150
|
1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #include "FindTarget.h"
|
|
10 #include "AST.h"
|
221
|
11 #include "HeuristicResolver.h"
|
173
|
12 #include "support/Logger.h"
|
150
|
13 #include "clang/AST/ASTTypeTraits.h"
|
|
14 #include "clang/AST/Decl.h"
|
221
|
15 #include "clang/AST/DeclBase.h"
|
150
|
16 #include "clang/AST/DeclCXX.h"
|
|
17 #include "clang/AST/DeclTemplate.h"
|
|
18 #include "clang/AST/DeclVisitor.h"
|
|
19 #include "clang/AST/DeclarationName.h"
|
|
20 #include "clang/AST/Expr.h"
|
|
21 #include "clang/AST/ExprCXX.h"
|
|
22 #include "clang/AST/ExprConcepts.h"
|
|
23 #include "clang/AST/ExprObjC.h"
|
|
24 #include "clang/AST/NestedNameSpecifier.h"
|
|
25 #include "clang/AST/PrettyPrinter.h"
|
|
26 #include "clang/AST/RecursiveASTVisitor.h"
|
|
27 #include "clang/AST/StmtVisitor.h"
|
|
28 #include "clang/AST/TemplateBase.h"
|
|
29 #include "clang/AST/Type.h"
|
|
30 #include "clang/AST/TypeLoc.h"
|
|
31 #include "clang/AST/TypeLocVisitor.h"
|
|
32 #include "clang/AST/TypeVisitor.h"
|
|
33 #include "clang/Basic/LangOptions.h"
|
|
34 #include "clang/Basic/SourceLocation.h"
|
236
|
35 #include "clang/Basic/SourceManager.h"
|
173
|
36 #include "clang/Basic/Specifiers.h"
|
150
|
37 #include "llvm/ADT/STLExtras.h"
|
|
38 #include "llvm/ADT/SmallVector.h"
|
236
|
39 #include "llvm/ADT/StringExtras.h"
|
150
|
40 #include "llvm/Support/Casting.h"
|
|
41 #include "llvm/Support/Compiler.h"
|
|
42 #include "llvm/Support/raw_ostream.h"
|
173
|
43 #include <iterator>
|
236
|
44 #include <string>
|
150
|
45 #include <utility>
|
|
46 #include <vector>
|
|
47
|
|
48 namespace clang {
|
|
49 namespace clangd {
|
|
50 namespace {
|
|
51
|
221
|
52 LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
|
150
|
53 std::string S = std::string(N.getNodeKind().asStringRef());
|
|
54 {
|
|
55 llvm::raw_string_ostream OS(S);
|
|
56 OS << ": ";
|
|
57 N.print(OS, PrintingPolicy(LangOptions()));
|
|
58 }
|
|
59 std::replace(S.begin(), S.end(), '\n', ' ');
|
|
60 return S;
|
|
61 }
|
|
62
|
|
63 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
|
|
64 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
|
173
|
65 if (const auto *Result = CRD->getTemplateInstantiationPattern())
|
|
66 return Result;
|
|
67 // getTemplateInstantiationPattern returns null if the Specialization is
|
|
68 // incomplete (e.g. the type didn't need to be complete), fall back to the
|
|
69 // primary template.
|
|
70 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
|
|
71 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
|
|
72 return Spec->getSpecializedTemplate()->getTemplatedDecl();
|
150
|
73 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
74 return FD->getTemplateInstantiationPattern();
|
|
75 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
|
|
76 // Hmm: getTIP returns its arg if it's not an instantiation?!
|
|
77 VarDecl *T = VD->getTemplateInstantiationPattern();
|
|
78 return (T == D) ? nullptr : T;
|
|
79 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
|
|
80 return ED->getInstantiatedFromMemberEnum();
|
|
81 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
|
|
82 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
|
|
83 if (const DeclContext *ParentPat =
|
|
84 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
|
|
85 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
|
|
86 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
|
|
87 return BaseND;
|
|
88 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
|
|
89 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
|
|
90 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
|
|
91 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
|
|
92 return BaseECD;
|
|
93 }
|
|
94 }
|
|
95 }
|
|
96 return nullptr;
|
|
97 }
|
|
98
|
236
|
99 // Returns true if the `TypedefNameDecl` should not be reported.
|
|
100 bool shouldSkipTypedef(const TypedefNameDecl *TD) {
|
|
101 // These should be treated as keywords rather than decls - the typedef is an
|
|
102 // odd implementation detail.
|
|
103 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
|
|
104 TD == TD->getASTContext().getObjCIdDecl())
|
|
105 return true;
|
|
106 return false;
|
|
107 }
|
|
108
|
150
|
109 // TargetFinder locates the entities that an AST node refers to.
|
|
110 //
|
|
111 // Typically this is (possibly) one declaration and (possibly) one type, but
|
|
112 // may be more:
|
|
113 // - for ambiguous nodes like OverloadExpr
|
|
114 // - if we want to include e.g. both typedefs and the underlying type
|
|
115 //
|
|
116 // This is organized as a set of mutually recursive helpers for particular node
|
|
117 // types, but for most nodes this is a short walk rather than a deep traversal.
|
|
118 //
|
|
119 // It's tempting to do e.g. typedef resolution as a second normalization step,
|
|
120 // after finding the 'primary' decl etc. But we do this monolithically instead
|
|
121 // because:
|
|
122 // - normalization may require these traversals again (e.g. unwrapping a
|
|
123 // typedef reveals a decltype which must be traversed)
|
|
124 // - it doesn't simplify that much, e.g. the first stage must still be able
|
|
125 // to yield multiple decls to handle OverloadExpr
|
|
126 // - there are cases where it's required for correctness. e.g:
|
|
127 // template<class X> using pvec = vector<x*>; pvec<int> x;
|
|
128 // There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
|
|
129 // and both are lossy. We must know upfront what the caller ultimately wants.
|
|
130 struct TargetFinder {
|
|
131 using RelSet = DeclRelationSet;
|
|
132 using Rel = DeclRelation;
|
|
133
|
|
134 private:
|
221
|
135 const HeuristicResolver *Resolver;
|
150
|
136 llvm::SmallDenseMap<const NamedDecl *,
|
|
137 std::pair<RelSet, /*InsertionOrder*/ size_t>>
|
|
138 Decls;
|
221
|
139 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
|
150
|
140 RelSet Flags;
|
|
141
|
|
142 template <typename T> void debug(T &Node, RelSet Flags) {
|
221
|
143 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
|
150
|
144 }
|
|
145
|
|
146 void report(const NamedDecl *D, RelSet Flags) {
|
221
|
147 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
|
150
|
148 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
|
|
149 // If already exists, update the flags.
|
|
150 if (!It.second)
|
|
151 It.first->second.first |= Flags;
|
|
152 }
|
|
153
|
|
154 public:
|
221
|
155 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
156
|
150
|
157 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
|
|
158 using ValTy = std::pair<const NamedDecl *, RelSet>;
|
|
159 llvm::SmallVector<ValTy, 1> Result;
|
|
160 Result.resize(Decls.size());
|
|
161 for (const auto &Elem : Decls)
|
|
162 Result[Elem.second.second] = {Elem.first, Elem.second.first};
|
|
163 return Result;
|
|
164 }
|
|
165
|
|
166 void add(const Decl *Dcl, RelSet Flags) {
|
|
167 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
|
|
168 if (!D)
|
|
169 return;
|
|
170 debug(*D, Flags);
|
221
|
171
|
|
172 // Avoid recursion (which can arise in the presence of heuristic
|
|
173 // resolution of dependent names) by exiting early if we have
|
|
174 // already seen this decl with all flags in Flags.
|
|
175 auto Res = Seen.try_emplace(D);
|
|
176 if (!Res.second && Res.first->second.contains(Flags))
|
|
177 return;
|
|
178 Res.first->second |= Flags;
|
|
179
|
150
|
180 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
|
|
181 D = UDD->getNominatedNamespaceAsWritten();
|
|
182
|
|
183 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
|
|
184 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
|
|
185 Flags |= Rel::Alias; // continue with the alias.
|
|
186 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
|
221
|
187 // no Underlying as this is a non-renaming alias.
|
150
|
188 for (const UsingShadowDecl *S : UD->shadows())
|
221
|
189 add(S->getUnderlyingDecl(), Flags);
|
150
|
190 Flags |= Rel::Alias; // continue with the alias.
|
223
|
191 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
|
236
|
192 // UsingEnumDecl is not an alias at all, just a reference.
|
|
193 D = UED->getEnumDecl();
|
150
|
194 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
|
|
195 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
|
|
196 Flags |= Rel::Alias; // continue with the alias
|
221
|
197 } else if (const UnresolvedUsingValueDecl *UUVD =
|
|
198 dyn_cast<UnresolvedUsingValueDecl>(D)) {
|
|
199 if (Resolver) {
|
|
200 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
|
|
201 add(Target, Flags); // no Underlying as this is a non-renaming alias
|
|
202 }
|
|
203 }
|
|
204 Flags |= Rel::Alias; // continue with the alias
|
236
|
205 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
|
|
206 // FIXME: improve common dependent scope using name lookup in primary
|
|
207 // templates.
|
|
208 Flags |= Rel::Alias;
|
150
|
209 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
|
236
|
210 // Include the introducing UsingDecl, but don't traverse it. This may end
|
|
211 // up including *all* shadows, which we don't want.
|
|
212 // Don't apply this logic to UsingEnumDecl, which can't easily be
|
|
213 // conflated with the aliases it introduces.
|
|
214 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
|
|
215 report(USD->getIntroducer(), Flags | Rel::Alias);
|
150
|
216 // Shadow decls are synthetic and not themselves interesting.
|
|
217 // Record the underlying decl instead, if allowed.
|
|
218 D = USD->getTargetDecl();
|
221
|
219 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
|
|
220 D = DG->getDeducedTemplate();
|
|
221 } else if (const ObjCImplementationDecl *IID =
|
|
222 dyn_cast<ObjCImplementationDecl>(D)) {
|
|
223 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
|
|
224 // pair as long as the interface isn't implicit.
|
|
225 if (const auto *CID = IID->getClassInterface())
|
|
226 if (const auto *DD = CID->getDefinition())
|
|
227 if (!DD->isImplicitInterfaceDecl())
|
|
228 D = DD;
|
|
229 } else if (const ObjCCategoryImplDecl *CID =
|
|
230 dyn_cast<ObjCCategoryImplDecl>(D)) {
|
|
231 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
|
|
232 D = CID->getCategoryDecl();
|
150
|
233 }
|
221
|
234 if (!D)
|
|
235 return;
|
150
|
236
|
|
237 if (const Decl *Pat = getTemplatePattern(D)) {
|
|
238 assert(Pat != D);
|
|
239 add(Pat, Flags | Rel::TemplatePattern);
|
|
240 // Now continue with the instantiation.
|
|
241 Flags |= Rel::TemplateInstantiation;
|
|
242 }
|
|
243
|
|
244 report(D, Flags);
|
|
245 }
|
|
246
|
|
247 void add(const Stmt *S, RelSet Flags) {
|
|
248 if (!S)
|
|
249 return;
|
|
250 debug(*S, Flags);
|
|
251 struct Visitor : public ConstStmtVisitor<Visitor> {
|
|
252 TargetFinder &Outer;
|
|
253 RelSet Flags;
|
|
254 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
|
|
255
|
|
256 void VisitCallExpr(const CallExpr *CE) {
|
|
257 Outer.add(CE->getCalleeDecl(), Flags);
|
|
258 }
|
|
259 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
|
|
260 Outer.add(E->getNamedConcept(), Flags);
|
|
261 }
|
|
262 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
|
|
263 const Decl *D = DRE->getDecl();
|
|
264 // UsingShadowDecl allows us to record the UsingDecl.
|
|
265 // getFoundDecl() returns the wrong thing in other cases (templates).
|
|
266 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
|
|
267 D = USD;
|
|
268 Outer.add(D, Flags);
|
|
269 }
|
|
270 void VisitMemberExpr(const MemberExpr *ME) {
|
|
271 const Decl *D = ME->getMemberDecl();
|
|
272 if (auto *USD =
|
|
273 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
|
|
274 D = USD;
|
|
275 Outer.add(D, Flags);
|
|
276 }
|
|
277 void VisitOverloadExpr(const OverloadExpr *OE) {
|
|
278 for (auto *D : OE->decls())
|
|
279 Outer.add(D, Flags);
|
|
280 }
|
|
281 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
|
|
282 Outer.add(SE->getPack(), Flags);
|
|
283 }
|
|
284 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
|
|
285 Outer.add(CCE->getConstructor(), Flags);
|
|
286 }
|
|
287 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
|
|
288 for (const DesignatedInitExpr::Designator &D :
|
|
289 llvm::reverse(DIE->designators()))
|
|
290 if (D.isFieldDesignator()) {
|
252
|
291 Outer.add(D.getFieldDecl(), Flags);
|
150
|
292 // We don't know which designator was intended, we assume the outer.
|
|
293 break;
|
|
294 }
|
|
295 }
|
173
|
296 void VisitGotoStmt(const GotoStmt *Goto) {
|
|
297 if (auto *LabelDecl = Goto->getLabel())
|
|
298 Outer.add(LabelDecl, Flags);
|
|
299 }
|
|
300 void VisitLabelStmt(const LabelStmt *Label) {
|
|
301 if (auto *LabelDecl = Label->getDecl())
|
|
302 Outer.add(LabelDecl, Flags);
|
|
303 }
|
150
|
304 void
|
|
305 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
|
221
|
306 if (Outer.Resolver) {
|
|
307 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
|
|
308 Outer.add(D, Flags);
|
|
309 }
|
150
|
310 }
|
|
311 }
|
|
312 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
|
221
|
313 if (Outer.Resolver) {
|
|
314 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
|
|
315 Outer.add(D, Flags);
|
|
316 }
|
150
|
317 }
|
|
318 }
|
|
319 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
|
|
320 Outer.add(OIRE->getDecl(), Flags);
|
|
321 }
|
|
322 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
|
|
323 Outer.add(OME->getMethodDecl(), Flags);
|
|
324 }
|
|
325 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
|
|
326 if (OPRE->isExplicitProperty())
|
|
327 Outer.add(OPRE->getExplicitProperty(), Flags);
|
|
328 else {
|
|
329 if (OPRE->isMessagingGetter())
|
|
330 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
|
|
331 if (OPRE->isMessagingSetter())
|
|
332 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
|
|
333 }
|
|
334 }
|
|
335 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
|
|
336 Outer.add(OPE->getProtocol(), Flags);
|
|
337 }
|
|
338 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
|
|
339 Outer.add(OVE->getSourceExpr(), Flags);
|
|
340 }
|
|
341 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
|
|
342 Outer.add(POE->getSyntacticForm(), Flags);
|
|
343 }
|
221
|
344 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
|
|
345 Outer.add(CNE->getOperatorNew(), Flags);
|
|
346 }
|
|
347 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
|
|
348 Outer.add(CDE->getOperatorDelete(), Flags);
|
|
349 }
|
252
|
350 void
|
|
351 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
|
|
352 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
|
|
353 }
|
150
|
354 };
|
|
355 Visitor(*this, Flags).Visit(S);
|
|
356 }
|
|
357
|
|
358 void add(QualType T, RelSet Flags) {
|
|
359 if (T.isNull())
|
|
360 return;
|
|
361 debug(T, Flags);
|
|
362 struct Visitor : public TypeVisitor<Visitor> {
|
|
363 TargetFinder &Outer;
|
|
364 RelSet Flags;
|
|
365 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
|
|
366
|
|
367 void VisitTagType(const TagType *TT) {
|
|
368 Outer.add(TT->getAsTagDecl(), Flags);
|
|
369 }
|
|
370
|
|
371 void VisitElaboratedType(const ElaboratedType *ET) {
|
|
372 Outer.add(ET->desugar(), Flags);
|
|
373 }
|
|
374
|
236
|
375 void VisitUsingType(const UsingType *ET) {
|
|
376 Outer.add(ET->getFoundDecl(), Flags);
|
|
377 }
|
|
378
|
150
|
379 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
|
|
380 Outer.add(ICNT->getDecl(), Flags);
|
|
381 }
|
|
382
|
|
383 void VisitDecltypeType(const DecltypeType *DTT) {
|
|
384 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
|
|
385 }
|
|
386 void VisitDeducedType(const DeducedType *DT) {
|
|
387 // FIXME: In practice this doesn't work: the AutoType you find inside
|
|
388 // TypeLoc never has a deduced type. https://llvm.org/PR42914
|
236
|
389 Outer.add(DT->getDeducedType(), Flags);
|
|
390 }
|
|
391 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
|
|
392 Outer.add(UUT->getDecl(), Flags);
|
150
|
393 }
|
|
394 void VisitDeducedTemplateSpecializationType(
|
|
395 const DeducedTemplateSpecializationType *DTST) {
|
236
|
396 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
|
|
397 Outer.add(USD, Flags);
|
|
398
|
150
|
399 // FIXME: This is a workaround for https://llvm.org/PR42914,
|
|
400 // which is causing DTST->getDeducedType() to be empty. We
|
|
401 // fall back to the template pattern and miss the instantiation
|
|
402 // even when it's known in principle. Once that bug is fixed,
|
236
|
403 // the following code can be removed (the existing handling in
|
150
|
404 // VisitDeducedType() is sufficient).
|
|
405 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
|
|
406 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
|
|
407 }
|
221
|
408 void VisitDependentNameType(const DependentNameType *DNT) {
|
|
409 if (Outer.Resolver) {
|
|
410 for (const NamedDecl *ND :
|
|
411 Outer.Resolver->resolveDependentNameType(DNT)) {
|
|
412 Outer.add(ND, Flags);
|
|
413 }
|
|
414 }
|
|
415 }
|
|
416 void VisitDependentTemplateSpecializationType(
|
|
417 const DependentTemplateSpecializationType *DTST) {
|
|
418 if (Outer.Resolver) {
|
|
419 for (const NamedDecl *ND :
|
|
420 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
|
|
421 Outer.add(ND, Flags);
|
|
422 }
|
|
423 }
|
|
424 }
|
150
|
425 void VisitTypedefType(const TypedefType *TT) {
|
236
|
426 if (shouldSkipTypedef(TT->getDecl()))
|
|
427 return;
|
150
|
428 Outer.add(TT->getDecl(), Flags);
|
|
429 }
|
|
430 void
|
|
431 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
|
|
432 // Have to handle these case-by-case.
|
|
433
|
236
|
434 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
|
|
435 Outer.add(UTN, Flags);
|
|
436
|
150
|
437 // templated type aliases: there's no specialized/instantiated using
|
|
438 // decl to point to. So try to find a decl for the underlying type
|
|
439 // (after substitution), and failing that point to the (templated) using
|
|
440 // decl.
|
|
441 if (TST->isTypeAlias()) {
|
|
442 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
|
|
443 // Don't *traverse* the alias, which would result in traversing the
|
|
444 // template of the underlying type.
|
|
445 Outer.report(
|
|
446 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
|
|
447 Flags | Rel::Alias | Rel::TemplatePattern);
|
|
448 }
|
|
449 // specializations of template template parameters aren't instantiated
|
|
450 // into decls, so they must refer to the parameter itself.
|
|
451 else if (const auto *Parm =
|
|
452 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
453 TST->getTemplateName().getAsTemplateDecl()))
|
|
454 Outer.add(Parm, Flags);
|
|
455 // class template specializations have a (specialized) CXXRecordDecl.
|
|
456 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
|
|
457 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
|
|
458 else {
|
|
459 // fallback: the (un-specialized) declaration from primary template.
|
|
460 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
|
|
461 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
|
|
462 }
|
|
463 }
|
236
|
464 void
|
|
465 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
|
|
466 Outer.add(STTPT->getReplacementType(), Flags);
|
|
467 }
|
150
|
468 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
|
|
469 Outer.add(TTPT->getDecl(), Flags);
|
|
470 }
|
|
471 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
|
|
472 Outer.add(OIT->getDecl(), Flags);
|
|
473 }
|
|
474 };
|
|
475 Visitor(*this, Flags).Visit(T.getTypePtr());
|
|
476 }
|
|
477
|
|
478 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
|
|
479 if (!NNS)
|
|
480 return;
|
|
481 debug(*NNS, Flags);
|
|
482 switch (NNS->getKind()) {
|
|
483 case NestedNameSpecifier::Namespace:
|
|
484 add(NNS->getAsNamespace(), Flags);
|
|
485 return;
|
|
486 case NestedNameSpecifier::NamespaceAlias:
|
|
487 add(NNS->getAsNamespaceAlias(), Flags);
|
|
488 return;
|
221
|
489 case NestedNameSpecifier::Identifier:
|
|
490 if (Resolver) {
|
|
491 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
|
|
492 Flags);
|
|
493 }
|
|
494 return;
|
150
|
495 case NestedNameSpecifier::TypeSpec:
|
|
496 case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
497 add(QualType(NNS->getAsType(), 0), Flags);
|
|
498 return;
|
|
499 case NestedNameSpecifier::Global:
|
|
500 // This should be TUDecl, but we can't get a pointer to it!
|
|
501 return;
|
|
502 case NestedNameSpecifier::Super:
|
|
503 add(NNS->getAsRecordDecl(), Flags);
|
|
504 return;
|
|
505 }
|
|
506 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
|
|
507 }
|
|
508
|
|
509 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
|
|
510 if (!CCI)
|
|
511 return;
|
|
512 debug(*CCI, Flags);
|
|
513
|
|
514 if (CCI->isAnyMemberInitializer())
|
|
515 add(CCI->getAnyMember(), Flags);
|
|
516 // Constructor calls contain a TypeLoc node, so we don't handle them here.
|
|
517 }
|
221
|
518
|
|
519 void add(const TemplateArgument &Arg, RelSet Flags) {
|
|
520 // Only used for template template arguments.
|
|
521 // For type and non-type template arguments, SelectionTree
|
|
522 // will hit a more specific node (e.g. a TypeLoc or a
|
|
523 // DeclRefExpr).
|
|
524 if (Arg.getKind() == TemplateArgument::Template ||
|
|
525 Arg.getKind() == TemplateArgument::TemplateExpansion) {
|
236
|
526 if (TemplateDecl *TD =
|
|
527 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
|
221
|
528 report(TD, Flags);
|
|
529 }
|
236
|
530 if (const auto *USD =
|
|
531 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
|
|
532 add(USD, Flags);
|
221
|
533 }
|
|
534 }
|
150
|
535 };
|
|
536
|
|
537 } // namespace
|
|
538
|
|
539 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
|
221
|
540 allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
|
150
|
541 dlog("allTargetDecls({0})", nodeToString(N));
|
221
|
542 TargetFinder Finder(Resolver);
|
150
|
543 DeclRelationSet Flags;
|
|
544 if (const Decl *D = N.get<Decl>())
|
|
545 Finder.add(D, Flags);
|
|
546 else if (const Stmt *S = N.get<Stmt>())
|
|
547 Finder.add(S, Flags);
|
|
548 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
|
|
549 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
|
|
550 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
|
|
551 Finder.add(NNS, Flags);
|
|
552 else if (const TypeLoc *TL = N.get<TypeLoc>())
|
|
553 Finder.add(TL->getType(), Flags);
|
|
554 else if (const QualType *QT = N.get<QualType>())
|
|
555 Finder.add(*QT, Flags);
|
|
556 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
|
|
557 Finder.add(CCI, Flags);
|
221
|
558 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
|
|
559 Finder.add(TAL->getArgument(), Flags);
|
|
560 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
|
|
561 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
|
236
|
562 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
|
|
563 Finder.add(PL->getProtocol(), Flags);
|
150
|
564 return Finder.takeDecls();
|
|
565 }
|
|
566
|
|
567 llvm::SmallVector<const NamedDecl *, 1>
|
221
|
568 targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
|
|
569 const HeuristicResolver *Resolver) {
|
150
|
570 llvm::SmallVector<const NamedDecl *, 1> Result;
|
221
|
571 for (const auto &Entry : allTargetDecls(N, Resolver)) {
|
150
|
572 if (!(Entry.second & ~Mask))
|
|
573 Result.push_back(Entry.first);
|
|
574 }
|
|
575 return Result;
|
|
576 }
|
|
577
|
|
578 llvm::SmallVector<const NamedDecl *, 1>
|
221
|
579 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
|
|
580 const HeuristicResolver *Resolver) {
|
150
|
581 assert(!(Mask & (DeclRelation::TemplatePattern |
|
|
582 DeclRelation::TemplateInstantiation)) &&
|
173
|
583 "explicitReferenceTargets handles templates on its own");
|
221
|
584 auto Decls = allTargetDecls(N, Resolver);
|
150
|
585
|
|
586 // We prefer to return template instantiation, but fallback to template
|
|
587 // pattern if instantiation is not available.
|
|
588 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
|
|
589
|
|
590 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
|
|
591 llvm::SmallVector<const NamedDecl *, 1> Targets;
|
|
592 bool SeenTemplateInstantiations = false;
|
|
593 for (auto &D : Decls) {
|
|
594 if (D.second & ~Mask)
|
|
595 continue;
|
|
596 if (D.second & DeclRelation::TemplatePattern) {
|
|
597 TemplatePatterns.push_back(D.first);
|
|
598 continue;
|
|
599 }
|
|
600 if (D.second & DeclRelation::TemplateInstantiation)
|
|
601 SeenTemplateInstantiations = true;
|
|
602 Targets.push_back(D.first);
|
|
603 }
|
|
604 if (!SeenTemplateInstantiations)
|
|
605 Targets.insert(Targets.end(), TemplatePatterns.begin(),
|
|
606 TemplatePatterns.end());
|
|
607 return Targets;
|
|
608 }
|
|
609
|
|
610 namespace {
|
221
|
611 llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
|
|
612 const HeuristicResolver *Resolver) {
|
150
|
613 struct Visitor : ConstDeclVisitor<Visitor> {
|
221
|
614 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
615
|
|
616 const HeuristicResolver *Resolver;
|
|
617 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
618
|
|
619 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
|
|
620 // We want to keep it as non-declaration references, as the
|
|
621 // "using namespace" declaration doesn't have a name.
|
|
622 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
|
|
623 D->getIdentLocation(),
|
|
624 /*IsDecl=*/false,
|
|
625 {D->getNominatedNamespaceAsWritten()}});
|
|
626 }
|
|
627
|
|
628 void VisitUsingDecl(const UsingDecl *D) {
|
|
629 // "using ns::identifier;" is a non-declaration reference.
|
221
|
630 Refs.push_back(ReferenceLoc{
|
|
631 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
|
|
632 explicitReferenceTargets(DynTypedNode::create(*D),
|
|
633 DeclRelation::Underlying, Resolver)});
|
150
|
634 }
|
|
635
|
236
|
636 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
|
|
637 // "using enum ns::E" is a non-declaration reference.
|
|
638 // The reference is covered by the embedded typeloc.
|
|
639 // Don't use the default VisitNamedDecl, which would report a declaration.
|
|
640 }
|
|
641
|
150
|
642 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
|
|
643 // For namespace alias, "namespace Foo = Target;", we add two references.
|
|
644 // Add a declaration reference for Foo.
|
|
645 VisitNamedDecl(D);
|
|
646 // Add a non-declaration reference for Target.
|
|
647 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
|
|
648 D->getTargetNameLoc(),
|
|
649 /*IsDecl=*/false,
|
|
650 {D->getAliasedNamespace()}});
|
|
651 }
|
|
652
|
|
653 void VisitNamedDecl(const NamedDecl *ND) {
|
|
654 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
|
|
655 // as their underlying decls, covering the same range, will be visited.
|
|
656 if (llvm::isa<ClassTemplateDecl>(ND) ||
|
|
657 llvm::isa<FunctionTemplateDecl>(ND) ||
|
|
658 llvm::isa<VarTemplateDecl>(ND) ||
|
|
659 llvm::isa<TypeAliasTemplateDecl>(ND))
|
|
660 return;
|
|
661 // FIXME: decide on how to surface destructors when we need them.
|
|
662 if (llvm::isa<CXXDestructorDecl>(ND))
|
|
663 return;
|
|
664 // Filter anonymous decls, name location will point outside the name token
|
|
665 // and the clients are not prepared to handle that.
|
|
666 if (ND->getDeclName().isIdentifier() &&
|
|
667 !ND->getDeclName().getAsIdentifierInfo())
|
|
668 return;
|
|
669 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
|
|
670 ND->getLocation(),
|
|
671 /*IsDecl=*/true,
|
|
672 {ND}});
|
|
673 }
|
221
|
674
|
|
675 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
|
|
676 // The class template name in a deduction guide targets the class
|
|
677 // template.
|
|
678 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
|
|
679 DG->getNameInfo().getLoc(),
|
|
680 /*IsDecl=*/false,
|
|
681 {DG->getDeducedTemplate()}});
|
|
682 }
|
|
683
|
|
684 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
|
|
685 // The name may have several tokens, we can only report the first.
|
|
686 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
687 OMD->getSelectorStartLoc(),
|
|
688 /*IsDecl=*/true,
|
|
689 {OMD}});
|
|
690 }
|
|
691
|
|
692 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
|
|
693 // getLocation is the extended class's location, not the category's.
|
|
694 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
695 OCD->getLocation(),
|
|
696 /*IsDecl=*/false,
|
|
697 {OCD->getClassInterface()}});
|
|
698 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
699 OCD->getCategoryNameLoc(),
|
|
700 /*IsDecl=*/true,
|
|
701 {OCD}});
|
|
702 }
|
|
703
|
|
704 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
|
|
705 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
706 OCID->getLocation(),
|
|
707 /*IsDecl=*/false,
|
|
708 {OCID->getClassInterface()}});
|
|
709 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
710 OCID->getCategoryNameLoc(),
|
252
|
711 /*IsDecl=*/false,
|
|
712 {OCID->getCategoryDecl()}});
|
|
713 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
714 OCID->getCategoryNameLoc(),
|
221
|
715 /*IsDecl=*/true,
|
252
|
716 {OCID}});
|
|
717 }
|
|
718
|
|
719 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
|
|
720 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
721 OIMD->getLocation(),
|
|
722 /*IsDecl=*/false,
|
|
723 {OIMD->getClassInterface()}});
|
|
724 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
725 OIMD->getLocation(),
|
|
726 /*IsDecl=*/true,
|
|
727 {OIMD}});
|
221
|
728 }
|
150
|
729 };
|
|
730
|
221
|
731 Visitor V{Resolver};
|
150
|
732 V.Visit(D);
|
|
733 return V.Refs;
|
|
734 }
|
|
735
|
221
|
736 llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
|
|
737 const HeuristicResolver *Resolver) {
|
150
|
738 struct Visitor : ConstStmtVisitor<Visitor> {
|
221
|
739 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
740
|
|
741 const HeuristicResolver *Resolver;
|
150
|
742 // FIXME: handle more complicated cases: more ObjC, designated initializers.
|
221
|
743 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
744
|
|
745 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
|
|
746 Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
|
|
747 E->getConceptNameLoc(),
|
|
748 /*IsDecl=*/false,
|
|
749 {E->getNamedConcept()}});
|
|
750 }
|
173
|
751
|
150
|
752 void VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
753 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
754 E->getNameInfo().getLoc(),
|
|
755 /*IsDecl=*/false,
|
|
756 {E->getFoundDecl()}});
|
|
757 }
|
|
758
|
173
|
759 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
|
|
760 Refs.push_back(ReferenceLoc{
|
|
761 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
|
221
|
762 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
173
|
763 }
|
|
764
|
150
|
765 void VisitMemberExpr(const MemberExpr *E) {
|
|
766 // Skip destructor calls to avoid duplication: TypeLoc within will be
|
|
767 // visited separately.
|
221
|
768 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
|
150
|
769 return;
|
|
770 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
771 E->getMemberNameInfo().getLoc(),
|
|
772 /*IsDecl=*/false,
|
|
773 {E->getFoundDecl()}});
|
|
774 }
|
|
775
|
173
|
776 void
|
|
777 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
|
221
|
778 Refs.push_back(ReferenceLoc{
|
|
779 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
|
|
780 /*IsDecl=*/false,
|
|
781 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
173
|
782 }
|
|
783
|
150
|
784 void VisitOverloadExpr(const OverloadExpr *E) {
|
|
785 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
|
|
786 E->getNameInfo().getLoc(),
|
|
787 /*IsDecl=*/false,
|
|
788 llvm::SmallVector<const NamedDecl *, 1>(
|
|
789 E->decls().begin(), E->decls().end())});
|
|
790 }
|
|
791
|
|
792 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
|
|
793 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
794 E->getPackLoc(),
|
|
795 /*IsDecl=*/false,
|
|
796 {E->getPack()}});
|
|
797 }
|
|
798
|
|
799 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
|
|
800 Refs.push_back(ReferenceLoc{
|
|
801 NestedNameSpecifierLoc(), E->getLocation(),
|
|
802 /*IsDecl=*/false,
|
|
803 // Select the getter, setter, or @property depending on the call.
|
221
|
804 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
|
|
805 }
|
|
806
|
|
807 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
|
|
808 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
809 OIRE->getLocation(),
|
|
810 /*IsDecl=*/false,
|
|
811 {OIRE->getDecl()}});
|
|
812 }
|
|
813
|
|
814 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
|
|
815 // The name may have several tokens, we can only report the first.
|
|
816 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
817 E->getSelectorStartLoc(),
|
|
818 /*IsDecl=*/false,
|
|
819 {E->getMethodDecl()}});
|
150
|
820 }
|
|
821
|
|
822 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
|
|
823 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
|
|
824 if (!D.isFieldDesignator())
|
|
825 continue;
|
173
|
826
|
221
|
827 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
828 D.getFieldLoc(),
|
|
829 /*IsDecl=*/false,
|
252
|
830 {D.getFieldDecl()}});
|
150
|
831 }
|
|
832 }
|
173
|
833
|
|
834 void VisitGotoStmt(const GotoStmt *GS) {
|
221
|
835 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
836 GS->getLabelLoc(),
|
|
837 /*IsDecl=*/false,
|
|
838 {GS->getLabel()}});
|
173
|
839 }
|
|
840
|
|
841 void VisitLabelStmt(const LabelStmt *LS) {
|
|
842 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
843 LS->getIdentLoc(),
|
|
844 /*IsDecl=*/true,
|
|
845 {LS->getDecl()}});
|
|
846 }
|
150
|
847 };
|
|
848
|
221
|
849 Visitor V{Resolver};
|
173
|
850 V.Visit(S);
|
150
|
851 return V.Refs;
|
|
852 }
|
|
853
|
221
|
854 llvm::SmallVector<ReferenceLoc>
|
|
855 refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
|
150
|
856 struct Visitor : TypeLocVisitor<Visitor> {
|
221
|
857 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
|
|
858
|
|
859 const HeuristicResolver *Resolver;
|
|
860 llvm::SmallVector<ReferenceLoc> Refs;
|
150
|
861
|
|
862 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
|
|
863 // We only know about qualifier, rest if filled by inner locations.
|
221
|
864 size_t InitialSize = Refs.size();
|
150
|
865 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
|
221
|
866 size_t NewSize = Refs.size();
|
|
867 // Add qualifier for the newly-added refs.
|
|
868 for (unsigned I = InitialSize; I < NewSize; ++I) {
|
|
869 ReferenceLoc *Ref = &Refs[I];
|
|
870 // Fill in the qualifier.
|
|
871 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
|
|
872 Ref->Qualifier = L.getQualifierLoc();
|
|
873 }
|
150
|
874 }
|
|
875
|
236
|
876 void VisitUsingTypeLoc(UsingTypeLoc L) {
|
|
877 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
878 L.getLocalSourceRange().getBegin(),
|
|
879 /*IsDecl=*/false,
|
|
880 {L.getFoundDecl()}});
|
|
881 }
|
|
882
|
150
|
883 void VisitTagTypeLoc(TagTypeLoc L) {
|
221
|
884 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
885 L.getNameLoc(),
|
|
886 /*IsDecl=*/false,
|
|
887 {L.getDecl()}});
|
150
|
888 }
|
|
889
|
|
890 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
|
221
|
891 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
892 L.getNameLoc(),
|
|
893 /*IsDecl=*/false,
|
|
894 {L.getDecl()}});
|
150
|
895 }
|
|
896
|
|
897 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
|
|
898 // We must ensure template type aliases are included in results if they
|
|
899 // were written in the source code, e.g. in
|
|
900 // template <class T> using valias = vector<T>;
|
|
901 // ^valias<int> x;
|
|
902 // 'explicitReferenceTargets' will return:
|
|
903 // 1. valias with mask 'Alias'.
|
|
904 // 2. 'vector<int>' with mask 'Underlying'.
|
|
905 // we want to return only #1 in this case.
|
221
|
906 Refs.push_back(ReferenceLoc{
|
150
|
907 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
|
|
908 explicitReferenceTargets(DynTypedNode::create(L.getType()),
|
221
|
909 DeclRelation::Alias, Resolver)});
|
150
|
910 }
|
|
911 void VisitDeducedTemplateSpecializationTypeLoc(
|
|
912 DeducedTemplateSpecializationTypeLoc L) {
|
221
|
913 Refs.push_back(ReferenceLoc{
|
150
|
914 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
|
|
915 explicitReferenceTargets(DynTypedNode::create(L.getType()),
|
221
|
916 DeclRelation::Alias, Resolver)});
|
150
|
917 }
|
|
918
|
|
919 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
|
221
|
920 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
921 TL.getNameLoc(),
|
|
922 /*IsDecl=*/false,
|
|
923 {TL.getDecl()}});
|
150
|
924 }
|
|
925
|
|
926 void VisitDependentTemplateSpecializationTypeLoc(
|
|
927 DependentTemplateSpecializationTypeLoc L) {
|
221
|
928 Refs.push_back(
|
|
929 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
|
|
930 /*IsDecl=*/false,
|
|
931 explicitReferenceTargets(
|
|
932 DynTypedNode::create(L.getType()), {}, Resolver)});
|
150
|
933 }
|
|
934
|
|
935 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
|
221
|
936 Refs.push_back(
|
|
937 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
|
|
938 /*IsDecl=*/false,
|
|
939 explicitReferenceTargets(
|
|
940 DynTypedNode::create(L.getType()), {}, Resolver)});
|
150
|
941 }
|
|
942
|
|
943 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
|
236
|
944 if (shouldSkipTypedef(L.getTypedefNameDecl()))
|
|
945 return;
|
221
|
946 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
947 L.getNameLoc(),
|
|
948 /*IsDecl=*/false,
|
|
949 {L.getTypedefNameDecl()}});
|
|
950 }
|
|
951
|
|
952 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
|
|
953 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
|
|
954 L.getNameLoc(),
|
|
955 /*IsDecl=*/false,
|
|
956 {L.getIFaceDecl()}});
|
|
957 }
|
150
|
958 };
|
|
959
|
221
|
960 Visitor V{Resolver};
|
150
|
961 V.Visit(L.getUnqualifiedLoc());
|
221
|
962 return V.Refs;
|
150
|
963 }
|
|
964
|
|
965 class ExplicitReferenceCollector
|
|
966 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
|
|
967 public:
|
221
|
968 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
|
|
969 const HeuristicResolver *Resolver)
|
|
970 : Out(Out), Resolver(Resolver) {
|
150
|
971 assert(Out);
|
|
972 }
|
|
973
|
|
974 bool VisitTypeLoc(TypeLoc TTL) {
|
221
|
975 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
|
150
|
976 return true;
|
|
977 visitNode(DynTypedNode::create(TTL));
|
|
978 return true;
|
|
979 }
|
|
980
|
|
981 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
|
|
982 // ElaboratedTypeLoc will reports information for its inner type loc.
|
|
983 // Otherwise we loose information about inner types loc's qualifier.
|
|
984 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
|
236
|
985 if (L.getBeginLoc() == Inner.getBeginLoc())
|
|
986 return RecursiveASTVisitor::TraverseTypeLoc(Inner);
|
|
987 else
|
|
988 TypeLocsToSkip.insert(Inner.getBeginLoc());
|
150
|
989 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
|
|
990 }
|
|
991
|
173
|
992 bool VisitStmt(Stmt *S) {
|
|
993 visitNode(DynTypedNode::create(*S));
|
150
|
994 return true;
|
|
995 }
|
|
996
|
|
997 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
|
|
998 visitNode(DynTypedNode::create(*OVE));
|
|
999 // Not clear why the source expression is skipped by default...
|
|
1000 // FIXME: can we just make RecursiveASTVisitor do this?
|
|
1001 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
|
|
1002 }
|
|
1003
|
|
1004 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
|
|
1005 visitNode(DynTypedNode::create(*POE));
|
|
1006 // Traverse only the syntactic form to find the *written* references.
|
|
1007 // (The semantic form also contains lots of duplication)
|
|
1008 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
|
|
1009 }
|
|
1010
|
|
1011 // We re-define Traverse*, since there's no corresponding Visit*.
|
|
1012 // TemplateArgumentLoc is the only way to get locations for references to
|
|
1013 // template template parameters.
|
|
1014 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
|
|
1015 switch (A.getArgument().getKind()) {
|
|
1016 case TemplateArgument::Template:
|
|
1017 case TemplateArgument::TemplateExpansion:
|
|
1018 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
|
|
1019 A.getTemplateNameLoc(),
|
221
|
1020 /*IsDecl=*/false,
|
|
1021 {A.getArgument()
|
|
1022 .getAsTemplateOrTemplatePattern()
|
|
1023 .getAsTemplateDecl()}},
|
150
|
1024 DynTypedNode::create(A.getArgument()));
|
|
1025 break;
|
|
1026 case TemplateArgument::Declaration:
|
|
1027 break; // FIXME: can this actually happen in TemplateArgumentLoc?
|
|
1028 case TemplateArgument::Integral:
|
|
1029 case TemplateArgument::Null:
|
|
1030 case TemplateArgument::NullPtr:
|
|
1031 break; // no references.
|
|
1032 case TemplateArgument::Pack:
|
|
1033 case TemplateArgument::Type:
|
|
1034 case TemplateArgument::Expression:
|
|
1035 break; // Handled by VisitType and VisitExpression.
|
|
1036 };
|
|
1037 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
|
|
1038 }
|
|
1039
|
|
1040 bool VisitDecl(Decl *D) {
|
|
1041 visitNode(DynTypedNode::create(*D));
|
|
1042 return true;
|
|
1043 }
|
|
1044
|
|
1045 // We have to use Traverse* because there is no corresponding Visit*.
|
|
1046 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
|
|
1047 if (!L.getNestedNameSpecifier())
|
|
1048 return true;
|
|
1049 visitNode(DynTypedNode::create(L));
|
|
1050 // Inner type is missing information about its qualifier, skip it.
|
|
1051 if (auto TL = L.getTypeLoc())
|
221
|
1052 TypeLocsToSkip.insert(TL.getBeginLoc());
|
150
|
1053 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
|
|
1054 }
|
|
1055
|
236
|
1056 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
|
|
1057 visitNode(DynTypedNode::create(ProtocolLoc));
|
|
1058 return true;
|
|
1059 }
|
|
1060
|
150
|
1061 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
|
|
1062 visitNode(DynTypedNode::create(*Init));
|
|
1063 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
|
|
1064 }
|
|
1065
|
252
|
1066 bool TraverseTypeConstraint(const TypeConstraint *TC) {
|
|
1067 // We want to handle all ConceptReferences but RAV is missing a
|
|
1068 // polymorphic Visit or Traverse method for it, so we handle
|
|
1069 // TypeConstraints specially here.
|
|
1070 Out(ReferenceLoc{TC->getNestedNameSpecifierLoc(),
|
|
1071 TC->getConceptNameLoc(),
|
|
1072 /*IsDecl=*/false,
|
|
1073 {TC->getNamedConcept()}});
|
|
1074 return RecursiveASTVisitor::TraverseTypeConstraint(TC);
|
|
1075 }
|
|
1076
|
150
|
1077 private:
|
|
1078 /// Obtain information about a reference directly defined in \p N. Does not
|
|
1079 /// recurse into child nodes, e.g. do not expect references for constructor
|
|
1080 /// initializers
|
|
1081 ///
|
|
1082 /// Any of the fields in the returned structure can be empty, but not all of
|
|
1083 /// them, e.g.
|
|
1084 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
|
|
1085 /// source location information may be missing,
|
|
1086 /// - for dependent code, targets may be empty.
|
|
1087 ///
|
|
1088 /// (!) For the purposes of this function declarations are not considered to
|
|
1089 /// be references. However, declarations can have references inside them,
|
|
1090 /// e.g. 'namespace foo = std' references namespace 'std' and this
|
|
1091 /// function will return the corresponding reference.
|
221
|
1092 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
|
150
|
1093 if (auto *D = N.get<Decl>())
|
221
|
1094 return refInDecl(D, Resolver);
|
173
|
1095 if (auto *S = N.get<Stmt>())
|
221
|
1096 return refInStmt(S, Resolver);
|
150
|
1097 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
|
|
1098 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
|
|
1099 return {ReferenceLoc{
|
|
1100 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
|
|
1101 explicitReferenceTargets(
|
|
1102 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
|
221
|
1103 DeclRelation::Alias, Resolver)}};
|
150
|
1104 }
|
|
1105 if (const TypeLoc *TL = N.get<TypeLoc>())
|
221
|
1106 return refInTypeLoc(*TL, Resolver);
|
150
|
1107 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
|
|
1108 // Other type initializers (e.g. base initializer) are handled by visiting
|
|
1109 // the typeLoc.
|
|
1110 if (CCI->isAnyMemberInitializer()) {
|
|
1111 return {ReferenceLoc{NestedNameSpecifierLoc(),
|
|
1112 CCI->getMemberLocation(),
|
|
1113 /*IsDecl=*/false,
|
|
1114 {CCI->getAnyMember()}}};
|
|
1115 }
|
|
1116 }
|
236
|
1117 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
|
|
1118 return {ReferenceLoc{NestedNameSpecifierLoc(),
|
|
1119 PL->getLocation(),
|
|
1120 /*IsDecl=*/false,
|
|
1121 {PL->getProtocol()}}};
|
|
1122
|
150
|
1123 // We do not have location information for other nodes (QualType, etc)
|
|
1124 return {};
|
|
1125 }
|
|
1126
|
|
1127 void visitNode(DynTypedNode N) {
|
221
|
1128 for (auto &R : explicitReference(N))
|
|
1129 reportReference(std::move(R), N);
|
150
|
1130 }
|
|
1131
|
221
|
1132 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
|
|
1133 // Strip null targets that can arise from invalid code.
|
|
1134 // (This avoids having to check for null everywhere we insert)
|
|
1135 llvm::erase_value(Ref.Targets, nullptr);
|
150
|
1136 // Our promise is to return only references from the source code. If we lack
|
|
1137 // location information, skip these nodes.
|
|
1138 // Normally this should not happen in practice, unless there are bugs in the
|
|
1139 // traversals or users started the traversal at an implicit node.
|
|
1140 if (Ref.NameLoc.isInvalid()) {
|
|
1141 dlog("invalid location at node {0}", nodeToString(N));
|
|
1142 return;
|
|
1143 }
|
|
1144 Out(Ref);
|
|
1145 }
|
|
1146
|
|
1147 llvm::function_ref<void(ReferenceLoc)> Out;
|
221
|
1148 const HeuristicResolver *Resolver;
|
150
|
1149 /// TypeLocs starting at these locations must be skipped, see
|
|
1150 /// TraverseElaboratedTypeSpecifierLoc for details.
|
221
|
1151 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
|
150
|
1152 };
|
|
1153 } // namespace
|
|
1154
|
|
1155 void findExplicitReferences(const Stmt *S,
|
221
|
1156 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1157 const HeuristicResolver *Resolver) {
|
150
|
1158 assert(S);
|
221
|
1159 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
|
150
|
1160 }
|
|
1161 void findExplicitReferences(const Decl *D,
|
221
|
1162 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1163 const HeuristicResolver *Resolver) {
|
150
|
1164 assert(D);
|
221
|
1165 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
|
150
|
1166 }
|
|
1167 void findExplicitReferences(const ASTContext &AST,
|
221
|
1168 llvm::function_ref<void(ReferenceLoc)> Out,
|
|
1169 const HeuristicResolver *Resolver) {
|
|
1170 ExplicitReferenceCollector(Out, Resolver)
|
|
1171 .TraverseAST(const_cast<ASTContext &>(AST));
|
150
|
1172 }
|
|
1173
|
|
1174 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
|
|
1175 switch (R) {
|
|
1176 #define REL_CASE(X) \
|
|
1177 case DeclRelation::X: \
|
|
1178 return OS << #X;
|
|
1179 REL_CASE(Alias);
|
|
1180 REL_CASE(Underlying);
|
|
1181 REL_CASE(TemplateInstantiation);
|
|
1182 REL_CASE(TemplatePattern);
|
|
1183 #undef REL_CASE
|
|
1184 }
|
|
1185 llvm_unreachable("Unhandled DeclRelation enum");
|
|
1186 }
|
|
1187 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
|
|
1188 const char *Sep = "";
|
|
1189 for (unsigned I = 0; I < RS.S.size(); ++I) {
|
|
1190 if (RS.S.test(I)) {
|
|
1191 OS << Sep << static_cast<DeclRelation>(I);
|
|
1192 Sep = "|";
|
|
1193 }
|
|
1194 }
|
|
1195 return OS;
|
|
1196 }
|
|
1197
|
|
1198 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
|
|
1199 // note we cannot print R.NameLoc without a source manager.
|
|
1200 OS << "targets = {";
|
236
|
1201 llvm::SmallVector<std::string> Targets;
|
150
|
1202 for (const NamedDecl *T : R.Targets) {
|
236
|
1203 llvm::raw_string_ostream Target(Targets.emplace_back());
|
|
1204 Target << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
|
150
|
1205 }
|
236
|
1206 llvm::sort(Targets);
|
|
1207 OS << llvm::join(Targets, ", ");
|
150
|
1208 OS << "}";
|
|
1209 if (R.Qualifier) {
|
|
1210 OS << ", qualifier = '";
|
|
1211 R.Qualifier.getNestedNameSpecifier()->print(OS,
|
|
1212 PrintingPolicy(LangOptions()));
|
|
1213 OS << "'";
|
|
1214 }
|
|
1215 if (R.IsDecl)
|
|
1216 OS << ", decl";
|
|
1217 return OS;
|
|
1218 }
|
|
1219
|
|
1220 } // namespace clangd
|
|
1221 } // namespace clang
|