Mercurial > hg > CbC > CbC_llvm
comparison llvm/lib/ExecutionEngine/ExecutionEngine.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
comparison
equal
deleted
inserted
replaced
147:c2174574ed3a | 150:1d019706d866 |
---|---|
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// | |
2 // | |
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
4 // See https://llvm.org/LICENSE.txt for license information. | |
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
6 // | |
7 //===----------------------------------------------------------------------===// | |
8 // | |
9 // This file defines the common interface used by the various execution engine | |
10 // subclasses. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "llvm/ExecutionEngine/ExecutionEngine.h" | |
15 #include "llvm/ADT/STLExtras.h" | |
16 #include "llvm/ADT/SmallString.h" | |
17 #include "llvm/ADT/Statistic.h" | |
18 #include "llvm/ExecutionEngine/GenericValue.h" | |
19 #include "llvm/ExecutionEngine/JITEventListener.h" | |
20 #include "llvm/ExecutionEngine/ObjectCache.h" | |
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" | |
22 #include "llvm/IR/Constants.h" | |
23 #include "llvm/IR/DataLayout.h" | |
24 #include "llvm/IR/DerivedTypes.h" | |
25 #include "llvm/IR/Mangler.h" | |
26 #include "llvm/IR/Module.h" | |
27 #include "llvm/IR/Operator.h" | |
28 #include "llvm/IR/ValueHandle.h" | |
29 #include "llvm/Object/Archive.h" | |
30 #include "llvm/Object/ObjectFile.h" | |
31 #include "llvm/Support/Debug.h" | |
32 #include "llvm/Support/DynamicLibrary.h" | |
33 #include "llvm/Support/ErrorHandling.h" | |
34 #include "llvm/Support/Host.h" | |
35 #include "llvm/Support/TargetRegistry.h" | |
36 #include "llvm/Support/raw_ostream.h" | |
37 #include "llvm/Target/TargetMachine.h" | |
38 #include <cmath> | |
39 #include <cstring> | |
40 #include <mutex> | |
41 using namespace llvm; | |
42 | |
43 #define DEBUG_TYPE "jit" | |
44 | |
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); | |
46 STATISTIC(NumGlobals , "Number of global vars initialized"); | |
47 | |
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( | |
49 std::unique_ptr<Module> M, std::string *ErrorStr, | |
50 std::shared_ptr<MCJITMemoryManager> MemMgr, | |
51 std::shared_ptr<LegacyJITSymbolResolver> Resolver, | |
52 std::unique_ptr<TargetMachine> TM) = nullptr; | |
53 | |
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( | |
55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, | |
56 std::shared_ptr<LegacyJITSymbolResolver> Resolver, | |
57 std::unique_ptr<TargetMachine> TM) = nullptr; | |
58 | |
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, | |
60 std::string *ErrorStr) =nullptr; | |
61 | |
62 void JITEventListener::anchor() {} | |
63 | |
64 void ObjectCache::anchor() {} | |
65 | |
66 void ExecutionEngine::Init(std::unique_ptr<Module> M) { | |
67 CompilingLazily = false; | |
68 GVCompilationDisabled = false; | |
69 SymbolSearchingDisabled = false; | |
70 | |
71 // IR module verification is enabled by default in debug builds, and disabled | |
72 // by default in release builds. | |
73 #ifndef NDEBUG | |
74 VerifyModules = true; | |
75 #else | |
76 VerifyModules = false; | |
77 #endif | |
78 | |
79 assert(M && "Module is null?"); | |
80 Modules.push_back(std::move(M)); | |
81 } | |
82 | |
83 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) | |
84 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { | |
85 Init(std::move(M)); | |
86 } | |
87 | |
88 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) | |
89 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { | |
90 Init(std::move(M)); | |
91 } | |
92 | |
93 ExecutionEngine::~ExecutionEngine() { | |
94 clearAllGlobalMappings(); | |
95 } | |
96 | |
97 namespace { | |
98 /// Helper class which uses a value handler to automatically deletes the | |
99 /// memory block when the GlobalVariable is destroyed. | |
100 class GVMemoryBlock final : public CallbackVH { | |
101 GVMemoryBlock(const GlobalVariable *GV) | |
102 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} | |
103 | |
104 public: | |
105 /// Returns the address the GlobalVariable should be written into. The | |
106 /// GVMemoryBlock object prefixes that. | |
107 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { | |
108 Type *ElTy = GV->getValueType(); | |
109 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); | |
110 void *RawMemory = ::operator new( | |
111 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); | |
112 new(RawMemory) GVMemoryBlock(GV); | |
113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); | |
114 } | |
115 | |
116 void deleted() override { | |
117 // We allocated with operator new and with some extra memory hanging off the | |
118 // end, so don't just delete this. I'm not sure if this is actually | |
119 // required. | |
120 this->~GVMemoryBlock(); | |
121 ::operator delete(this); | |
122 } | |
123 }; | |
124 } // anonymous namespace | |
125 | |
126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { | |
127 return GVMemoryBlock::Create(GV, getDataLayout()); | |
128 } | |
129 | |
130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { | |
131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | |
132 } | |
133 | |
134 void | |
135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { | |
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | |
137 } | |
138 | |
139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { | |
140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); | |
141 } | |
142 | |
143 bool ExecutionEngine::removeModule(Module *M) { | |
144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { | |
145 Module *Found = I->get(); | |
146 if (Found == M) { | |
147 I->release(); | |
148 Modules.erase(I); | |
149 clearGlobalMappingsFromModule(M); | |
150 return true; | |
151 } | |
152 } | |
153 return false; | |
154 } | |
155 | |
156 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { | |
157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | |
158 Function *F = Modules[i]->getFunction(FnName); | |
159 if (F && !F->isDeclaration()) | |
160 return F; | |
161 } | |
162 return nullptr; | |
163 } | |
164 | |
165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { | |
166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | |
167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); | |
168 if (GV && !GV->isDeclaration()) | |
169 return GV; | |
170 } | |
171 return nullptr; | |
172 } | |
173 | |
174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { | |
175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); | |
176 uint64_t OldVal; | |
177 | |
178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the | |
179 // GlobalAddressMap. | |
180 if (I == GlobalAddressMap.end()) | |
181 OldVal = 0; | |
182 else { | |
183 GlobalAddressReverseMap.erase(I->second); | |
184 OldVal = I->second; | |
185 GlobalAddressMap.erase(I); | |
186 } | |
187 | |
188 return OldVal; | |
189 } | |
190 | |
191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { | |
192 assert(GV->hasName() && "Global must have name."); | |
193 | |
194 std::lock_guard<sys::Mutex> locked(lock); | |
195 SmallString<128> FullName; | |
196 | |
197 const DataLayout &DL = | |
198 GV->getParent()->getDataLayout().isDefault() | |
199 ? getDataLayout() | |
200 : GV->getParent()->getDataLayout(); | |
201 | |
202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); | |
203 return std::string(FullName.str()); | |
204 } | |
205 | |
206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { | |
207 std::lock_guard<sys::Mutex> locked(lock); | |
208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); | |
209 } | |
210 | |
211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { | |
212 std::lock_guard<sys::Mutex> locked(lock); | |
213 | |
214 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); | |
215 | |
216 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); | |
217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; | |
218 assert((!CurVal || !Addr) && "GlobalMapping already established!"); | |
219 CurVal = Addr; | |
220 | |
221 // If we are using the reverse mapping, add it too. | |
222 if (!EEState.getGlobalAddressReverseMap().empty()) { | |
223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; | |
224 assert((!V.empty() || !Name.empty()) && | |
225 "GlobalMapping already established!"); | |
226 V = std::string(Name); | |
227 } | |
228 } | |
229 | |
230 void ExecutionEngine::clearAllGlobalMappings() { | |
231 std::lock_guard<sys::Mutex> locked(lock); | |
232 | |
233 EEState.getGlobalAddressMap().clear(); | |
234 EEState.getGlobalAddressReverseMap().clear(); | |
235 } | |
236 | |
237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { | |
238 std::lock_guard<sys::Mutex> locked(lock); | |
239 | |
240 for (GlobalObject &GO : M->global_objects()) | |
241 EEState.RemoveMapping(getMangledName(&GO)); | |
242 } | |
243 | |
244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, | |
245 void *Addr) { | |
246 std::lock_guard<sys::Mutex> locked(lock); | |
247 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); | |
248 } | |
249 | |
250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { | |
251 std::lock_guard<sys::Mutex> locked(lock); | |
252 | |
253 ExecutionEngineState::GlobalAddressMapTy &Map = | |
254 EEState.getGlobalAddressMap(); | |
255 | |
256 // Deleting from the mapping? | |
257 if (!Addr) | |
258 return EEState.RemoveMapping(Name); | |
259 | |
260 uint64_t &CurVal = Map[Name]; | |
261 uint64_t OldVal = CurVal; | |
262 | |
263 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) | |
264 EEState.getGlobalAddressReverseMap().erase(CurVal); | |
265 CurVal = Addr; | |
266 | |
267 // If we are using the reverse mapping, add it too. | |
268 if (!EEState.getGlobalAddressReverseMap().empty()) { | |
269 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; | |
270 assert((!V.empty() || !Name.empty()) && | |
271 "GlobalMapping already established!"); | |
272 V = std::string(Name); | |
273 } | |
274 return OldVal; | |
275 } | |
276 | |
277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { | |
278 std::lock_guard<sys::Mutex> locked(lock); | |
279 uint64_t Address = 0; | |
280 ExecutionEngineState::GlobalAddressMapTy::iterator I = | |
281 EEState.getGlobalAddressMap().find(S); | |
282 if (I != EEState.getGlobalAddressMap().end()) | |
283 Address = I->second; | |
284 return Address; | |
285 } | |
286 | |
287 | |
288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { | |
289 std::lock_guard<sys::Mutex> locked(lock); | |
290 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) | |
291 return Address; | |
292 return nullptr; | |
293 } | |
294 | |
295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { | |
296 std::lock_guard<sys::Mutex> locked(lock); | |
297 return getPointerToGlobalIfAvailable(getMangledName(GV)); | |
298 } | |
299 | |
300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { | |
301 std::lock_guard<sys::Mutex> locked(lock); | |
302 | |
303 // If we haven't computed the reverse mapping yet, do so first. | |
304 if (EEState.getGlobalAddressReverseMap().empty()) { | |
305 for (ExecutionEngineState::GlobalAddressMapTy::iterator | |
306 I = EEState.getGlobalAddressMap().begin(), | |
307 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { | |
308 StringRef Name = I->first(); | |
309 uint64_t Addr = I->second; | |
310 EEState.getGlobalAddressReverseMap().insert( | |
311 std::make_pair(Addr, std::string(Name))); | |
312 } | |
313 } | |
314 | |
315 std::map<uint64_t, std::string>::iterator I = | |
316 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); | |
317 | |
318 if (I != EEState.getGlobalAddressReverseMap().end()) { | |
319 StringRef Name = I->second; | |
320 for (unsigned i = 0, e = Modules.size(); i != e; ++i) | |
321 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) | |
322 return GV; | |
323 } | |
324 return nullptr; | |
325 } | |
326 | |
327 namespace { | |
328 class ArgvArray { | |
329 std::unique_ptr<char[]> Array; | |
330 std::vector<std::unique_ptr<char[]>> Values; | |
331 public: | |
332 /// Turn a vector of strings into a nice argv style array of pointers to null | |
333 /// terminated strings. | |
334 void *reset(LLVMContext &C, ExecutionEngine *EE, | |
335 const std::vector<std::string> &InputArgv); | |
336 }; | |
337 } // anonymous namespace | |
338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, | |
339 const std::vector<std::string> &InputArgv) { | |
340 Values.clear(); // Free the old contents. | |
341 Values.reserve(InputArgv.size()); | |
342 unsigned PtrSize = EE->getDataLayout().getPointerSize(); | |
343 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize); | |
344 | |
345 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); | |
346 Type *SBytePtr = Type::getInt8PtrTy(C); | |
347 | |
348 for (unsigned i = 0; i != InputArgv.size(); ++i) { | |
349 unsigned Size = InputArgv[i].size()+1; | |
350 auto Dest = std::make_unique<char[]>(Size); | |
351 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() | |
352 << "\n"); | |
353 | |
354 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); | |
355 Dest[Size-1] = 0; | |
356 | |
357 // Endian safe: Array[i] = (PointerTy)Dest; | |
358 EE->StoreValueToMemory(PTOGV(Dest.get()), | |
359 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); | |
360 Values.push_back(std::move(Dest)); | |
361 } | |
362 | |
363 // Null terminate it | |
364 EE->StoreValueToMemory(PTOGV(nullptr), | |
365 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), | |
366 SBytePtr); | |
367 return Array.get(); | |
368 } | |
369 | |
370 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, | |
371 bool isDtors) { | |
372 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); | |
373 GlobalVariable *GV = module.getNamedGlobal(Name); | |
374 | |
375 // If this global has internal linkage, or if it has a use, then it must be | |
376 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If | |
377 // this is the case, don't execute any of the global ctors, __main will do | |
378 // it. | |
379 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; | |
380 | |
381 // Should be an array of '{ i32, void ()* }' structs. The first value is | |
382 // the init priority, which we ignore. | |
383 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); | |
384 if (!InitList) | |
385 return; | |
386 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | |
387 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); | |
388 if (!CS) continue; | |
389 | |
390 Constant *FP = CS->getOperand(1); | |
391 if (FP->isNullValue()) | |
392 continue; // Found a sentinal value, ignore. | |
393 | |
394 // Strip off constant expression casts. | |
395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) | |
396 if (CE->isCast()) | |
397 FP = CE->getOperand(0); | |
398 | |
399 // Execute the ctor/dtor function! | |
400 if (Function *F = dyn_cast<Function>(FP)) | |
401 runFunction(F, None); | |
402 | |
403 // FIXME: It is marginally lame that we just do nothing here if we see an | |
404 // entry we don't recognize. It might not be unreasonable for the verifier | |
405 // to not even allow this and just assert here. | |
406 } | |
407 } | |
408 | |
409 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { | |
410 // Execute global ctors/dtors for each module in the program. | |
411 for (std::unique_ptr<Module> &M : Modules) | |
412 runStaticConstructorsDestructors(*M, isDtors); | |
413 } | |
414 | |
415 #ifndef NDEBUG | |
416 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. | |
417 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { | |
418 unsigned PtrSize = EE->getDataLayout().getPointerSize(); | |
419 for (unsigned i = 0; i < PtrSize; ++i) | |
420 if (*(i + (uint8_t*)Loc)) | |
421 return false; | |
422 return true; | |
423 } | |
424 #endif | |
425 | |
426 int ExecutionEngine::runFunctionAsMain(Function *Fn, | |
427 const std::vector<std::string> &argv, | |
428 const char * const * envp) { | |
429 std::vector<GenericValue> GVArgs; | |
430 GenericValue GVArgc; | |
431 GVArgc.IntVal = APInt(32, argv.size()); | |
432 | |
433 // Check main() type | |
434 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); | |
435 FunctionType *FTy = Fn->getFunctionType(); | |
436 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); | |
437 | |
438 // Check the argument types. | |
439 if (NumArgs > 3) | |
440 report_fatal_error("Invalid number of arguments of main() supplied"); | |
441 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) | |
442 report_fatal_error("Invalid type for third argument of main() supplied"); | |
443 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) | |
444 report_fatal_error("Invalid type for second argument of main() supplied"); | |
445 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) | |
446 report_fatal_error("Invalid type for first argument of main() supplied"); | |
447 if (!FTy->getReturnType()->isIntegerTy() && | |
448 !FTy->getReturnType()->isVoidTy()) | |
449 report_fatal_error("Invalid return type of main() supplied"); | |
450 | |
451 ArgvArray CArgv; | |
452 ArgvArray CEnv; | |
453 if (NumArgs) { | |
454 GVArgs.push_back(GVArgc); // Arg #0 = argc. | |
455 if (NumArgs > 1) { | |
456 // Arg #1 = argv. | |
457 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); | |
458 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && | |
459 "argv[0] was null after CreateArgv"); | |
460 if (NumArgs > 2) { | |
461 std::vector<std::string> EnvVars; | |
462 for (unsigned i = 0; envp[i]; ++i) | |
463 EnvVars.emplace_back(envp[i]); | |
464 // Arg #2 = envp. | |
465 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); | |
466 } | |
467 } | |
468 } | |
469 | |
470 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); | |
471 } | |
472 | |
473 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} | |
474 | |
475 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) | |
476 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), | |
477 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), | |
478 UseOrcMCJITReplacement(false) { | |
479 // IR module verification is enabled by default in debug builds, and disabled | |
480 // by default in release builds. | |
481 #ifndef NDEBUG | |
482 VerifyModules = true; | |
483 #else | |
484 VerifyModules = false; | |
485 #endif | |
486 } | |
487 | |
488 EngineBuilder::~EngineBuilder() = default; | |
489 | |
490 EngineBuilder &EngineBuilder::setMCJITMemoryManager( | |
491 std::unique_ptr<RTDyldMemoryManager> mcjmm) { | |
492 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); | |
493 MemMgr = SharedMM; | |
494 Resolver = SharedMM; | |
495 return *this; | |
496 } | |
497 | |
498 EngineBuilder& | |
499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { | |
500 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); | |
501 return *this; | |
502 } | |
503 | |
504 EngineBuilder & | |
505 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { | |
506 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); | |
507 return *this; | |
508 } | |
509 | |
510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { | |
511 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. | |
512 | |
513 // Make sure we can resolve symbols in the program as well. The zero arg | |
514 // to the function tells DynamicLibrary to load the program, not a library. | |
515 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) | |
516 return nullptr; | |
517 | |
518 // If the user specified a memory manager but didn't specify which engine to | |
519 // create, we assume they only want the JIT, and we fail if they only want | |
520 // the interpreter. | |
521 if (MemMgr) { | |
522 if (WhichEngine & EngineKind::JIT) | |
523 WhichEngine = EngineKind::JIT; | |
524 else { | |
525 if (ErrorStr) | |
526 *ErrorStr = "Cannot create an interpreter with a memory manager."; | |
527 return nullptr; | |
528 } | |
529 } | |
530 | |
531 // Unless the interpreter was explicitly selected or the JIT is not linked, | |
532 // try making a JIT. | |
533 if ((WhichEngine & EngineKind::JIT) && TheTM) { | |
534 if (!TM->getTarget().hasJIT()) { | |
535 errs() << "WARNING: This target JIT is not designed for the host" | |
536 << " you are running. If bad things happen, please choose" | |
537 << " a different -march switch.\n"; | |
538 } | |
539 | |
540 ExecutionEngine *EE = nullptr; | |
541 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { | |
542 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), | |
543 std::move(Resolver), | |
544 std::move(TheTM)); | |
545 EE->addModule(std::move(M)); | |
546 } else if (ExecutionEngine::MCJITCtor) | |
547 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), | |
548 std::move(Resolver), std::move(TheTM)); | |
549 | |
550 if (EE) { | |
551 EE->setVerifyModules(VerifyModules); | |
552 return EE; | |
553 } | |
554 } | |
555 | |
556 // If we can't make a JIT and we didn't request one specifically, try making | |
557 // an interpreter instead. | |
558 if (WhichEngine & EngineKind::Interpreter) { | |
559 if (ExecutionEngine::InterpCtor) | |
560 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); | |
561 if (ErrorStr) | |
562 *ErrorStr = "Interpreter has not been linked in."; | |
563 return nullptr; | |
564 } | |
565 | |
566 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { | |
567 if (ErrorStr) | |
568 *ErrorStr = "JIT has not been linked in."; | |
569 } | |
570 | |
571 return nullptr; | |
572 } | |
573 | |
574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { | |
575 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) | |
576 return getPointerToFunction(F); | |
577 | |
578 std::lock_guard<sys::Mutex> locked(lock); | |
579 if (void* P = getPointerToGlobalIfAvailable(GV)) | |
580 return P; | |
581 | |
582 // Global variable might have been added since interpreter started. | |
583 if (GlobalVariable *GVar = | |
584 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) | |
585 EmitGlobalVariable(GVar); | |
586 else | |
587 llvm_unreachable("Global hasn't had an address allocated yet!"); | |
588 | |
589 return getPointerToGlobalIfAvailable(GV); | |
590 } | |
591 | |
592 /// Converts a Constant* into a GenericValue, including handling of | |
593 /// ConstantExpr values. | |
594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { | |
595 // If its undefined, return the garbage. | |
596 if (isa<UndefValue>(C)) { | |
597 GenericValue Result; | |
598 switch (C->getType()->getTypeID()) { | |
599 default: | |
600 break; | |
601 case Type::IntegerTyID: | |
602 case Type::X86_FP80TyID: | |
603 case Type::FP128TyID: | |
604 case Type::PPC_FP128TyID: | |
605 // Although the value is undefined, we still have to construct an APInt | |
606 // with the correct bit width. | |
607 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); | |
608 break; | |
609 case Type::StructTyID: { | |
610 // if the whole struct is 'undef' just reserve memory for the value. | |
611 if(StructType *STy = dyn_cast<StructType>(C->getType())) { | |
612 unsigned int elemNum = STy->getNumElements(); | |
613 Result.AggregateVal.resize(elemNum); | |
614 for (unsigned int i = 0; i < elemNum; ++i) { | |
615 Type *ElemTy = STy->getElementType(i); | |
616 if (ElemTy->isIntegerTy()) | |
617 Result.AggregateVal[i].IntVal = | |
618 APInt(ElemTy->getPrimitiveSizeInBits(), 0); | |
619 else if (ElemTy->isAggregateType()) { | |
620 const Constant *ElemUndef = UndefValue::get(ElemTy); | |
621 Result.AggregateVal[i] = getConstantValue(ElemUndef); | |
622 } | |
623 } | |
624 } | |
625 } | |
626 break; | |
627 case Type::VectorTyID: | |
628 // if the whole vector is 'undef' just reserve memory for the value. | |
629 auto* VTy = cast<VectorType>(C->getType()); | |
630 Type *ElemTy = VTy->getElementType(); | |
631 unsigned int elemNum = VTy->getNumElements(); | |
632 Result.AggregateVal.resize(elemNum); | |
633 if (ElemTy->isIntegerTy()) | |
634 for (unsigned int i = 0; i < elemNum; ++i) | |
635 Result.AggregateVal[i].IntVal = | |
636 APInt(ElemTy->getPrimitiveSizeInBits(), 0); | |
637 break; | |
638 } | |
639 return Result; | |
640 } | |
641 | |
642 // Otherwise, if the value is a ConstantExpr... | |
643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | |
644 Constant *Op0 = CE->getOperand(0); | |
645 switch (CE->getOpcode()) { | |
646 case Instruction::GetElementPtr: { | |
647 // Compute the index | |
648 GenericValue Result = getConstantValue(Op0); | |
649 APInt Offset(DL.getPointerSizeInBits(), 0); | |
650 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); | |
651 | |
652 char* tmp = (char*) Result.PointerVal; | |
653 Result = PTOGV(tmp + Offset.getSExtValue()); | |
654 return Result; | |
655 } | |
656 case Instruction::Trunc: { | |
657 GenericValue GV = getConstantValue(Op0); | |
658 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | |
659 GV.IntVal = GV.IntVal.trunc(BitWidth); | |
660 return GV; | |
661 } | |
662 case Instruction::ZExt: { | |
663 GenericValue GV = getConstantValue(Op0); | |
664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | |
665 GV.IntVal = GV.IntVal.zext(BitWidth); | |
666 return GV; | |
667 } | |
668 case Instruction::SExt: { | |
669 GenericValue GV = getConstantValue(Op0); | |
670 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | |
671 GV.IntVal = GV.IntVal.sext(BitWidth); | |
672 return GV; | |
673 } | |
674 case Instruction::FPTrunc: { | |
675 // FIXME long double | |
676 GenericValue GV = getConstantValue(Op0); | |
677 GV.FloatVal = float(GV.DoubleVal); | |
678 return GV; | |
679 } | |
680 case Instruction::FPExt:{ | |
681 // FIXME long double | |
682 GenericValue GV = getConstantValue(Op0); | |
683 GV.DoubleVal = double(GV.FloatVal); | |
684 return GV; | |
685 } | |
686 case Instruction::UIToFP: { | |
687 GenericValue GV = getConstantValue(Op0); | |
688 if (CE->getType()->isFloatTy()) | |
689 GV.FloatVal = float(GV.IntVal.roundToDouble()); | |
690 else if (CE->getType()->isDoubleTy()) | |
691 GV.DoubleVal = GV.IntVal.roundToDouble(); | |
692 else if (CE->getType()->isX86_FP80Ty()) { | |
693 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); | |
694 (void)apf.convertFromAPInt(GV.IntVal, | |
695 false, | |
696 APFloat::rmNearestTiesToEven); | |
697 GV.IntVal = apf.bitcastToAPInt(); | |
698 } | |
699 return GV; | |
700 } | |
701 case Instruction::SIToFP: { | |
702 GenericValue GV = getConstantValue(Op0); | |
703 if (CE->getType()->isFloatTy()) | |
704 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); | |
705 else if (CE->getType()->isDoubleTy()) | |
706 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); | |
707 else if (CE->getType()->isX86_FP80Ty()) { | |
708 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); | |
709 (void)apf.convertFromAPInt(GV.IntVal, | |
710 true, | |
711 APFloat::rmNearestTiesToEven); | |
712 GV.IntVal = apf.bitcastToAPInt(); | |
713 } | |
714 return GV; | |
715 } | |
716 case Instruction::FPToUI: // double->APInt conversion handles sign | |
717 case Instruction::FPToSI: { | |
718 GenericValue GV = getConstantValue(Op0); | |
719 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | |
720 if (Op0->getType()->isFloatTy()) | |
721 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); | |
722 else if (Op0->getType()->isDoubleTy()) | |
723 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); | |
724 else if (Op0->getType()->isX86_FP80Ty()) { | |
725 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); | |
726 uint64_t v; | |
727 bool ignored; | |
728 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, | |
729 CE->getOpcode()==Instruction::FPToSI, | |
730 APFloat::rmTowardZero, &ignored); | |
731 GV.IntVal = v; // endian? | |
732 } | |
733 return GV; | |
734 } | |
735 case Instruction::PtrToInt: { | |
736 GenericValue GV = getConstantValue(Op0); | |
737 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); | |
738 assert(PtrWidth <= 64 && "Bad pointer width"); | |
739 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); | |
740 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); | |
741 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); | |
742 return GV; | |
743 } | |
744 case Instruction::IntToPtr: { | |
745 GenericValue GV = getConstantValue(Op0); | |
746 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); | |
747 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); | |
748 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); | |
749 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); | |
750 return GV; | |
751 } | |
752 case Instruction::BitCast: { | |
753 GenericValue GV = getConstantValue(Op0); | |
754 Type* DestTy = CE->getType(); | |
755 switch (Op0->getType()->getTypeID()) { | |
756 default: llvm_unreachable("Invalid bitcast operand"); | |
757 case Type::IntegerTyID: | |
758 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); | |
759 if (DestTy->isFloatTy()) | |
760 GV.FloatVal = GV.IntVal.bitsToFloat(); | |
761 else if (DestTy->isDoubleTy()) | |
762 GV.DoubleVal = GV.IntVal.bitsToDouble(); | |
763 break; | |
764 case Type::FloatTyID: | |
765 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); | |
766 GV.IntVal = APInt::floatToBits(GV.FloatVal); | |
767 break; | |
768 case Type::DoubleTyID: | |
769 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); | |
770 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); | |
771 break; | |
772 case Type::PointerTyID: | |
773 assert(DestTy->isPointerTy() && "Invalid bitcast"); | |
774 break; // getConstantValue(Op0) above already converted it | |
775 } | |
776 return GV; | |
777 } | |
778 case Instruction::Add: | |
779 case Instruction::FAdd: | |
780 case Instruction::Sub: | |
781 case Instruction::FSub: | |
782 case Instruction::Mul: | |
783 case Instruction::FMul: | |
784 case Instruction::UDiv: | |
785 case Instruction::SDiv: | |
786 case Instruction::URem: | |
787 case Instruction::SRem: | |
788 case Instruction::And: | |
789 case Instruction::Or: | |
790 case Instruction::Xor: { | |
791 GenericValue LHS = getConstantValue(Op0); | |
792 GenericValue RHS = getConstantValue(CE->getOperand(1)); | |
793 GenericValue GV; | |
794 switch (CE->getOperand(0)->getType()->getTypeID()) { | |
795 default: llvm_unreachable("Bad add type!"); | |
796 case Type::IntegerTyID: | |
797 switch (CE->getOpcode()) { | |
798 default: llvm_unreachable("Invalid integer opcode"); | |
799 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; | |
800 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; | |
801 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; | |
802 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; | |
803 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; | |
804 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; | |
805 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; | |
806 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; | |
807 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; | |
808 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; | |
809 } | |
810 break; | |
811 case Type::FloatTyID: | |
812 switch (CE->getOpcode()) { | |
813 default: llvm_unreachable("Invalid float opcode"); | |
814 case Instruction::FAdd: | |
815 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; | |
816 case Instruction::FSub: | |
817 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; | |
818 case Instruction::FMul: | |
819 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; | |
820 case Instruction::FDiv: | |
821 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; | |
822 case Instruction::FRem: | |
823 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; | |
824 } | |
825 break; | |
826 case Type::DoubleTyID: | |
827 switch (CE->getOpcode()) { | |
828 default: llvm_unreachable("Invalid double opcode"); | |
829 case Instruction::FAdd: | |
830 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; | |
831 case Instruction::FSub: | |
832 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; | |
833 case Instruction::FMul: | |
834 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; | |
835 case Instruction::FDiv: | |
836 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; | |
837 case Instruction::FRem: | |
838 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; | |
839 } | |
840 break; | |
841 case Type::X86_FP80TyID: | |
842 case Type::PPC_FP128TyID: | |
843 case Type::FP128TyID: { | |
844 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); | |
845 APFloat apfLHS = APFloat(Sem, LHS.IntVal); | |
846 switch (CE->getOpcode()) { | |
847 default: llvm_unreachable("Invalid long double opcode"); | |
848 case Instruction::FAdd: | |
849 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); | |
850 GV.IntVal = apfLHS.bitcastToAPInt(); | |
851 break; | |
852 case Instruction::FSub: | |
853 apfLHS.subtract(APFloat(Sem, RHS.IntVal), | |
854 APFloat::rmNearestTiesToEven); | |
855 GV.IntVal = apfLHS.bitcastToAPInt(); | |
856 break; | |
857 case Instruction::FMul: | |
858 apfLHS.multiply(APFloat(Sem, RHS.IntVal), | |
859 APFloat::rmNearestTiesToEven); | |
860 GV.IntVal = apfLHS.bitcastToAPInt(); | |
861 break; | |
862 case Instruction::FDiv: | |
863 apfLHS.divide(APFloat(Sem, RHS.IntVal), | |
864 APFloat::rmNearestTiesToEven); | |
865 GV.IntVal = apfLHS.bitcastToAPInt(); | |
866 break; | |
867 case Instruction::FRem: | |
868 apfLHS.mod(APFloat(Sem, RHS.IntVal)); | |
869 GV.IntVal = apfLHS.bitcastToAPInt(); | |
870 break; | |
871 } | |
872 } | |
873 break; | |
874 } | |
875 return GV; | |
876 } | |
877 default: | |
878 break; | |
879 } | |
880 | |
881 SmallString<256> Msg; | |
882 raw_svector_ostream OS(Msg); | |
883 OS << "ConstantExpr not handled: " << *CE; | |
884 report_fatal_error(OS.str()); | |
885 } | |
886 | |
887 // Otherwise, we have a simple constant. | |
888 GenericValue Result; | |
889 switch (C->getType()->getTypeID()) { | |
890 case Type::FloatTyID: | |
891 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); | |
892 break; | |
893 case Type::DoubleTyID: | |
894 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); | |
895 break; | |
896 case Type::X86_FP80TyID: | |
897 case Type::FP128TyID: | |
898 case Type::PPC_FP128TyID: | |
899 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); | |
900 break; | |
901 case Type::IntegerTyID: | |
902 Result.IntVal = cast<ConstantInt>(C)->getValue(); | |
903 break; | |
904 case Type::PointerTyID: | |
905 while (auto *A = dyn_cast<GlobalAlias>(C)) { | |
906 C = A->getAliasee(); | |
907 } | |
908 if (isa<ConstantPointerNull>(C)) | |
909 Result.PointerVal = nullptr; | |
910 else if (const Function *F = dyn_cast<Function>(C)) | |
911 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); | |
912 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) | |
913 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); | |
914 else | |
915 llvm_unreachable("Unknown constant pointer type!"); | |
916 break; | |
917 case Type::VectorTyID: { | |
918 unsigned elemNum; | |
919 Type* ElemTy; | |
920 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); | |
921 const ConstantVector *CV = dyn_cast<ConstantVector>(C); | |
922 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); | |
923 | |
924 if (CDV) { | |
925 elemNum = CDV->getNumElements(); | |
926 ElemTy = CDV->getElementType(); | |
927 } else if (CV || CAZ) { | |
928 auto* VTy = cast<VectorType>(C->getType()); | |
929 elemNum = VTy->getNumElements(); | |
930 ElemTy = VTy->getElementType(); | |
931 } else { | |
932 llvm_unreachable("Unknown constant vector type!"); | |
933 } | |
934 | |
935 Result.AggregateVal.resize(elemNum); | |
936 // Check if vector holds floats. | |
937 if(ElemTy->isFloatTy()) { | |
938 if (CAZ) { | |
939 GenericValue floatZero; | |
940 floatZero.FloatVal = 0.f; | |
941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | |
942 floatZero); | |
943 break; | |
944 } | |
945 if(CV) { | |
946 for (unsigned i = 0; i < elemNum; ++i) | |
947 if (!isa<UndefValue>(CV->getOperand(i))) | |
948 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( | |
949 CV->getOperand(i))->getValueAPF().convertToFloat(); | |
950 break; | |
951 } | |
952 if(CDV) | |
953 for (unsigned i = 0; i < elemNum; ++i) | |
954 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); | |
955 | |
956 break; | |
957 } | |
958 // Check if vector holds doubles. | |
959 if (ElemTy->isDoubleTy()) { | |
960 if (CAZ) { | |
961 GenericValue doubleZero; | |
962 doubleZero.DoubleVal = 0.0; | |
963 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | |
964 doubleZero); | |
965 break; | |
966 } | |
967 if(CV) { | |
968 for (unsigned i = 0; i < elemNum; ++i) | |
969 if (!isa<UndefValue>(CV->getOperand(i))) | |
970 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( | |
971 CV->getOperand(i))->getValueAPF().convertToDouble(); | |
972 break; | |
973 } | |
974 if(CDV) | |
975 for (unsigned i = 0; i < elemNum; ++i) | |
976 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); | |
977 | |
978 break; | |
979 } | |
980 // Check if vector holds integers. | |
981 if (ElemTy->isIntegerTy()) { | |
982 if (CAZ) { | |
983 GenericValue intZero; | |
984 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); | |
985 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | |
986 intZero); | |
987 break; | |
988 } | |
989 if(CV) { | |
990 for (unsigned i = 0; i < elemNum; ++i) | |
991 if (!isa<UndefValue>(CV->getOperand(i))) | |
992 Result.AggregateVal[i].IntVal = cast<ConstantInt>( | |
993 CV->getOperand(i))->getValue(); | |
994 else { | |
995 Result.AggregateVal[i].IntVal = | |
996 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); | |
997 } | |
998 break; | |
999 } | |
1000 if(CDV) | |
1001 for (unsigned i = 0; i < elemNum; ++i) | |
1002 Result.AggregateVal[i].IntVal = APInt( | |
1003 CDV->getElementType()->getPrimitiveSizeInBits(), | |
1004 CDV->getElementAsInteger(i)); | |
1005 | |
1006 break; | |
1007 } | |
1008 llvm_unreachable("Unknown constant pointer type!"); | |
1009 } | |
1010 break; | |
1011 | |
1012 default: | |
1013 SmallString<256> Msg; | |
1014 raw_svector_ostream OS(Msg); | |
1015 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); | |
1016 report_fatal_error(OS.str()); | |
1017 } | |
1018 | |
1019 return Result; | |
1020 } | |
1021 | |
1022 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, | |
1023 GenericValue *Ptr, Type *Ty) { | |
1024 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); | |
1025 | |
1026 switch (Ty->getTypeID()) { | |
1027 default: | |
1028 dbgs() << "Cannot store value of type " << *Ty << "!\n"; | |
1029 break; | |
1030 case Type::IntegerTyID: | |
1031 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); | |
1032 break; | |
1033 case Type::FloatTyID: | |
1034 *((float*)Ptr) = Val.FloatVal; | |
1035 break; | |
1036 case Type::DoubleTyID: | |
1037 *((double*)Ptr) = Val.DoubleVal; | |
1038 break; | |
1039 case Type::X86_FP80TyID: | |
1040 memcpy(Ptr, Val.IntVal.getRawData(), 10); | |
1041 break; | |
1042 case Type::PointerTyID: | |
1043 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. | |
1044 if (StoreBytes != sizeof(PointerTy)) | |
1045 memset(&(Ptr->PointerVal), 0, StoreBytes); | |
1046 | |
1047 *((PointerTy*)Ptr) = Val.PointerVal; | |
1048 break; | |
1049 case Type::VectorTyID: | |
1050 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { | |
1051 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) | |
1052 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; | |
1053 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) | |
1054 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; | |
1055 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { | |
1056 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; | |
1057 StoreIntToMemory(Val.AggregateVal[i].IntVal, | |
1058 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); | |
1059 } | |
1060 } | |
1061 break; | |
1062 } | |
1063 | |
1064 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) | |
1065 // Host and target are different endian - reverse the stored bytes. | |
1066 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); | |
1067 } | |
1068 | |
1069 /// FIXME: document | |
1070 /// | |
1071 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, | |
1072 GenericValue *Ptr, | |
1073 Type *Ty) { | |
1074 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); | |
1075 | |
1076 switch (Ty->getTypeID()) { | |
1077 case Type::IntegerTyID: | |
1078 // An APInt with all words initially zero. | |
1079 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); | |
1080 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); | |
1081 break; | |
1082 case Type::FloatTyID: | |
1083 Result.FloatVal = *((float*)Ptr); | |
1084 break; | |
1085 case Type::DoubleTyID: | |
1086 Result.DoubleVal = *((double*)Ptr); | |
1087 break; | |
1088 case Type::PointerTyID: | |
1089 Result.PointerVal = *((PointerTy*)Ptr); | |
1090 break; | |
1091 case Type::X86_FP80TyID: { | |
1092 // This is endian dependent, but it will only work on x86 anyway. | |
1093 // FIXME: Will not trap if loading a signaling NaN. | |
1094 uint64_t y[2]; | |
1095 memcpy(y, Ptr, 10); | |
1096 Result.IntVal = APInt(80, y); | |
1097 break; | |
1098 } | |
1099 case Type::VectorTyID: { | |
1100 auto *VT = cast<VectorType>(Ty); | |
1101 Type *ElemT = VT->getElementType(); | |
1102 const unsigned numElems = VT->getNumElements(); | |
1103 if (ElemT->isFloatTy()) { | |
1104 Result.AggregateVal.resize(numElems); | |
1105 for (unsigned i = 0; i < numElems; ++i) | |
1106 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); | |
1107 } | |
1108 if (ElemT->isDoubleTy()) { | |
1109 Result.AggregateVal.resize(numElems); | |
1110 for (unsigned i = 0; i < numElems; ++i) | |
1111 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); | |
1112 } | |
1113 if (ElemT->isIntegerTy()) { | |
1114 GenericValue intZero; | |
1115 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); | |
1116 intZero.IntVal = APInt(elemBitWidth, 0); | |
1117 Result.AggregateVal.resize(numElems, intZero); | |
1118 for (unsigned i = 0; i < numElems; ++i) | |
1119 LoadIntFromMemory(Result.AggregateVal[i].IntVal, | |
1120 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); | |
1121 } | |
1122 break; | |
1123 } | |
1124 default: | |
1125 SmallString<256> Msg; | |
1126 raw_svector_ostream OS(Msg); | |
1127 OS << "Cannot load value of type " << *Ty << "!"; | |
1128 report_fatal_error(OS.str()); | |
1129 } | |
1130 } | |
1131 | |
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { | |
1133 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); | |
1134 LLVM_DEBUG(Init->dump()); | |
1135 if (isa<UndefValue>(Init)) | |
1136 return; | |
1137 | |
1138 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { | |
1139 unsigned ElementSize = | |
1140 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); | |
1141 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | |
1142 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); | |
1143 return; | |
1144 } | |
1145 | |
1146 if (isa<ConstantAggregateZero>(Init)) { | |
1147 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); | |
1148 return; | |
1149 } | |
1150 | |
1151 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { | |
1152 unsigned ElementSize = | |
1153 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); | |
1154 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) | |
1155 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); | |
1156 return; | |
1157 } | |
1158 | |
1159 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { | |
1160 const StructLayout *SL = | |
1161 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); | |
1162 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) | |
1163 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); | |
1164 return; | |
1165 } | |
1166 | |
1167 if (const ConstantDataSequential *CDS = | |
1168 dyn_cast<ConstantDataSequential>(Init)) { | |
1169 // CDS is already laid out in host memory order. | |
1170 StringRef Data = CDS->getRawDataValues(); | |
1171 memcpy(Addr, Data.data(), Data.size()); | |
1172 return; | |
1173 } | |
1174 | |
1175 if (Init->getType()->isFirstClassType()) { | |
1176 GenericValue Val = getConstantValue(Init); | |
1177 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); | |
1178 return; | |
1179 } | |
1180 | |
1181 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); | |
1182 llvm_unreachable("Unknown constant type to initialize memory with!"); | |
1183 } | |
1184 | |
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their | |
1186 /// addresses into GlobalAddress. This must make sure to copy the contents of | |
1187 /// their initializers into the memory. | |
1188 void ExecutionEngine::emitGlobals() { | |
1189 // Loop over all of the global variables in the program, allocating the memory | |
1190 // to hold them. If there is more than one module, do a prepass over globals | |
1191 // to figure out how the different modules should link together. | |
1192 std::map<std::pair<std::string, Type*>, | |
1193 const GlobalValue*> LinkedGlobalsMap; | |
1194 | |
1195 if (Modules.size() != 1) { | |
1196 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | |
1197 Module &M = *Modules[m]; | |
1198 for (const auto &GV : M.globals()) { | |
1199 if (GV.hasLocalLinkage() || GV.isDeclaration() || | |
1200 GV.hasAppendingLinkage() || !GV.hasName()) | |
1201 continue;// Ignore external globals and globals with internal linkage. | |
1202 | |
1203 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( | |
1204 std::string(GV.getName()), GV.getType())]; | |
1205 | |
1206 // If this is the first time we've seen this global, it is the canonical | |
1207 // version. | |
1208 if (!GVEntry) { | |
1209 GVEntry = &GV; | |
1210 continue; | |
1211 } | |
1212 | |
1213 // If the existing global is strong, never replace it. | |
1214 if (GVEntry->hasExternalLinkage()) | |
1215 continue; | |
1216 | |
1217 // Otherwise, we know it's linkonce/weak, replace it if this is a strong | |
1218 // symbol. FIXME is this right for common? | |
1219 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) | |
1220 GVEntry = &GV; | |
1221 } | |
1222 } | |
1223 } | |
1224 | |
1225 std::vector<const GlobalValue*> NonCanonicalGlobals; | |
1226 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | |
1227 Module &M = *Modules[m]; | |
1228 for (const auto &GV : M.globals()) { | |
1229 // In the multi-module case, see what this global maps to. | |
1230 if (!LinkedGlobalsMap.empty()) { | |
1231 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( | |
1232 std::string(GV.getName()), GV.getType())]) { | |
1233 // If something else is the canonical global, ignore this one. | |
1234 if (GVEntry != &GV) { | |
1235 NonCanonicalGlobals.push_back(&GV); | |
1236 continue; | |
1237 } | |
1238 } | |
1239 } | |
1240 | |
1241 if (!GV.isDeclaration()) { | |
1242 addGlobalMapping(&GV, getMemoryForGV(&GV)); | |
1243 } else { | |
1244 // External variable reference. Try to use the dynamic loader to | |
1245 // get a pointer to it. | |
1246 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( | |
1247 std::string(GV.getName()))) | |
1248 addGlobalMapping(&GV, SymAddr); | |
1249 else { | |
1250 report_fatal_error("Could not resolve external global address: " | |
1251 +GV.getName()); | |
1252 } | |
1253 } | |
1254 } | |
1255 | |
1256 // If there are multiple modules, map the non-canonical globals to their | |
1257 // canonical location. | |
1258 if (!NonCanonicalGlobals.empty()) { | |
1259 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { | |
1260 const GlobalValue *GV = NonCanonicalGlobals[i]; | |
1261 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( | |
1262 std::string(GV->getName()), GV->getType())]; | |
1263 void *Ptr = getPointerToGlobalIfAvailable(CGV); | |
1264 assert(Ptr && "Canonical global wasn't codegen'd!"); | |
1265 addGlobalMapping(GV, Ptr); | |
1266 } | |
1267 } | |
1268 | |
1269 // Now that all of the globals are set up in memory, loop through them all | |
1270 // and initialize their contents. | |
1271 for (const auto &GV : M.globals()) { | |
1272 if (!GV.isDeclaration()) { | |
1273 if (!LinkedGlobalsMap.empty()) { | |
1274 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( | |
1275 std::string(GV.getName()), GV.getType())]) | |
1276 if (GVEntry != &GV) // Not the canonical variable. | |
1277 continue; | |
1278 } | |
1279 EmitGlobalVariable(&GV); | |
1280 } | |
1281 } | |
1282 } | |
1283 } | |
1284 | |
1285 // EmitGlobalVariable - This method emits the specified global variable to the | |
1286 // address specified in GlobalAddresses, or allocates new memory if it's not | |
1287 // already in the map. | |
1288 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { | |
1289 void *GA = getPointerToGlobalIfAvailable(GV); | |
1290 | |
1291 if (!GA) { | |
1292 // If it's not already specified, allocate memory for the global. | |
1293 GA = getMemoryForGV(GV); | |
1294 | |
1295 // If we failed to allocate memory for this global, return. | |
1296 if (!GA) return; | |
1297 | |
1298 addGlobalMapping(GV, GA); | |
1299 } | |
1300 | |
1301 // Don't initialize if it's thread local, let the client do it. | |
1302 if (!GV->isThreadLocal()) | |
1303 InitializeMemory(GV->getInitializer(), GA); | |
1304 | |
1305 Type *ElTy = GV->getValueType(); | |
1306 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); | |
1307 NumInitBytes += (unsigned)GVSize; | |
1308 ++NumGlobals; | |
1309 } |