150
|
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // This file defines the common interface used by the various execution engine
|
|
10 // subclasses.
|
|
11 //
|
|
12 //===----------------------------------------------------------------------===//
|
|
13
|
|
14 #include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
15 #include "llvm/ADT/STLExtras.h"
|
|
16 #include "llvm/ADT/SmallString.h"
|
|
17 #include "llvm/ADT/Statistic.h"
|
|
18 #include "llvm/ExecutionEngine/GenericValue.h"
|
|
19 #include "llvm/ExecutionEngine/JITEventListener.h"
|
|
20 #include "llvm/ExecutionEngine/ObjectCache.h"
|
|
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
|
|
22 #include "llvm/IR/Constants.h"
|
|
23 #include "llvm/IR/DataLayout.h"
|
|
24 #include "llvm/IR/DerivedTypes.h"
|
|
25 #include "llvm/IR/Mangler.h"
|
|
26 #include "llvm/IR/Module.h"
|
|
27 #include "llvm/IR/Operator.h"
|
|
28 #include "llvm/IR/ValueHandle.h"
|
|
29 #include "llvm/Object/Archive.h"
|
|
30 #include "llvm/Object/ObjectFile.h"
|
|
31 #include "llvm/Support/Debug.h"
|
|
32 #include "llvm/Support/DynamicLibrary.h"
|
|
33 #include "llvm/Support/ErrorHandling.h"
|
|
34 #include "llvm/Support/Host.h"
|
|
35 #include "llvm/Support/TargetRegistry.h"
|
|
36 #include "llvm/Support/raw_ostream.h"
|
|
37 #include "llvm/Target/TargetMachine.h"
|
|
38 #include <cmath>
|
|
39 #include <cstring>
|
|
40 #include <mutex>
|
|
41 using namespace llvm;
|
|
42
|
|
43 #define DEBUG_TYPE "jit"
|
|
44
|
|
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
|
|
46 STATISTIC(NumGlobals , "Number of global vars initialized");
|
|
47
|
|
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
|
|
49 std::unique_ptr<Module> M, std::string *ErrorStr,
|
|
50 std::shared_ptr<MCJITMemoryManager> MemMgr,
|
|
51 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
|
|
52 std::unique_ptr<TargetMachine> TM) = nullptr;
|
|
53
|
|
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
|
|
55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
|
|
56 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
|
|
57 std::unique_ptr<TargetMachine> TM) = nullptr;
|
|
58
|
|
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
|
|
60 std::string *ErrorStr) =nullptr;
|
|
61
|
|
62 void JITEventListener::anchor() {}
|
|
63
|
|
64 void ObjectCache::anchor() {}
|
|
65
|
|
66 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
|
|
67 CompilingLazily = false;
|
|
68 GVCompilationDisabled = false;
|
|
69 SymbolSearchingDisabled = false;
|
|
70
|
|
71 // IR module verification is enabled by default in debug builds, and disabled
|
|
72 // by default in release builds.
|
|
73 #ifndef NDEBUG
|
|
74 VerifyModules = true;
|
|
75 #else
|
|
76 VerifyModules = false;
|
|
77 #endif
|
|
78
|
|
79 assert(M && "Module is null?");
|
|
80 Modules.push_back(std::move(M));
|
|
81 }
|
|
82
|
|
83 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
|
|
84 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
|
|
85 Init(std::move(M));
|
|
86 }
|
|
87
|
|
88 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
|
|
89 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
|
|
90 Init(std::move(M));
|
|
91 }
|
|
92
|
|
93 ExecutionEngine::~ExecutionEngine() {
|
|
94 clearAllGlobalMappings();
|
|
95 }
|
|
96
|
|
97 namespace {
|
|
98 /// Helper class which uses a value handler to automatically deletes the
|
|
99 /// memory block when the GlobalVariable is destroyed.
|
|
100 class GVMemoryBlock final : public CallbackVH {
|
|
101 GVMemoryBlock(const GlobalVariable *GV)
|
|
102 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
|
|
103
|
|
104 public:
|
|
105 /// Returns the address the GlobalVariable should be written into. The
|
|
106 /// GVMemoryBlock object prefixes that.
|
|
107 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
|
|
108 Type *ElTy = GV->getValueType();
|
|
109 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
|
|
110 void *RawMemory = ::operator new(
|
|
111 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize);
|
|
112 new(RawMemory) GVMemoryBlock(GV);
|
|
113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
|
|
114 }
|
|
115
|
|
116 void deleted() override {
|
|
117 // We allocated with operator new and with some extra memory hanging off the
|
|
118 // end, so don't just delete this. I'm not sure if this is actually
|
|
119 // required.
|
|
120 this->~GVMemoryBlock();
|
|
121 ::operator delete(this);
|
|
122 }
|
|
123 };
|
|
124 } // anonymous namespace
|
|
125
|
|
126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
|
|
127 return GVMemoryBlock::Create(GV, getDataLayout());
|
|
128 }
|
|
129
|
|
130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
|
|
131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
|
|
132 }
|
|
133
|
|
134 void
|
|
135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
|
|
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
|
|
137 }
|
|
138
|
|
139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
|
|
140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
|
|
141 }
|
|
142
|
|
143 bool ExecutionEngine::removeModule(Module *M) {
|
|
144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
|
|
145 Module *Found = I->get();
|
|
146 if (Found == M) {
|
|
147 I->release();
|
|
148 Modules.erase(I);
|
|
149 clearGlobalMappingsFromModule(M);
|
|
150 return true;
|
|
151 }
|
|
152 }
|
|
153 return false;
|
|
154 }
|
|
155
|
|
156 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
|
|
157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
|
158 Function *F = Modules[i]->getFunction(FnName);
|
|
159 if (F && !F->isDeclaration())
|
|
160 return F;
|
|
161 }
|
|
162 return nullptr;
|
|
163 }
|
|
164
|
|
165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
|
|
166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
|
167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
|
|
168 if (GV && !GV->isDeclaration())
|
|
169 return GV;
|
|
170 }
|
|
171 return nullptr;
|
|
172 }
|
|
173
|
|
174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
|
|
175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
|
|
176 uint64_t OldVal;
|
|
177
|
|
178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
|
|
179 // GlobalAddressMap.
|
|
180 if (I == GlobalAddressMap.end())
|
|
181 OldVal = 0;
|
|
182 else {
|
|
183 GlobalAddressReverseMap.erase(I->second);
|
|
184 OldVal = I->second;
|
|
185 GlobalAddressMap.erase(I);
|
|
186 }
|
|
187
|
|
188 return OldVal;
|
|
189 }
|
|
190
|
|
191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
|
|
192 assert(GV->hasName() && "Global must have name.");
|
|
193
|
|
194 std::lock_guard<sys::Mutex> locked(lock);
|
|
195 SmallString<128> FullName;
|
|
196
|
|
197 const DataLayout &DL =
|
|
198 GV->getParent()->getDataLayout().isDefault()
|
|
199 ? getDataLayout()
|
|
200 : GV->getParent()->getDataLayout();
|
|
201
|
|
202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
|
|
203 return std::string(FullName.str());
|
|
204 }
|
|
205
|
|
206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
207 std::lock_guard<sys::Mutex> locked(lock);
|
|
208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
|
|
209 }
|
|
210
|
|
211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
|
|
212 std::lock_guard<sys::Mutex> locked(lock);
|
|
213
|
|
214 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
|
|
215
|
|
216 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
|
|
217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
|
|
218 assert((!CurVal || !Addr) && "GlobalMapping already established!");
|
|
219 CurVal = Addr;
|
|
220
|
|
221 // If we are using the reverse mapping, add it too.
|
|
222 if (!EEState.getGlobalAddressReverseMap().empty()) {
|
|
223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
|
|
224 assert((!V.empty() || !Name.empty()) &&
|
|
225 "GlobalMapping already established!");
|
|
226 V = std::string(Name);
|
|
227 }
|
|
228 }
|
|
229
|
|
230 void ExecutionEngine::clearAllGlobalMappings() {
|
|
231 std::lock_guard<sys::Mutex> locked(lock);
|
|
232
|
|
233 EEState.getGlobalAddressMap().clear();
|
|
234 EEState.getGlobalAddressReverseMap().clear();
|
|
235 }
|
|
236
|
|
237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
|
|
238 std::lock_guard<sys::Mutex> locked(lock);
|
|
239
|
|
240 for (GlobalObject &GO : M->global_objects())
|
|
241 EEState.RemoveMapping(getMangledName(&GO));
|
|
242 }
|
|
243
|
|
244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
|
|
245 void *Addr) {
|
|
246 std::lock_guard<sys::Mutex> locked(lock);
|
|
247 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
|
|
248 }
|
|
249
|
|
250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
|
|
251 std::lock_guard<sys::Mutex> locked(lock);
|
|
252
|
|
253 ExecutionEngineState::GlobalAddressMapTy &Map =
|
|
254 EEState.getGlobalAddressMap();
|
|
255
|
|
256 // Deleting from the mapping?
|
|
257 if (!Addr)
|
|
258 return EEState.RemoveMapping(Name);
|
|
259
|
|
260 uint64_t &CurVal = Map[Name];
|
|
261 uint64_t OldVal = CurVal;
|
|
262
|
|
263 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
|
|
264 EEState.getGlobalAddressReverseMap().erase(CurVal);
|
|
265 CurVal = Addr;
|
|
266
|
|
267 // If we are using the reverse mapping, add it too.
|
|
268 if (!EEState.getGlobalAddressReverseMap().empty()) {
|
|
269 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
|
|
270 assert((!V.empty() || !Name.empty()) &&
|
|
271 "GlobalMapping already established!");
|
|
272 V = std::string(Name);
|
|
273 }
|
|
274 return OldVal;
|
|
275 }
|
|
276
|
|
277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
|
|
278 std::lock_guard<sys::Mutex> locked(lock);
|
|
279 uint64_t Address = 0;
|
|
280 ExecutionEngineState::GlobalAddressMapTy::iterator I =
|
|
281 EEState.getGlobalAddressMap().find(S);
|
|
282 if (I != EEState.getGlobalAddressMap().end())
|
|
283 Address = I->second;
|
|
284 return Address;
|
|
285 }
|
|
286
|
|
287
|
|
288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
|
|
289 std::lock_guard<sys::Mutex> locked(lock);
|
|
290 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
|
|
291 return Address;
|
|
292 return nullptr;
|
|
293 }
|
|
294
|
|
295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
|
|
296 std::lock_guard<sys::Mutex> locked(lock);
|
|
297 return getPointerToGlobalIfAvailable(getMangledName(GV));
|
|
298 }
|
|
299
|
|
300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
|
|
301 std::lock_guard<sys::Mutex> locked(lock);
|
|
302
|
|
303 // If we haven't computed the reverse mapping yet, do so first.
|
|
304 if (EEState.getGlobalAddressReverseMap().empty()) {
|
|
305 for (ExecutionEngineState::GlobalAddressMapTy::iterator
|
|
306 I = EEState.getGlobalAddressMap().begin(),
|
|
307 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
|
|
308 StringRef Name = I->first();
|
|
309 uint64_t Addr = I->second;
|
|
310 EEState.getGlobalAddressReverseMap().insert(
|
|
311 std::make_pair(Addr, std::string(Name)));
|
|
312 }
|
|
313 }
|
|
314
|
|
315 std::map<uint64_t, std::string>::iterator I =
|
|
316 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
|
|
317
|
|
318 if (I != EEState.getGlobalAddressReverseMap().end()) {
|
|
319 StringRef Name = I->second;
|
|
320 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
|
|
321 if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
|
|
322 return GV;
|
|
323 }
|
|
324 return nullptr;
|
|
325 }
|
|
326
|
|
327 namespace {
|
|
328 class ArgvArray {
|
|
329 std::unique_ptr<char[]> Array;
|
|
330 std::vector<std::unique_ptr<char[]>> Values;
|
|
331 public:
|
|
332 /// Turn a vector of strings into a nice argv style array of pointers to null
|
|
333 /// terminated strings.
|
|
334 void *reset(LLVMContext &C, ExecutionEngine *EE,
|
|
335 const std::vector<std::string> &InputArgv);
|
|
336 };
|
|
337 } // anonymous namespace
|
|
338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
|
|
339 const std::vector<std::string> &InputArgv) {
|
|
340 Values.clear(); // Free the old contents.
|
|
341 Values.reserve(InputArgv.size());
|
|
342 unsigned PtrSize = EE->getDataLayout().getPointerSize();
|
|
343 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
|
|
344
|
|
345 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
|
|
346 Type *SBytePtr = Type::getInt8PtrTy(C);
|
|
347
|
|
348 for (unsigned i = 0; i != InputArgv.size(); ++i) {
|
|
349 unsigned Size = InputArgv[i].size()+1;
|
|
350 auto Dest = std::make_unique<char[]>(Size);
|
|
351 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
|
|
352 << "\n");
|
|
353
|
|
354 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
|
|
355 Dest[Size-1] = 0;
|
|
356
|
|
357 // Endian safe: Array[i] = (PointerTy)Dest;
|
|
358 EE->StoreValueToMemory(PTOGV(Dest.get()),
|
|
359 (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
|
|
360 Values.push_back(std::move(Dest));
|
|
361 }
|
|
362
|
|
363 // Null terminate it
|
|
364 EE->StoreValueToMemory(PTOGV(nullptr),
|
|
365 (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
|
|
366 SBytePtr);
|
|
367 return Array.get();
|
|
368 }
|
|
369
|
|
370 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
|
|
371 bool isDtors) {
|
|
372 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
|
|
373 GlobalVariable *GV = module.getNamedGlobal(Name);
|
|
374
|
|
375 // If this global has internal linkage, or if it has a use, then it must be
|
|
376 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
|
|
377 // this is the case, don't execute any of the global ctors, __main will do
|
|
378 // it.
|
|
379 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
|
|
380
|
|
381 // Should be an array of '{ i32, void ()* }' structs. The first value is
|
|
382 // the init priority, which we ignore.
|
|
383 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
384 if (!InitList)
|
|
385 return;
|
|
386 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
|
|
387 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
|
|
388 if (!CS) continue;
|
|
389
|
|
390 Constant *FP = CS->getOperand(1);
|
|
391 if (FP->isNullValue())
|
|
392 continue; // Found a sentinal value, ignore.
|
|
393
|
|
394 // Strip off constant expression casts.
|
|
395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
|
|
396 if (CE->isCast())
|
|
397 FP = CE->getOperand(0);
|
|
398
|
|
399 // Execute the ctor/dtor function!
|
|
400 if (Function *F = dyn_cast<Function>(FP))
|
|
401 runFunction(F, None);
|
|
402
|
|
403 // FIXME: It is marginally lame that we just do nothing here if we see an
|
|
404 // entry we don't recognize. It might not be unreasonable for the verifier
|
|
405 // to not even allow this and just assert here.
|
|
406 }
|
|
407 }
|
|
408
|
|
409 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
|
|
410 // Execute global ctors/dtors for each module in the program.
|
|
411 for (std::unique_ptr<Module> &M : Modules)
|
|
412 runStaticConstructorsDestructors(*M, isDtors);
|
|
413 }
|
|
414
|
|
415 #ifndef NDEBUG
|
|
416 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
|
|
417 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
|
|
418 unsigned PtrSize = EE->getDataLayout().getPointerSize();
|
|
419 for (unsigned i = 0; i < PtrSize; ++i)
|
|
420 if (*(i + (uint8_t*)Loc))
|
|
421 return false;
|
|
422 return true;
|
|
423 }
|
|
424 #endif
|
|
425
|
|
426 int ExecutionEngine::runFunctionAsMain(Function *Fn,
|
|
427 const std::vector<std::string> &argv,
|
|
428 const char * const * envp) {
|
|
429 std::vector<GenericValue> GVArgs;
|
|
430 GenericValue GVArgc;
|
|
431 GVArgc.IntVal = APInt(32, argv.size());
|
|
432
|
|
433 // Check main() type
|
|
434 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
|
|
435 FunctionType *FTy = Fn->getFunctionType();
|
|
436 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
|
|
437
|
|
438 // Check the argument types.
|
|
439 if (NumArgs > 3)
|
|
440 report_fatal_error("Invalid number of arguments of main() supplied");
|
|
441 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
|
|
442 report_fatal_error("Invalid type for third argument of main() supplied");
|
|
443 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
|
|
444 report_fatal_error("Invalid type for second argument of main() supplied");
|
|
445 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
|
|
446 report_fatal_error("Invalid type for first argument of main() supplied");
|
|
447 if (!FTy->getReturnType()->isIntegerTy() &&
|
|
448 !FTy->getReturnType()->isVoidTy())
|
|
449 report_fatal_error("Invalid return type of main() supplied");
|
|
450
|
|
451 ArgvArray CArgv;
|
|
452 ArgvArray CEnv;
|
|
453 if (NumArgs) {
|
|
454 GVArgs.push_back(GVArgc); // Arg #0 = argc.
|
|
455 if (NumArgs > 1) {
|
|
456 // Arg #1 = argv.
|
|
457 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
|
|
458 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
|
|
459 "argv[0] was null after CreateArgv");
|
|
460 if (NumArgs > 2) {
|
|
461 std::vector<std::string> EnvVars;
|
|
462 for (unsigned i = 0; envp[i]; ++i)
|
|
463 EnvVars.emplace_back(envp[i]);
|
|
464 // Arg #2 = envp.
|
|
465 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
|
|
466 }
|
|
467 }
|
|
468 }
|
|
469
|
|
470 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
|
|
471 }
|
|
472
|
|
473 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
|
|
474
|
|
475 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
|
|
476 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
|
|
477 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
|
|
478 UseOrcMCJITReplacement(false) {
|
|
479 // IR module verification is enabled by default in debug builds, and disabled
|
|
480 // by default in release builds.
|
|
481 #ifndef NDEBUG
|
|
482 VerifyModules = true;
|
|
483 #else
|
|
484 VerifyModules = false;
|
|
485 #endif
|
|
486 }
|
|
487
|
|
488 EngineBuilder::~EngineBuilder() = default;
|
|
489
|
|
490 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
|
|
491 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
|
|
492 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
|
|
493 MemMgr = SharedMM;
|
|
494 Resolver = SharedMM;
|
|
495 return *this;
|
|
496 }
|
|
497
|
|
498 EngineBuilder&
|
|
499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
|
|
500 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
|
|
501 return *this;
|
|
502 }
|
|
503
|
|
504 EngineBuilder &
|
|
505 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
|
|
506 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
|
|
507 return *this;
|
|
508 }
|
|
509
|
|
510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
|
|
511 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
|
|
512
|
|
513 // Make sure we can resolve symbols in the program as well. The zero arg
|
|
514 // to the function tells DynamicLibrary to load the program, not a library.
|
|
515 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
|
|
516 return nullptr;
|
|
517
|
|
518 // If the user specified a memory manager but didn't specify which engine to
|
|
519 // create, we assume they only want the JIT, and we fail if they only want
|
|
520 // the interpreter.
|
|
521 if (MemMgr) {
|
|
522 if (WhichEngine & EngineKind::JIT)
|
|
523 WhichEngine = EngineKind::JIT;
|
|
524 else {
|
|
525 if (ErrorStr)
|
|
526 *ErrorStr = "Cannot create an interpreter with a memory manager.";
|
|
527 return nullptr;
|
|
528 }
|
|
529 }
|
|
530
|
|
531 // Unless the interpreter was explicitly selected or the JIT is not linked,
|
|
532 // try making a JIT.
|
|
533 if ((WhichEngine & EngineKind::JIT) && TheTM) {
|
|
534 if (!TM->getTarget().hasJIT()) {
|
|
535 errs() << "WARNING: This target JIT is not designed for the host"
|
|
536 << " you are running. If bad things happen, please choose"
|
|
537 << " a different -march switch.\n";
|
|
538 }
|
|
539
|
|
540 ExecutionEngine *EE = nullptr;
|
|
541 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
|
|
542 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
|
|
543 std::move(Resolver),
|
|
544 std::move(TheTM));
|
|
545 EE->addModule(std::move(M));
|
|
546 } else if (ExecutionEngine::MCJITCtor)
|
|
547 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
|
|
548 std::move(Resolver), std::move(TheTM));
|
|
549
|
|
550 if (EE) {
|
|
551 EE->setVerifyModules(VerifyModules);
|
|
552 return EE;
|
|
553 }
|
|
554 }
|
|
555
|
|
556 // If we can't make a JIT and we didn't request one specifically, try making
|
|
557 // an interpreter instead.
|
|
558 if (WhichEngine & EngineKind::Interpreter) {
|
|
559 if (ExecutionEngine::InterpCtor)
|
|
560 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
|
|
561 if (ErrorStr)
|
|
562 *ErrorStr = "Interpreter has not been linked in.";
|
|
563 return nullptr;
|
|
564 }
|
|
565
|
|
566 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
|
|
567 if (ErrorStr)
|
|
568 *ErrorStr = "JIT has not been linked in.";
|
|
569 }
|
|
570
|
|
571 return nullptr;
|
|
572 }
|
|
573
|
|
574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
|
575 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
|
|
576 return getPointerToFunction(F);
|
|
577
|
|
578 std::lock_guard<sys::Mutex> locked(lock);
|
|
579 if (void* P = getPointerToGlobalIfAvailable(GV))
|
|
580 return P;
|
|
581
|
|
582 // Global variable might have been added since interpreter started.
|
|
583 if (GlobalVariable *GVar =
|
|
584 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
|
|
585 EmitGlobalVariable(GVar);
|
|
586 else
|
|
587 llvm_unreachable("Global hasn't had an address allocated yet!");
|
|
588
|
|
589 return getPointerToGlobalIfAvailable(GV);
|
|
590 }
|
|
591
|
|
592 /// Converts a Constant* into a GenericValue, including handling of
|
|
593 /// ConstantExpr values.
|
|
594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
|
595 // If its undefined, return the garbage.
|
|
596 if (isa<UndefValue>(C)) {
|
|
597 GenericValue Result;
|
|
598 switch (C->getType()->getTypeID()) {
|
|
599 default:
|
|
600 break;
|
|
601 case Type::IntegerTyID:
|
|
602 case Type::X86_FP80TyID:
|
|
603 case Type::FP128TyID:
|
|
604 case Type::PPC_FP128TyID:
|
|
605 // Although the value is undefined, we still have to construct an APInt
|
|
606 // with the correct bit width.
|
|
607 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
|
|
608 break;
|
|
609 case Type::StructTyID: {
|
|
610 // if the whole struct is 'undef' just reserve memory for the value.
|
|
611 if(StructType *STy = dyn_cast<StructType>(C->getType())) {
|
|
612 unsigned int elemNum = STy->getNumElements();
|
|
613 Result.AggregateVal.resize(elemNum);
|
|
614 for (unsigned int i = 0; i < elemNum; ++i) {
|
|
615 Type *ElemTy = STy->getElementType(i);
|
|
616 if (ElemTy->isIntegerTy())
|
|
617 Result.AggregateVal[i].IntVal =
|
|
618 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
|
|
619 else if (ElemTy->isAggregateType()) {
|
|
620 const Constant *ElemUndef = UndefValue::get(ElemTy);
|
|
621 Result.AggregateVal[i] = getConstantValue(ElemUndef);
|
|
622 }
|
|
623 }
|
|
624 }
|
|
625 }
|
|
626 break;
|
|
627 case Type::VectorTyID:
|
|
628 // if the whole vector is 'undef' just reserve memory for the value.
|
|
629 auto* VTy = cast<VectorType>(C->getType());
|
|
630 Type *ElemTy = VTy->getElementType();
|
|
631 unsigned int elemNum = VTy->getNumElements();
|
|
632 Result.AggregateVal.resize(elemNum);
|
|
633 if (ElemTy->isIntegerTy())
|
|
634 for (unsigned int i = 0; i < elemNum; ++i)
|
|
635 Result.AggregateVal[i].IntVal =
|
|
636 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
|
|
637 break;
|
|
638 }
|
|
639 return Result;
|
|
640 }
|
|
641
|
|
642 // Otherwise, if the value is a ConstantExpr...
|
|
643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
644 Constant *Op0 = CE->getOperand(0);
|
|
645 switch (CE->getOpcode()) {
|
|
646 case Instruction::GetElementPtr: {
|
|
647 // Compute the index
|
|
648 GenericValue Result = getConstantValue(Op0);
|
|
649 APInt Offset(DL.getPointerSizeInBits(), 0);
|
|
650 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
|
|
651
|
|
652 char* tmp = (char*) Result.PointerVal;
|
|
653 Result = PTOGV(tmp + Offset.getSExtValue());
|
|
654 return Result;
|
|
655 }
|
|
656 case Instruction::Trunc: {
|
|
657 GenericValue GV = getConstantValue(Op0);
|
|
658 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
659 GV.IntVal = GV.IntVal.trunc(BitWidth);
|
|
660 return GV;
|
|
661 }
|
|
662 case Instruction::ZExt: {
|
|
663 GenericValue GV = getConstantValue(Op0);
|
|
664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
665 GV.IntVal = GV.IntVal.zext(BitWidth);
|
|
666 return GV;
|
|
667 }
|
|
668 case Instruction::SExt: {
|
|
669 GenericValue GV = getConstantValue(Op0);
|
|
670 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
671 GV.IntVal = GV.IntVal.sext(BitWidth);
|
|
672 return GV;
|
|
673 }
|
|
674 case Instruction::FPTrunc: {
|
|
675 // FIXME long double
|
|
676 GenericValue GV = getConstantValue(Op0);
|
|
677 GV.FloatVal = float(GV.DoubleVal);
|
|
678 return GV;
|
|
679 }
|
|
680 case Instruction::FPExt:{
|
|
681 // FIXME long double
|
|
682 GenericValue GV = getConstantValue(Op0);
|
|
683 GV.DoubleVal = double(GV.FloatVal);
|
|
684 return GV;
|
|
685 }
|
|
686 case Instruction::UIToFP: {
|
|
687 GenericValue GV = getConstantValue(Op0);
|
|
688 if (CE->getType()->isFloatTy())
|
|
689 GV.FloatVal = float(GV.IntVal.roundToDouble());
|
|
690 else if (CE->getType()->isDoubleTy())
|
|
691 GV.DoubleVal = GV.IntVal.roundToDouble();
|
|
692 else if (CE->getType()->isX86_FP80Ty()) {
|
|
693 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
|
|
694 (void)apf.convertFromAPInt(GV.IntVal,
|
|
695 false,
|
|
696 APFloat::rmNearestTiesToEven);
|
|
697 GV.IntVal = apf.bitcastToAPInt();
|
|
698 }
|
|
699 return GV;
|
|
700 }
|
|
701 case Instruction::SIToFP: {
|
|
702 GenericValue GV = getConstantValue(Op0);
|
|
703 if (CE->getType()->isFloatTy())
|
|
704 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
|
|
705 else if (CE->getType()->isDoubleTy())
|
|
706 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
|
|
707 else if (CE->getType()->isX86_FP80Ty()) {
|
|
708 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
|
|
709 (void)apf.convertFromAPInt(GV.IntVal,
|
|
710 true,
|
|
711 APFloat::rmNearestTiesToEven);
|
|
712 GV.IntVal = apf.bitcastToAPInt();
|
|
713 }
|
|
714 return GV;
|
|
715 }
|
|
716 case Instruction::FPToUI: // double->APInt conversion handles sign
|
|
717 case Instruction::FPToSI: {
|
|
718 GenericValue GV = getConstantValue(Op0);
|
|
719 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
720 if (Op0->getType()->isFloatTy())
|
|
721 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
|
|
722 else if (Op0->getType()->isDoubleTy())
|
|
723 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
|
|
724 else if (Op0->getType()->isX86_FP80Ty()) {
|
|
725 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
|
|
726 uint64_t v;
|
|
727 bool ignored;
|
|
728 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
|
|
729 CE->getOpcode()==Instruction::FPToSI,
|
|
730 APFloat::rmTowardZero, &ignored);
|
|
731 GV.IntVal = v; // endian?
|
|
732 }
|
|
733 return GV;
|
|
734 }
|
|
735 case Instruction::PtrToInt: {
|
|
736 GenericValue GV = getConstantValue(Op0);
|
|
737 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
|
|
738 assert(PtrWidth <= 64 && "Bad pointer width");
|
|
739 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
|
|
740 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
|
|
741 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
|
|
742 return GV;
|
|
743 }
|
|
744 case Instruction::IntToPtr: {
|
|
745 GenericValue GV = getConstantValue(Op0);
|
|
746 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
|
|
747 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
|
|
748 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
|
|
749 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
|
|
750 return GV;
|
|
751 }
|
|
752 case Instruction::BitCast: {
|
|
753 GenericValue GV = getConstantValue(Op0);
|
|
754 Type* DestTy = CE->getType();
|
|
755 switch (Op0->getType()->getTypeID()) {
|
|
756 default: llvm_unreachable("Invalid bitcast operand");
|
|
757 case Type::IntegerTyID:
|
|
758 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
|
|
759 if (DestTy->isFloatTy())
|
|
760 GV.FloatVal = GV.IntVal.bitsToFloat();
|
|
761 else if (DestTy->isDoubleTy())
|
|
762 GV.DoubleVal = GV.IntVal.bitsToDouble();
|
|
763 break;
|
|
764 case Type::FloatTyID:
|
|
765 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
|
|
766 GV.IntVal = APInt::floatToBits(GV.FloatVal);
|
|
767 break;
|
|
768 case Type::DoubleTyID:
|
|
769 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
|
|
770 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
|
|
771 break;
|
|
772 case Type::PointerTyID:
|
|
773 assert(DestTy->isPointerTy() && "Invalid bitcast");
|
|
774 break; // getConstantValue(Op0) above already converted it
|
|
775 }
|
|
776 return GV;
|
|
777 }
|
|
778 case Instruction::Add:
|
|
779 case Instruction::FAdd:
|
|
780 case Instruction::Sub:
|
|
781 case Instruction::FSub:
|
|
782 case Instruction::Mul:
|
|
783 case Instruction::FMul:
|
|
784 case Instruction::UDiv:
|
|
785 case Instruction::SDiv:
|
|
786 case Instruction::URem:
|
|
787 case Instruction::SRem:
|
|
788 case Instruction::And:
|
|
789 case Instruction::Or:
|
|
790 case Instruction::Xor: {
|
|
791 GenericValue LHS = getConstantValue(Op0);
|
|
792 GenericValue RHS = getConstantValue(CE->getOperand(1));
|
|
793 GenericValue GV;
|
|
794 switch (CE->getOperand(0)->getType()->getTypeID()) {
|
|
795 default: llvm_unreachable("Bad add type!");
|
|
796 case Type::IntegerTyID:
|
|
797 switch (CE->getOpcode()) {
|
|
798 default: llvm_unreachable("Invalid integer opcode");
|
|
799 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
|
|
800 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
|
|
801 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
|
|
802 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
|
|
803 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
|
|
804 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
|
|
805 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
|
|
806 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
|
|
807 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
|
|
808 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
|
|
809 }
|
|
810 break;
|
|
811 case Type::FloatTyID:
|
|
812 switch (CE->getOpcode()) {
|
|
813 default: llvm_unreachable("Invalid float opcode");
|
|
814 case Instruction::FAdd:
|
|
815 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
|
|
816 case Instruction::FSub:
|
|
817 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
|
|
818 case Instruction::FMul:
|
|
819 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
|
|
820 case Instruction::FDiv:
|
|
821 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
|
|
822 case Instruction::FRem:
|
|
823 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
|
|
824 }
|
|
825 break;
|
|
826 case Type::DoubleTyID:
|
|
827 switch (CE->getOpcode()) {
|
|
828 default: llvm_unreachable("Invalid double opcode");
|
|
829 case Instruction::FAdd:
|
|
830 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
|
|
831 case Instruction::FSub:
|
|
832 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
|
|
833 case Instruction::FMul:
|
|
834 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
|
|
835 case Instruction::FDiv:
|
|
836 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
|
|
837 case Instruction::FRem:
|
|
838 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
|
|
839 }
|
|
840 break;
|
|
841 case Type::X86_FP80TyID:
|
|
842 case Type::PPC_FP128TyID:
|
|
843 case Type::FP128TyID: {
|
|
844 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
|
|
845 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
|
|
846 switch (CE->getOpcode()) {
|
|
847 default: llvm_unreachable("Invalid long double opcode");
|
|
848 case Instruction::FAdd:
|
|
849 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
|
|
850 GV.IntVal = apfLHS.bitcastToAPInt();
|
|
851 break;
|
|
852 case Instruction::FSub:
|
|
853 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
|
|
854 APFloat::rmNearestTiesToEven);
|
|
855 GV.IntVal = apfLHS.bitcastToAPInt();
|
|
856 break;
|
|
857 case Instruction::FMul:
|
|
858 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
|
|
859 APFloat::rmNearestTiesToEven);
|
|
860 GV.IntVal = apfLHS.bitcastToAPInt();
|
|
861 break;
|
|
862 case Instruction::FDiv:
|
|
863 apfLHS.divide(APFloat(Sem, RHS.IntVal),
|
|
864 APFloat::rmNearestTiesToEven);
|
|
865 GV.IntVal = apfLHS.bitcastToAPInt();
|
|
866 break;
|
|
867 case Instruction::FRem:
|
|
868 apfLHS.mod(APFloat(Sem, RHS.IntVal));
|
|
869 GV.IntVal = apfLHS.bitcastToAPInt();
|
|
870 break;
|
|
871 }
|
|
872 }
|
|
873 break;
|
|
874 }
|
|
875 return GV;
|
|
876 }
|
|
877 default:
|
|
878 break;
|
|
879 }
|
|
880
|
|
881 SmallString<256> Msg;
|
|
882 raw_svector_ostream OS(Msg);
|
|
883 OS << "ConstantExpr not handled: " << *CE;
|
|
884 report_fatal_error(OS.str());
|
|
885 }
|
|
886
|
|
887 // Otherwise, we have a simple constant.
|
|
888 GenericValue Result;
|
|
889 switch (C->getType()->getTypeID()) {
|
|
890 case Type::FloatTyID:
|
|
891 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
|
|
892 break;
|
|
893 case Type::DoubleTyID:
|
|
894 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
|
|
895 break;
|
|
896 case Type::X86_FP80TyID:
|
|
897 case Type::FP128TyID:
|
|
898 case Type::PPC_FP128TyID:
|
|
899 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
|
|
900 break;
|
|
901 case Type::IntegerTyID:
|
|
902 Result.IntVal = cast<ConstantInt>(C)->getValue();
|
|
903 break;
|
|
904 case Type::PointerTyID:
|
|
905 while (auto *A = dyn_cast<GlobalAlias>(C)) {
|
|
906 C = A->getAliasee();
|
|
907 }
|
|
908 if (isa<ConstantPointerNull>(C))
|
|
909 Result.PointerVal = nullptr;
|
|
910 else if (const Function *F = dyn_cast<Function>(C))
|
|
911 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
|
|
912 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
|
913 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
|
|
914 else
|
|
915 llvm_unreachable("Unknown constant pointer type!");
|
|
916 break;
|
|
917 case Type::VectorTyID: {
|
|
918 unsigned elemNum;
|
|
919 Type* ElemTy;
|
|
920 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
|
|
921 const ConstantVector *CV = dyn_cast<ConstantVector>(C);
|
|
922 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
|
|
923
|
|
924 if (CDV) {
|
|
925 elemNum = CDV->getNumElements();
|
|
926 ElemTy = CDV->getElementType();
|
|
927 } else if (CV || CAZ) {
|
|
928 auto* VTy = cast<VectorType>(C->getType());
|
|
929 elemNum = VTy->getNumElements();
|
|
930 ElemTy = VTy->getElementType();
|
|
931 } else {
|
|
932 llvm_unreachable("Unknown constant vector type!");
|
|
933 }
|
|
934
|
|
935 Result.AggregateVal.resize(elemNum);
|
|
936 // Check if vector holds floats.
|
|
937 if(ElemTy->isFloatTy()) {
|
|
938 if (CAZ) {
|
|
939 GenericValue floatZero;
|
|
940 floatZero.FloatVal = 0.f;
|
|
941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
942 floatZero);
|
|
943 break;
|
|
944 }
|
|
945 if(CV) {
|
|
946 for (unsigned i = 0; i < elemNum; ++i)
|
|
947 if (!isa<UndefValue>(CV->getOperand(i)))
|
|
948 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
|
|
949 CV->getOperand(i))->getValueAPF().convertToFloat();
|
|
950 break;
|
|
951 }
|
|
952 if(CDV)
|
|
953 for (unsigned i = 0; i < elemNum; ++i)
|
|
954 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
|
|
955
|
|
956 break;
|
|
957 }
|
|
958 // Check if vector holds doubles.
|
|
959 if (ElemTy->isDoubleTy()) {
|
|
960 if (CAZ) {
|
|
961 GenericValue doubleZero;
|
|
962 doubleZero.DoubleVal = 0.0;
|
|
963 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
964 doubleZero);
|
|
965 break;
|
|
966 }
|
|
967 if(CV) {
|
|
968 for (unsigned i = 0; i < elemNum; ++i)
|
|
969 if (!isa<UndefValue>(CV->getOperand(i)))
|
|
970 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
|
|
971 CV->getOperand(i))->getValueAPF().convertToDouble();
|
|
972 break;
|
|
973 }
|
|
974 if(CDV)
|
|
975 for (unsigned i = 0; i < elemNum; ++i)
|
|
976 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
|
|
977
|
|
978 break;
|
|
979 }
|
|
980 // Check if vector holds integers.
|
|
981 if (ElemTy->isIntegerTy()) {
|
|
982 if (CAZ) {
|
|
983 GenericValue intZero;
|
|
984 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
|
|
985 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
986 intZero);
|
|
987 break;
|
|
988 }
|
|
989 if(CV) {
|
|
990 for (unsigned i = 0; i < elemNum; ++i)
|
|
991 if (!isa<UndefValue>(CV->getOperand(i)))
|
|
992 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
|
|
993 CV->getOperand(i))->getValue();
|
|
994 else {
|
|
995 Result.AggregateVal[i].IntVal =
|
|
996 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
|
|
997 }
|
|
998 break;
|
|
999 }
|
|
1000 if(CDV)
|
|
1001 for (unsigned i = 0; i < elemNum; ++i)
|
|
1002 Result.AggregateVal[i].IntVal = APInt(
|
|
1003 CDV->getElementType()->getPrimitiveSizeInBits(),
|
|
1004 CDV->getElementAsInteger(i));
|
|
1005
|
|
1006 break;
|
|
1007 }
|
|
1008 llvm_unreachable("Unknown constant pointer type!");
|
|
1009 }
|
|
1010 break;
|
|
1011
|
|
1012 default:
|
|
1013 SmallString<256> Msg;
|
|
1014 raw_svector_ostream OS(Msg);
|
|
1015 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
|
|
1016 report_fatal_error(OS.str());
|
|
1017 }
|
|
1018
|
|
1019 return Result;
|
|
1020 }
|
|
1021
|
|
1022 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
|
|
1023 GenericValue *Ptr, Type *Ty) {
|
|
1024 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
|
|
1025
|
|
1026 switch (Ty->getTypeID()) {
|
|
1027 default:
|
|
1028 dbgs() << "Cannot store value of type " << *Ty << "!\n";
|
|
1029 break;
|
|
1030 case Type::IntegerTyID:
|
|
1031 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
|
|
1032 break;
|
|
1033 case Type::FloatTyID:
|
|
1034 *((float*)Ptr) = Val.FloatVal;
|
|
1035 break;
|
|
1036 case Type::DoubleTyID:
|
|
1037 *((double*)Ptr) = Val.DoubleVal;
|
|
1038 break;
|
|
1039 case Type::X86_FP80TyID:
|
|
1040 memcpy(Ptr, Val.IntVal.getRawData(), 10);
|
|
1041 break;
|
|
1042 case Type::PointerTyID:
|
|
1043 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
|
|
1044 if (StoreBytes != sizeof(PointerTy))
|
|
1045 memset(&(Ptr->PointerVal), 0, StoreBytes);
|
|
1046
|
|
1047 *((PointerTy*)Ptr) = Val.PointerVal;
|
|
1048 break;
|
|
1049 case Type::VectorTyID:
|
|
1050 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
|
|
1051 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
|
|
1052 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
|
|
1053 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
|
|
1054 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
|
|
1055 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
|
|
1056 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
|
|
1057 StoreIntToMemory(Val.AggregateVal[i].IntVal,
|
|
1058 (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
|
|
1059 }
|
|
1060 }
|
|
1061 break;
|
|
1062 }
|
|
1063
|
|
1064 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
|
|
1065 // Host and target are different endian - reverse the stored bytes.
|
|
1066 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
|
|
1067 }
|
|
1068
|
|
1069 /// FIXME: document
|
|
1070 ///
|
|
1071 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
|
|
1072 GenericValue *Ptr,
|
|
1073 Type *Ty) {
|
|
1074 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
|
|
1075
|
|
1076 switch (Ty->getTypeID()) {
|
|
1077 case Type::IntegerTyID:
|
|
1078 // An APInt with all words initially zero.
|
|
1079 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
|
|
1080 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
|
|
1081 break;
|
|
1082 case Type::FloatTyID:
|
|
1083 Result.FloatVal = *((float*)Ptr);
|
|
1084 break;
|
|
1085 case Type::DoubleTyID:
|
|
1086 Result.DoubleVal = *((double*)Ptr);
|
|
1087 break;
|
|
1088 case Type::PointerTyID:
|
|
1089 Result.PointerVal = *((PointerTy*)Ptr);
|
|
1090 break;
|
|
1091 case Type::X86_FP80TyID: {
|
|
1092 // This is endian dependent, but it will only work on x86 anyway.
|
|
1093 // FIXME: Will not trap if loading a signaling NaN.
|
|
1094 uint64_t y[2];
|
|
1095 memcpy(y, Ptr, 10);
|
|
1096 Result.IntVal = APInt(80, y);
|
|
1097 break;
|
|
1098 }
|
|
1099 case Type::VectorTyID: {
|
|
1100 auto *VT = cast<VectorType>(Ty);
|
|
1101 Type *ElemT = VT->getElementType();
|
|
1102 const unsigned numElems = VT->getNumElements();
|
|
1103 if (ElemT->isFloatTy()) {
|
|
1104 Result.AggregateVal.resize(numElems);
|
|
1105 for (unsigned i = 0; i < numElems; ++i)
|
|
1106 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
|
|
1107 }
|
|
1108 if (ElemT->isDoubleTy()) {
|
|
1109 Result.AggregateVal.resize(numElems);
|
|
1110 for (unsigned i = 0; i < numElems; ++i)
|
|
1111 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
|
|
1112 }
|
|
1113 if (ElemT->isIntegerTy()) {
|
|
1114 GenericValue intZero;
|
|
1115 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
|
|
1116 intZero.IntVal = APInt(elemBitWidth, 0);
|
|
1117 Result.AggregateVal.resize(numElems, intZero);
|
|
1118 for (unsigned i = 0; i < numElems; ++i)
|
|
1119 LoadIntFromMemory(Result.AggregateVal[i].IntVal,
|
|
1120 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
|
|
1121 }
|
|
1122 break;
|
|
1123 }
|
|
1124 default:
|
|
1125 SmallString<256> Msg;
|
|
1126 raw_svector_ostream OS(Msg);
|
|
1127 OS << "Cannot load value of type " << *Ty << "!";
|
|
1128 report_fatal_error(OS.str());
|
|
1129 }
|
|
1130 }
|
|
1131
|
|
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
|
1133 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
|
|
1134 LLVM_DEBUG(Init->dump());
|
|
1135 if (isa<UndefValue>(Init))
|
|
1136 return;
|
|
1137
|
|
1138 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
|
|
1139 unsigned ElementSize =
|
|
1140 getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
|
|
1141 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
1142 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
|
|
1143 return;
|
|
1144 }
|
|
1145
|
|
1146 if (isa<ConstantAggregateZero>(Init)) {
|
|
1147 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
|
|
1148 return;
|
|
1149 }
|
|
1150
|
|
1151 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
|
|
1152 unsigned ElementSize =
|
|
1153 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
|
|
1154 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
1155 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
|
|
1156 return;
|
|
1157 }
|
|
1158
|
|
1159 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
|
|
1160 const StructLayout *SL =
|
|
1161 getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
|
|
1162 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
|
1163 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
|
|
1164 return;
|
|
1165 }
|
|
1166
|
|
1167 if (const ConstantDataSequential *CDS =
|
|
1168 dyn_cast<ConstantDataSequential>(Init)) {
|
|
1169 // CDS is already laid out in host memory order.
|
|
1170 StringRef Data = CDS->getRawDataValues();
|
|
1171 memcpy(Addr, Data.data(), Data.size());
|
|
1172 return;
|
|
1173 }
|
|
1174
|
|
1175 if (Init->getType()->isFirstClassType()) {
|
|
1176 GenericValue Val = getConstantValue(Init);
|
|
1177 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
|
1178 return;
|
|
1179 }
|
|
1180
|
|
1181 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
|
|
1182 llvm_unreachable("Unknown constant type to initialize memory with!");
|
|
1183 }
|
|
1184
|
|
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their
|
|
1186 /// addresses into GlobalAddress. This must make sure to copy the contents of
|
|
1187 /// their initializers into the memory.
|
|
1188 void ExecutionEngine::emitGlobals() {
|
|
1189 // Loop over all of the global variables in the program, allocating the memory
|
|
1190 // to hold them. If there is more than one module, do a prepass over globals
|
|
1191 // to figure out how the different modules should link together.
|
|
1192 std::map<std::pair<std::string, Type*>,
|
|
1193 const GlobalValue*> LinkedGlobalsMap;
|
|
1194
|
|
1195 if (Modules.size() != 1) {
|
|
1196 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
1197 Module &M = *Modules[m];
|
|
1198 for (const auto &GV : M.globals()) {
|
|
1199 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
|
|
1200 GV.hasAppendingLinkage() || !GV.hasName())
|
|
1201 continue;// Ignore external globals and globals with internal linkage.
|
|
1202
|
|
1203 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
|
|
1204 std::string(GV.getName()), GV.getType())];
|
|
1205
|
|
1206 // If this is the first time we've seen this global, it is the canonical
|
|
1207 // version.
|
|
1208 if (!GVEntry) {
|
|
1209 GVEntry = &GV;
|
|
1210 continue;
|
|
1211 }
|
|
1212
|
|
1213 // If the existing global is strong, never replace it.
|
|
1214 if (GVEntry->hasExternalLinkage())
|
|
1215 continue;
|
|
1216
|
|
1217 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
|
|
1218 // symbol. FIXME is this right for common?
|
|
1219 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
|
|
1220 GVEntry = &GV;
|
|
1221 }
|
|
1222 }
|
|
1223 }
|
|
1224
|
|
1225 std::vector<const GlobalValue*> NonCanonicalGlobals;
|
|
1226 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
1227 Module &M = *Modules[m];
|
|
1228 for (const auto &GV : M.globals()) {
|
|
1229 // In the multi-module case, see what this global maps to.
|
|
1230 if (!LinkedGlobalsMap.empty()) {
|
|
1231 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
|
|
1232 std::string(GV.getName()), GV.getType())]) {
|
|
1233 // If something else is the canonical global, ignore this one.
|
|
1234 if (GVEntry != &GV) {
|
|
1235 NonCanonicalGlobals.push_back(&GV);
|
|
1236 continue;
|
|
1237 }
|
|
1238 }
|
|
1239 }
|
|
1240
|
|
1241 if (!GV.isDeclaration()) {
|
|
1242 addGlobalMapping(&GV, getMemoryForGV(&GV));
|
|
1243 } else {
|
|
1244 // External variable reference. Try to use the dynamic loader to
|
|
1245 // get a pointer to it.
|
|
1246 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
|
|
1247 std::string(GV.getName())))
|
|
1248 addGlobalMapping(&GV, SymAddr);
|
|
1249 else {
|
|
1250 report_fatal_error("Could not resolve external global address: "
|
|
1251 +GV.getName());
|
|
1252 }
|
|
1253 }
|
|
1254 }
|
|
1255
|
|
1256 // If there are multiple modules, map the non-canonical globals to their
|
|
1257 // canonical location.
|
|
1258 if (!NonCanonicalGlobals.empty()) {
|
|
1259 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
|
|
1260 const GlobalValue *GV = NonCanonicalGlobals[i];
|
|
1261 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
|
|
1262 std::string(GV->getName()), GV->getType())];
|
|
1263 void *Ptr = getPointerToGlobalIfAvailable(CGV);
|
|
1264 assert(Ptr && "Canonical global wasn't codegen'd!");
|
|
1265 addGlobalMapping(GV, Ptr);
|
|
1266 }
|
|
1267 }
|
|
1268
|
|
1269 // Now that all of the globals are set up in memory, loop through them all
|
|
1270 // and initialize their contents.
|
|
1271 for (const auto &GV : M.globals()) {
|
|
1272 if (!GV.isDeclaration()) {
|
|
1273 if (!LinkedGlobalsMap.empty()) {
|
|
1274 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
|
|
1275 std::string(GV.getName()), GV.getType())])
|
|
1276 if (GVEntry != &GV) // Not the canonical variable.
|
|
1277 continue;
|
|
1278 }
|
|
1279 EmitGlobalVariable(&GV);
|
|
1280 }
|
|
1281 }
|
|
1282 }
|
|
1283 }
|
|
1284
|
|
1285 // EmitGlobalVariable - This method emits the specified global variable to the
|
|
1286 // address specified in GlobalAddresses, or allocates new memory if it's not
|
|
1287 // already in the map.
|
|
1288 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
1289 void *GA = getPointerToGlobalIfAvailable(GV);
|
|
1290
|
|
1291 if (!GA) {
|
|
1292 // If it's not already specified, allocate memory for the global.
|
|
1293 GA = getMemoryForGV(GV);
|
|
1294
|
|
1295 // If we failed to allocate memory for this global, return.
|
|
1296 if (!GA) return;
|
|
1297
|
|
1298 addGlobalMapping(GV, GA);
|
|
1299 }
|
|
1300
|
|
1301 // Don't initialize if it's thread local, let the client do it.
|
|
1302 if (!GV->isThreadLocal())
|
|
1303 InitializeMemory(GV->getInitializer(), GA);
|
|
1304
|
|
1305 Type *ElTy = GV->getValueType();
|
|
1306 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
|
|
1307 NumInitBytes += (unsigned)GVSize;
|
|
1308 ++NumGlobals;
|
|
1309 }
|