173
|
1 //===-- lib/Decimal/big-radix-floating-point.h ------------------*- C++ -*-===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #ifndef FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
|
|
10 #define FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
|
|
11
|
252
|
12 // This is a helper class for use in floating-point conversions between
|
|
13 // binary and decimal representations. It holds a multiple-precision
|
173
|
14 // integer value using digits of a radix that is a large even power of ten
|
|
15 // (10,000,000,000,000,000 by default, 10**16). These digits are accompanied
|
|
16 // by a signed exponent that denotes multiplication by a power of ten.
|
|
17 // The effective radix point is to the right of the digits (i.e., they do
|
|
18 // not represent a fraction).
|
|
19 //
|
|
20 // The operations supported by this class are limited to those required
|
|
21 // for conversions between binary and decimal representations; it is not
|
|
22 // a general-purpose facility.
|
|
23
|
|
24 #include "flang/Common/bit-population-count.h"
|
|
25 #include "flang/Common/leading-zero-bit-count.h"
|
|
26 #include "flang/Common/uint128.h"
|
|
27 #include "flang/Decimal/binary-floating-point.h"
|
|
28 #include "flang/Decimal/decimal.h"
|
|
29 #include <cinttypes>
|
|
30 #include <limits>
|
|
31 #include <type_traits>
|
|
32
|
|
33 namespace Fortran::decimal {
|
|
34
|
|
35 static constexpr std::uint64_t TenToThe(int power) {
|
|
36 return power <= 0 ? 1 : 10 * TenToThe(power - 1);
|
|
37 }
|
|
38
|
|
39 // 10**(LOG10RADIX + 3) must be < 2**wordbits, and LOG10RADIX must be
|
|
40 // even, so that pairs of decimal digits do not straddle Digits.
|
|
41 // So LOG10RADIX must be 16 or 6.
|
|
42 template <int PREC, int LOG10RADIX = 16> class BigRadixFloatingPointNumber {
|
|
43 public:
|
|
44 using Real = BinaryFloatingPointNumber<PREC>;
|
|
45 static constexpr int log10Radix{LOG10RADIX};
|
|
46
|
|
47 private:
|
|
48 static constexpr std::uint64_t uint64Radix{TenToThe(log10Radix)};
|
|
49 static constexpr int minDigitBits{
|
|
50 64 - common::LeadingZeroBitCount(uint64Radix)};
|
|
51 using Digit = common::HostUnsignedIntType<minDigitBits>;
|
|
52 static constexpr Digit radix{uint64Radix};
|
|
53 static_assert(radix < std::numeric_limits<Digit>::max() / 1000,
|
|
54 "radix is somehow too big");
|
|
55 static_assert(radix > std::numeric_limits<Digit>::max() / 10000,
|
|
56 "radix is somehow too small");
|
|
57
|
|
58 // The base-2 logarithm of the least significant bit that can arise
|
|
59 // in a subnormal IEEE floating-point number.
|
|
60 static constexpr int minLog2AnyBit{
|
|
61 -Real::exponentBias - Real::binaryPrecision};
|
|
62
|
|
63 // The number of Digits needed to represent the smallest subnormal.
|
|
64 static constexpr int maxDigits{3 - minLog2AnyBit / log10Radix};
|
|
65
|
|
66 public:
|
|
67 explicit BigRadixFloatingPointNumber(
|
221
|
68 enum FortranRounding rounding = RoundNearest)
|
173
|
69 : rounding_{rounding} {}
|
|
70
|
|
71 // Converts a binary floating point value.
|
|
72 explicit BigRadixFloatingPointNumber(
|
221
|
73 Real, enum FortranRounding = RoundNearest);
|
173
|
74
|
|
75 BigRadixFloatingPointNumber &SetToZero() {
|
|
76 isNegative_ = false;
|
|
77 digits_ = 0;
|
|
78 exponent_ = 0;
|
|
79 return *this;
|
|
80 }
|
|
81
|
|
82 // Converts decimal floating-point to binary.
|
|
83 ConversionToBinaryResult<PREC> ConvertToBinary();
|
|
84
|
|
85 // Parses and converts to binary. Handles leading spaces,
|
|
86 // "NaN", & optionally-signed "Inf". Does not skip internal
|
|
87 // spaces.
|
|
88 // The argument is a reference to a pointer that is left
|
|
89 // pointing to the first character that wasn't parsed.
|
236
|
90 ConversionToBinaryResult<PREC> ConvertToBinary(
|
|
91 const char *&, const char *end = nullptr);
|
173
|
92
|
|
93 // Formats a decimal floating-point number to a user buffer.
|
|
94 // May emit "NaN" or "Inf", or an possibly-signed integer.
|
|
95 // No decimal point is written, but if it were, it would be
|
|
96 // after the last digit; the effective decimal exponent is
|
|
97 // returned as part of the result structure so that it can be
|
|
98 // formatted by the client.
|
|
99 ConversionToDecimalResult ConvertToDecimal(
|
|
100 char *, std::size_t, enum DecimalConversionFlags, int digits) const;
|
|
101
|
|
102 // Discard decimal digits not needed to distinguish this value
|
|
103 // from the decimal encodings of two others (viz., the nearest binary
|
|
104 // floating-point numbers immediately below and above this one).
|
|
105 // The last decimal digit may not be uniquely determined in all
|
|
106 // cases, and will be the mean value when that is so (e.g., if
|
|
107 // last decimal digit values 6-8 would all work, it'll be a 7).
|
|
108 // This minimization necessarily assumes that the value will be
|
|
109 // emitted and read back into the same (or less precise) format
|
|
110 // with default rounding to the nearest value.
|
|
111 void Minimize(
|
|
112 BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more);
|
|
113
|
221
|
114 template <typename STREAM> STREAM &Dump(STREAM &) const;
|
173
|
115
|
|
116 private:
|
|
117 BigRadixFloatingPointNumber(const BigRadixFloatingPointNumber &that)
|
|
118 : digits_{that.digits_}, exponent_{that.exponent_},
|
|
119 isNegative_{that.isNegative_}, rounding_{that.rounding_} {
|
|
120 for (int j{0}; j < digits_; ++j) {
|
|
121 digit_[j] = that.digit_[j];
|
|
122 }
|
|
123 }
|
|
124
|
|
125 bool IsZero() const {
|
|
126 // Don't assume normalization.
|
|
127 for (int j{0}; j < digits_; ++j) {
|
|
128 if (digit_[j] != 0) {
|
|
129 return false;
|
|
130 }
|
|
131 }
|
|
132 return true;
|
|
133 }
|
|
134
|
|
135 // Predicate: true when 10*value would cause a carry.
|
|
136 // (When this happens during decimal-to-binary conversion,
|
|
137 // there are more digits in the input string than can be
|
|
138 // represented precisely.)
|
|
139 bool IsFull() const {
|
|
140 return digits_ == digitLimit_ && digit_[digits_ - 1] >= radix / 10;
|
|
141 }
|
|
142
|
|
143 // Sets *this to an unsigned integer value.
|
|
144 // Returns any remainder.
|
|
145 template <typename UINT> UINT SetTo(UINT n) {
|
|
146 static_assert(
|
|
147 std::is_same_v<UINT, common::uint128_t> || std::is_unsigned_v<UINT>);
|
|
148 SetToZero();
|
|
149 while (n != 0) {
|
221
|
150 auto q{n / 10u};
|
173
|
151 if (n != q * 10) {
|
|
152 break;
|
|
153 }
|
|
154 ++exponent_;
|
|
155 n = q;
|
|
156 }
|
|
157 if constexpr (sizeof n < sizeof(Digit)) {
|
|
158 if (n != 0) {
|
|
159 digit_[digits_++] = n;
|
|
160 }
|
|
161 return 0;
|
|
162 } else {
|
|
163 while (n != 0 && digits_ < digitLimit_) {
|
221
|
164 auto q{n / radix};
|
173
|
165 digit_[digits_++] = static_cast<Digit>(n - q * radix);
|
|
166 n = q;
|
|
167 }
|
|
168 return n;
|
|
169 }
|
|
170 }
|
|
171
|
|
172 int RemoveLeastOrderZeroDigits() {
|
|
173 int remove{0};
|
|
174 if (digits_ > 0 && digit_[0] == 0) {
|
|
175 while (remove < digits_ && digit_[remove] == 0) {
|
|
176 ++remove;
|
|
177 }
|
|
178 if (remove >= digits_) {
|
|
179 digits_ = 0;
|
|
180 } else if (remove > 0) {
|
221
|
181 #if defined __GNUC__ && __GNUC__ < 8
|
|
182 // (&& j + remove < maxDigits) was added to avoid GCC < 8 build failure
|
|
183 // on -Werror=array-bounds. This can be removed if -Werror is disable.
|
|
184 for (int j{0}; j + remove < digits_ && (j + remove < maxDigits); ++j) {
|
|
185 #else
|
173
|
186 for (int j{0}; j + remove < digits_; ++j) {
|
221
|
187 #endif
|
173
|
188 digit_[j] = digit_[j + remove];
|
|
189 }
|
|
190 digits_ -= remove;
|
|
191 }
|
|
192 }
|
|
193 return remove;
|
|
194 }
|
|
195
|
|
196 void RemoveLeadingZeroDigits() {
|
|
197 while (digits_ > 0 && digit_[digits_ - 1] == 0) {
|
|
198 --digits_;
|
|
199 }
|
|
200 }
|
|
201
|
|
202 void Normalize() {
|
|
203 RemoveLeadingZeroDigits();
|
|
204 exponent_ += RemoveLeastOrderZeroDigits() * log10Radix;
|
|
205 }
|
|
206
|
|
207 // This limited divisibility test only works for even divisors of the radix,
|
|
208 // which is fine since it's only ever used with 2 and 5.
|
|
209 template <int N> bool IsDivisibleBy() const {
|
|
210 static_assert(N > 1 && radix % N == 0, "bad modulus");
|
|
211 return digits_ == 0 || (digit_[0] % N) == 0;
|
|
212 }
|
|
213
|
|
214 template <unsigned DIVISOR> int DivideBy() {
|
|
215 Digit remainder{0};
|
|
216 for (int j{digits_ - 1}; j >= 0; --j) {
|
221
|
217 Digit q{digit_[j] / DIVISOR};
|
173
|
218 Digit nrem{digit_[j] - DIVISOR * q};
|
|
219 digit_[j] = q + (radix / DIVISOR) * remainder;
|
|
220 remainder = nrem;
|
|
221 }
|
|
222 return remainder;
|
|
223 }
|
|
224
|
221
|
225 void DivideByPowerOfTwo(int twoPow) { // twoPow <= log10Radix
|
|
226 Digit remainder{0};
|
|
227 auto mask{(Digit{1} << twoPow) - 1};
|
|
228 auto coeff{radix >> twoPow};
|
173
|
229 for (int j{digits_ - 1}; j >= 0; --j) {
|
221
|
230 auto nrem{digit_[j] & mask};
|
|
231 digit_[j] = (digit_[j] >> twoPow) + coeff * remainder;
|
173
|
232 remainder = nrem;
|
|
233 }
|
221
|
234 }
|
|
235
|
|
236 // Returns true on overflow
|
|
237 bool DivideByPowerOfTwoInPlace(int twoPow) {
|
|
238 if (digits_ > 0) {
|
|
239 while (twoPow > 0) {
|
|
240 int chunk{twoPow > log10Radix ? log10Radix : twoPow};
|
|
241 if ((digit_[0] & ((Digit{1} << chunk) - 1)) == 0) {
|
|
242 DivideByPowerOfTwo(chunk);
|
|
243 twoPow -= chunk;
|
|
244 continue;
|
|
245 }
|
|
246 twoPow -= chunk;
|
|
247 if (digit_[digits_ - 1] >> chunk != 0) {
|
|
248 if (digits_ == digitLimit_) {
|
|
249 return true; // overflow
|
|
250 }
|
|
251 digit_[digits_++] = 0;
|
|
252 }
|
|
253 auto remainder{digit_[digits_ - 1]};
|
|
254 exponent_ -= log10Radix;
|
|
255 auto coeff{radix >> chunk}; // precise; radix is (5*2)**log10Radix
|
|
256 auto mask{(Digit{1} << chunk) - 1};
|
|
257 for (int j{digits_ - 1}; j >= 1; --j) {
|
|
258 digit_[j] = (digit_[j - 1] >> chunk) + coeff * remainder;
|
|
259 remainder = digit_[j - 1] & mask;
|
|
260 }
|
|
261 digit_[0] = coeff * remainder;
|
|
262 }
|
|
263 }
|
|
264 return false; // no overflow
|
173
|
265 }
|
|
266
|
|
267 int AddCarry(int position = 0, int carry = 1) {
|
|
268 for (; position < digits_; ++position) {
|
|
269 Digit v{digit_[position] + carry};
|
|
270 if (v < radix) {
|
|
271 digit_[position] = v;
|
|
272 return 0;
|
|
273 }
|
|
274 digit_[position] = v - radix;
|
|
275 carry = 1;
|
|
276 }
|
|
277 if (digits_ < digitLimit_) {
|
|
278 digit_[digits_++] = carry;
|
|
279 return 0;
|
|
280 }
|
|
281 Normalize();
|
|
282 if (digits_ < digitLimit_) {
|
|
283 digit_[digits_++] = carry;
|
|
284 return 0;
|
|
285 }
|
|
286 return carry;
|
|
287 }
|
|
288
|
|
289 void Decrement() {
|
|
290 for (int j{0}; digit_[j]-- == 0; ++j) {
|
|
291 digit_[j] = radix - 1;
|
|
292 }
|
|
293 }
|
|
294
|
|
295 template <int N> int MultiplyByHelper(int carry = 0) {
|
|
296 for (int j{0}; j < digits_; ++j) {
|
|
297 auto v{N * digit_[j] + carry};
|
221
|
298 carry = v / radix;
|
173
|
299 digit_[j] = v - carry * radix; // i.e., v % radix
|
|
300 }
|
|
301 return carry;
|
|
302 }
|
|
303
|
|
304 template <int N> int MultiplyBy(int carry = 0) {
|
|
305 if (int newCarry{MultiplyByHelper<N>(carry)}) {
|
|
306 return AddCarry(digits_, newCarry);
|
|
307 } else {
|
|
308 return 0;
|
|
309 }
|
|
310 }
|
|
311
|
|
312 template <int N> int MultiplyWithoutNormalization() {
|
|
313 if (int carry{MultiplyByHelper<N>(0)}) {
|
|
314 if (digits_ < digitLimit_) {
|
|
315 digit_[digits_++] = carry;
|
|
316 return 0;
|
|
317 } else {
|
|
318 return carry;
|
|
319 }
|
|
320 } else {
|
|
321 return 0;
|
|
322 }
|
|
323 }
|
|
324
|
|
325 void LoseLeastSignificantDigit(); // with rounding
|
|
326
|
|
327 void PushCarry(int carry) {
|
|
328 if (digits_ == maxDigits && RemoveLeastOrderZeroDigits() == 0) {
|
|
329 LoseLeastSignificantDigit();
|
|
330 digit_[digits_ - 1] += carry;
|
|
331 } else {
|
|
332 digit_[digits_++] = carry;
|
|
333 }
|
|
334 }
|
|
335
|
|
336 // Adds another number and then divides by two.
|
|
337 // Assumes same exponent and sign.
|
|
338 // Returns true when the the result has effectively been rounded down.
|
|
339 bool Mean(const BigRadixFloatingPointNumber &);
|
|
340
|
236
|
341 // Parses a floating-point number; leaves the pointer reference
|
|
342 // argument pointing at the next character after what was recognized.
|
|
343 // The "end" argument can be left null if the caller is sure that the
|
|
344 // string is properly terminated with an addressable character that
|
|
345 // can't be in a valid floating-point character.
|
|
346 bool ParseNumber(const char *&, bool &inexact, const char *end);
|
173
|
347
|
|
348 using Raw = typename Real::RawType;
|
|
349 constexpr Raw SignBit() const { return Raw{isNegative_} << (Real::bits - 1); }
|
|
350 constexpr Raw Infinity() const {
|
252
|
351 Raw result{static_cast<Raw>(Real::maxExponent)};
|
|
352 result <<= Real::significandBits;
|
|
353 result |= SignBit();
|
|
354 if constexpr (Real::bits == 80) { // x87
|
|
355 result |= Raw{1} << 63;
|
|
356 }
|
|
357 return result;
|
173
|
358 }
|
252
|
359 constexpr Raw NaN(bool isQuiet = true) {
|
|
360 Raw result{Real::maxExponent};
|
|
361 result <<= Real::significandBits;
|
|
362 result |= SignBit();
|
|
363 if constexpr (Real::bits == 80) { // x87
|
|
364 result |= Raw{isQuiet ? 3u : 2u} << 62;
|
|
365 } else {
|
|
366 Raw quiet{isQuiet ? Raw{2} : Raw{1}};
|
|
367 quiet <<= Real::significandBits - 2;
|
|
368 result |= quiet;
|
|
369 }
|
|
370 return result;
|
173
|
371 }
|
|
372
|
|
373 Digit digit_[maxDigits]; // in little-endian order: digit_[0] is LSD
|
|
374 int digits_{0}; // # of elements in digit_[] array; zero when zero
|
|
375 int digitLimit_{maxDigits}; // precision clamp
|
|
376 int exponent_{0}; // signed power of ten
|
|
377 bool isNegative_{false};
|
221
|
378 enum FortranRounding rounding_ { RoundNearest };
|
173
|
379 };
|
|
380 } // namespace Fortran::decimal
|
|
381 #endif
|