
|
|
153
|
|
154 // Given a branch instruction instr at sourceAddr work out its destination
|
|
155 // address. This is only used when the branch instruction has no relocation.
|
|
156 static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
|
|
157 uint8_t buf[4];
|
|
158 write16le(buf, instr >> 16);
|
|
159 write16le(buf + 2, instr & 0x0000ffff);
|
|
160 int64_t offset;
|
|
161 if (isBcc(instr))
|
|
162 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
|
|
163 else if (isB(instr))
|
|
164 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
|
|
165 else
|
|
166 offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
|
|
167 return sourceAddr + offset + 4;
|
|
168 }
|
|
169
|
|
170 void Patch657417Section::writeTo(uint8_t *buf) {
|
|
171 // The base instruction of the patch is always a 32-bit unconditional branch.
|
|
172 if (isARM)
|
|
173 write32le(buf, 0xea000000);
|
|
174 else
|
|
175 write32le(buf, 0x9000f000);
|
|
176 // If we have a relocation then apply it. For a SyntheticSection buf already
|
|
177 // has outSecOff added, but relocateAlloc also adds outSecOff so we need to
|
|
178 // subtract to avoid double counting.
|
|
179 if (!relocations.empty()) {
|
|
180 relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
|
|
181 return;
|
|
182 }
|
|
183
|
|
184 // If we don't have a relocation then we must calculate and write the offset
|
|
185 // ourselves.
|
|
186 // Get the destination offset from the addend in the branch instruction.
|
|
187 // We cannot use the instruction in the patchee section as this will have
|
|
188 // been altered to point to us!
|
|
189 uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
|
|
190 uint64_t p = getVA(4);
|
|
191 target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
|
|
192 }
|
|
193
|
|
194 // Given a branch instruction spanning two 4KiB regions, at offset off from the
|
|
195 // start of isec, return true if the destination of the branch is within the
|
|
196 // first of the two 4Kib regions.
|
|
197 static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
|
|
198 uint32_t instr, const Relocation *r) {
|
|
199 uint64_t sourceAddr = isec->getVA(0) + off;
|
|
200 assert((sourceAddr & 0xfff) == 0xffe);
|
|
201 uint64_t destAddr = sourceAddr;
|
|
202 // If there is a branch relocation at the same offset we must use this to
|
|
203 // find the destination address as the branch could be indirected via a thunk
|
|
204 // or the PLT.
|
|
205 if (r) {
|
|
206 uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
|
|
207 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
|
|
208 destAddr = dst + r->addend + 4;
|
|
209 } else {
|
|
210 // If there is no relocation, we must have an intra-section branch
|
|
211 // We must extract the offset from the addend manually.
|
|
212 destAddr = getThumbDestAddr(sourceAddr, instr);
|
|
213 }
|
|
214
|
|
215 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
|
|
216 }
|
|
217
|
|
218 // Return true if a branch can reach a patch section placed after isec.
|
|
219 // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
|
|
220 static bool patchInRange(const InputSection *isec, uint64_t off,
|
|
221 uint32_t instr) {
|
|
222
|
|
223 // We need the branch at source to reach a patch section placed immediately
|
|
224 // after isec. As there can be more than one patch in the patch section we
|
|
225 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
|
|
226 // for a 1 MiB range.
|
|
227 return target->inBranchRange(
|
|
228 isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
|
|
229 isec->getVA() + isec->getSize() + 0x100);
|
|
230 }
|
|
231
|
|
232 struct ScanResult {
|
|
233 // Offset of branch within its InputSection.
|
|
234 uint64_t off;
|
|
235 // Cached decoding of the branch instruction.
|
|
236 uint32_t instr;
|
|
237 // Branch relocation at off. Will be nullptr if no relocation exists.
|
|
238 Relocation *rel;
|
|
239 };
|
|
240
|
|
241 // Detect the erratum sequence, returning the offset of the branch instruction
|
|
242 // and a decoding of the branch. If the erratum sequence is not found then
|
|
243 // return an offset of 0 for the branch. 0 is a safe value to use for no patch
|
|
244 // as there must be at least one 32-bit non-branch instruction before the
|
|
245 // branch so the minimum offset for a patch is 4.
|
|
246 static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
|
|
247 uint64_t limit) {
|
|
248 uint64_t isecAddr = isec->getVA(0);
|
|
249 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
|
|
250 // need to check for a 32-bit instruction immediately before a 32-bit branch
|
|
251 // at 0xffe modulo 0x1000.
|
|
252 off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
|
|
253 if (off >= limit || limit - off < 8) {
|
|
254 // Need at least 2 4-byte sized instructions to trigger erratum.
|
|
255 off = limit;
|
|
256 return {0, 0, nullptr};
|
|
257 }
|
|
258
|
|
259 ScanResult scanRes = {0, 0, nullptr};
|
|
260 const uint8_t *buf = isec->data().begin();
|
|
261 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
|
|
262 // little-endian halfwords.
|
|
263 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
|
|
264 uint16_t hw11 = *instBuf++;
|
|
265 uint16_t hw12 = *instBuf++;
|
|
266 uint16_t hw21 = *instBuf++;
|
|
267 uint16_t hw22 = *instBuf++;
|
|
268 if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
|
|
269 uint32_t instr1 = (hw11 << 16) | hw12;
|
|
270 uint32_t instr2 = (hw21 << 16) | hw22;
|
|
271 if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
|
|
272 // Find a relocation for the branch if it exists. This will be used
|
|
273 // to determine the target.
|
|
274 uint64_t branchOff = off + 4;
|
|
275 auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
|
|
276 return r.offset == branchOff &&
|
|
277 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
|
|
278 r.type == R_ARM_THM_CALL);
|
|
279 });
|
|
280 if (relIt != isec->relocations.end())
|
|
281 scanRes.rel = &(*relIt);
|
|
282 if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
|
|
283 if (patchInRange(isec, branchOff, instr2)) {
|
|
284 scanRes.off = branchOff;
|
|
285 scanRes.instr = instr2;
|
|
286 } else {
|
|
287 warn(toString(isec->file) +
|
|
288 ": skipping cortex-a8 657417 erratum sequence, section " +
|
|
289 isec->name + " is too large to patch");
|
|
290 }
|
|
291 }
|
|
292 }
|
|
293 }
|
|
294 off += 0x1000;
|
|
295 return scanRes;
|
|
296 }
|
|
297
|
|
298 void ARMErr657417Patcher::init() {
|
|
299 // The Arm ABI permits a mix of ARM, Thumb and Data in the same
|
|
300 // InputSection. We must only scan Thumb instructions to avoid false
|
|
301 // matches. We use the mapping symbols in the InputObjects to identify this
|
|
302 // data, caching the results in sectionMap so we don't have to recalculate
|
|
303 // it each pass.
|
|
304
|
|
305 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
|
|
306 // half open intervals [Symbol Value, Next Symbol Value) of code and data
|
|
307 // within sections. If there is no next symbol then the half open interval is
|
|
308 // [Symbol Value, End of section). The type, code or data, is determined by
|
|
309 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
|
|
310 auto isArmMapSymbol = [](const Symbol *s) {
|
|
311 return s->getName() == "$a" || s->getName().startswith("$a.");
|
|
312 };
|
|
313 auto isThumbMapSymbol = [](const Symbol *s) {
|
|
314 return s->getName() == "$t" || s->getName().startswith("$t.");
|
|
315 };
|
|
316 auto isDataMapSymbol = [](const Symbol *s) {
|
|
317 return s->getName() == "$d" || s->getName().startswith("$d.");
|
|
318 };
|
|
319
|
|
320 // Collect mapping symbols for every executable InputSection.
|
|
321 for (InputFile *file : objectFiles) {
|
|
322 auto *f = cast<ObjFile<ELF32LE>>(file);
|
|
323 for (Symbol *s : f->getLocalSymbols()) {
|
|
324 auto *def = dyn_cast<Defined>(s);
|
|
325 if (!def)
|
|
326 continue;
|
|
327 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
|
|
328 !isDataMapSymbol(def))
|
|
329 continue;
|
|
330 if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
|
|
331 if (sec->flags & SHF_EXECINSTR)
|
|
332 sectionMap[sec].push_back(def);
|
|
333 }
|
|
334 }
|
|
335 // For each InputSection make sure the mapping symbols are in sorted in
|
|
336 // ascending order and are in alternating Thumb, non-Thumb order.
|
|
337 for (auto &kv : sectionMap) {
|
|
338 std::vector<const Defined *> &mapSyms = kv.second;
|
|
339 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
|
|
340 return a->value < b->value;
|
|
341 });
|
|
342 mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
|
|
343 [=](const Defined *a, const Defined *b) {
|
|
344 return (isThumbMapSymbol(a) ==
|
|
345 isThumbMapSymbol(b));
|
|
346 }),
|
|
347 mapSyms.end());
|
|
348 // Always start with a Thumb Mapping Symbol
|
|
349 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
|
|
350 mapSyms.erase(mapSyms.begin());
|
|
351 }
|
|
352 initialized = true;
|
|
353 }
|
|
354
|
|
355 void ARMErr657417Patcher::insertPatches(
|
|
356 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
|
|
357 uint64_t spacing = 0x100000 - 0x7500;
|
|
358 uint64_t isecLimit;
|
|
359 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
|
|
360 uint64_t patchUpperBound = prevIsecLimit + spacing;
|
|
361 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
|
|
362
|
|
363 // Set the outSecOff of patches to the place where we want to insert them.
|
|
364 // We use a similar strategy to initial thunk placement, using 1 MiB as the
|
|
365 // range of the Thumb-2 conditional branch with a contingency accounting for
|
|
366 // thunk generation.
|
|
367 auto patchIt = patches.begin();
|
|
368 auto patchEnd = patches.end();
|
|
369 for (const InputSection *isec : isd.sections) {
|
|
370 isecLimit = isec->outSecOff + isec->getSize();
|
|
371 if (isecLimit > patchUpperBound) {
|
|
372 for (; patchIt != patchEnd; ++patchIt) {
|
|
373 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
|
|
374 break;
|
|
375 (*patchIt)->outSecOff = prevIsecLimit;
|
|
376 }
|
|
377 patchUpperBound = prevIsecLimit + spacing;
|
|
378 }
|
|
379 prevIsecLimit = isecLimit;
|
|
380 }
|
|
381 for (; patchIt != patchEnd; ++patchIt)
|
|
382 (*patchIt)->outSecOff = isecLimit;
|
|
383
|
|
384 // Merge all patch sections. We use the outSecOff assigned above to
|
|
385 // determine the insertion point. This is ok as we only merge into an
|
|
386 // InputSectionDescription once per pass, and at the end of the pass
|
|
387 // assignAddresses() will recalculate all the outSecOff values.
|
|
388 std::vector<InputSection *> tmp;
|
|
389 tmp.reserve(isd.sections.size() + patches.size());
|
|
390 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
|
|
391 if (a->outSecOff != b->outSecOff)
|
|
392 return a->outSecOff < b->outSecOff;
|
|
393 return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
|
|
394 };
|
|
395 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
|
|
396 patches.end(), std::back_inserter(tmp), mergeCmp);
|
|
397 isd.sections = std::move(tmp);
|
|
398 }
|
|
399
|
|
400 // Given a branch instruction described by ScanRes redirect it to a patch
|
|
401 // section containing an unconditional branch instruction to the target.
|
|
402 // Ensure that this patch section is 4-byte aligned so that the branch cannot
|
|
403 // span two 4 KiB regions. Place the patch section so that it is always after
|
|
404 // isec so the branch we are patching always goes forwards.
|
|
405 static void implementPatch(ScanResult sr, InputSection *isec,
|
|
406 std::vector<Patch657417Section *> &patches) {
|
|
407
|
|
408 log("detected cortex-a8-657419 erratum sequence starting at " +
|
|
409 utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
|
|
410 Patch657417Section *psec;
|
|
411 // We have two cases to deal with.
|
|
412 // Case 1. There is a relocation at patcheeOffset to a symbol. The
|
|
413 // unconditional branch in the patch must have a relocation so that any
|
|
414 // further redirection via the PLT or a Thunk happens as normal. At
|
|
415 // patcheeOffset we redirect the existing relocation to a Symbol defined at
|
|
416 // the start of the patch section.
|
|
417 //
|
|
418 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
|
|
419 // a symbol that we can use as a target for a relocation in the patch section.
|
|
420 // Luckily we know that the destination cannot be indirected via the PLT or
|
|
421 // a Thunk so we can just write the destination directly.
|
|
422 if (sr.rel) {
|
|
423 // Case 1. We have an existing relocation to redirect to patch and a
|
|
424 // Symbol target.
|
|
425
|
|
426 // Create a branch relocation for the unconditional branch in the patch.
|
|
427 // This can be redirected via the PLT or Thunks.
|
|
428 RelType patchRelType = R_ARM_THM_JUMP24;
|
|
429 int64_t patchRelAddend = sr.rel->addend;
|
|
430 bool destIsARM = false;
|
|
431 if (isBL(sr.instr) || isBLX(sr.instr)) {
|
|
432 // The final target of the branch may be ARM or Thumb, if the target
|
|
433 // is ARM then we write the patch in ARM state to avoid a state change
|
|
434 // Thunk from the patch to the target.
|
|
435 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
|
|
436 : sr.rel->sym->getVA();
|
|
437 destIsARM = (dstSymAddr & 1) == 0;
|
|
438 }
|
|
439 psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
|
|
440 if (destIsARM) {
|
|
441 // The patch will be in ARM state. Use an ARM relocation and account for
|
|
442 // the larger ARM PC-bias of 8 rather than Thumb's 4.
|
|
443 patchRelType = R_ARM_JUMP24;
|
|
444 patchRelAddend -= 4;
|
|
445 }
|
|
446 psec->relocations.push_back(
|
|
447 Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
|
|
448 // Redirect the existing branch relocation to the patch.
|
|
449 sr.rel->expr = R_PC;
|
|
450 sr.rel->addend = -4;
|
|
451 sr.rel->sym = psec->patchSym;
|
|
452 } else {
|
|
453 // Case 2. We do not have a relocation to the patch. Add a relocation of the
|
|
454 // appropriate type to the patch at patcheeOffset.
|
|
455
|
|
456 // The destination is ARM if we have a BLX.
|
|
457 psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
|
|
458 RelType type;
|
|
459 if (isBcc(sr.instr))
|
|
460 type = R_ARM_THM_JUMP19;
|
|
461 else if (isB(sr.instr))
|
|
462 type = R_ARM_THM_JUMP24;
|
|
463 else
|
|
464 type = R_ARM_THM_CALL;
|
|
465 isec->relocations.push_back(
|
|
466 Relocation{R_PC, type, sr.off, -4, psec->patchSym});
|
|
467 }
|
|
468 patches.push_back(psec);
|
|
469 }
|
|
470
|
|
471 // Scan all the instructions in InputSectionDescription, for each instance of
|
|
472 // the erratum sequence create a Patch657417Section. We return the list of
|
|
473 // Patch657417Sections that need to be applied to the InputSectionDescription.
|
|
474 std::vector<Patch657417Section *>
|
|
475 ARMErr657417Patcher::patchInputSectionDescription(
|
|
476 InputSectionDescription &isd) {
|
|
477 std::vector<Patch657417Section *> patches;
|
|
478 for (InputSection *isec : isd.sections) {
|
|
479 // LLD doesn't use the erratum sequence in SyntheticSections.
|
|
480 if (isa<SyntheticSection>(isec))
|
|
481 continue;
|
|
482 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
|
|
483 // data. We have already sorted mapSyms in ascending order and removed
|
|
484 // consecutive mapping symbols of the same type. Our range of executable
|
|
485 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
|
|
486 // or [thumbSym->value, section size).
|
|
487 std::vector<const Defined *> &mapSyms = sectionMap[isec];
|
|
488
|
|
489 auto thumbSym = mapSyms.begin();
|
|
490 while (thumbSym != mapSyms.end()) {
|
|
491 auto nonThumbSym = std::next(thumbSym);
|
|
492 uint64_t off = (*thumbSym)->value;
|
|
493 uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
|
|
494 : (*nonThumbSym)->value;
|
|
495
|
|
496 while (off < limit) {
|
|
497 ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
|
|
498 if (sr.off)
|
|
499 implementPatch(sr, isec, patches);
|
|
500 }
|
|
501 if (nonThumbSym == mapSyms.end())
|
|
502 break;
|
|
503 thumbSym = std::next(nonThumbSym);
|
|
504 }
|
|
505 }
|
|
506 return patches;
|
|
507 }
|
|
508
|
|
509 bool ARMErr657417Patcher::createFixes() {
|
|
510 if (!initialized)
|
|
511 init();
|
|
512
|
|
513 bool addressesChanged = false;
|
|
514 for (OutputSection *os : outputSections) {
|
|
515 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
|
|
516 continue;
|
|
517 for (BaseCommand *bc : os->sectionCommands)
|
|
518 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
|
|
519 std::vector<Patch657417Section *> patches =
|
|
520 patchInputSectionDescription(*isd);
|
|
521 if (!patches.empty()) {
|
|
522 insertPatches(*isd, patches);
|
|
523 addressesChanged = true;
|
|
524 }
|
|
525 }
|
|
526 }
|
|
527 return addressesChanged;
|
|
528 }
|