comparison llvm/unittests/CodeGen/ScalableVectorMVTsTest.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
comparison
equal deleted inserted replaced
147:c2174574ed3a 150:1d019706d866
1 //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/CodeGen/ValueTypes.h"
10 #include "llvm/IR/DerivedTypes.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/Support/MachineValueType.h"
13 #include "llvm/Support/TypeSize.h"
14 #include "gtest/gtest.h"
15
16 using namespace llvm;
17
18 namespace {
19
20 TEST(ScalableVectorMVTsTest, IntegerMVTs) {
21 for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
22 ASSERT_TRUE(VecTy.isValid());
23 ASSERT_TRUE(VecTy.isInteger());
24 ASSERT_TRUE(VecTy.isVector());
25 ASSERT_TRUE(VecTy.isScalableVector());
26 ASSERT_TRUE(VecTy.getScalarType().isValid());
27
28 ASSERT_FALSE(VecTy.isFloatingPoint());
29 }
30 }
31
32 TEST(ScalableVectorMVTsTest, FloatMVTs) {
33 for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
34 ASSERT_TRUE(VecTy.isValid());
35 ASSERT_TRUE(VecTy.isFloatingPoint());
36 ASSERT_TRUE(VecTy.isVector());
37 ASSERT_TRUE(VecTy.isScalableVector());
38 ASSERT_TRUE(VecTy.getScalarType().isValid());
39
40 ASSERT_FALSE(VecTy.isInteger());
41 }
42 }
43
44 TEST(ScalableVectorMVTsTest, HelperFuncs) {
45 LLVMContext Ctx;
46
47 // Create with scalable flag
48 EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
49 ASSERT_TRUE(Vnx4i32.isScalableVector());
50
51 // Create with separate llvm::ElementCount
52 auto EltCnt = ElementCount(2, true);
53 EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
54 ASSERT_TRUE(Vnx2i32.isScalableVector());
55
56 // Create with inline llvm::ElementCount
57 EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
58 ASSERT_TRUE(Vnx2i64.isScalableVector());
59
60 // Check that changing scalar types/element count works
61 EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
62 EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
63
64 // Check that overloaded '*' and '/' operators work
65 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
66 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
67
68 // Check that float->int conversion works
69 EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
70 EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
71
72 // Check fields inside llvm::ElementCount
73 EltCnt = Vnx4i32.getVectorElementCount();
74 EXPECT_EQ(EltCnt.Min, 4U);
75 ASSERT_TRUE(EltCnt.Scalable);
76
77 // Check that fixed-length vector types aren't scalable.
78 EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
79 ASSERT_FALSE(V8i32.isScalableVector());
80 EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
81 ASSERT_FALSE(V4f64.isScalableVector());
82
83 // Check that llvm::ElementCount works for fixed-length types.
84 EltCnt = V8i32.getVectorElementCount();
85 EXPECT_EQ(EltCnt.Min, 8U);
86 ASSERT_FALSE(EltCnt.Scalable);
87 }
88
89 TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
90 LLVMContext Ctx;
91
92 Type *Int64Ty = Type::getInt64Ty(Ctx);
93 VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
94
95 // Check that we can map a scalable IR type to an MVT
96 MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
97 ASSERT_TRUE(Mnxv8i64.isScalableVector());
98 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
99 ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
100 Mnxv8i64.getScalarType());
101
102 // Check that we can map a scalable IR type to an EVT
103 EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
104 ASSERT_TRUE(Enxv8i64.isScalableVector());
105 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
106 ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
107 Enxv8i64.getScalarType());
108 }
109
110 TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
111 LLVMContext Ctx;
112
113 EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
114
115 Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
116 VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
117 ASSERT_TRUE(ScV4Float64Ty->isScalable());
118 ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
119 ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
120 ScV4Float64Ty->getElementType());
121 }
122
123 TEST(ScalableVectorMVTsTest, SizeQueries) {
124 LLVMContext Ctx;
125
126 EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
127 EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
128 EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
129 EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
130
131 EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
132 EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
133 EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
134 EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
135
136 // Check equivalence and ordering on scalable types.
137 EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
138 EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
139 EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
140 EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
141 EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
142 EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
143 EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
144
145 // Check equivalence and ordering on fixed types.
146 EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
147 EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
148 EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
149 EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
150 EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
151 EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
152 EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
153
154 // Check that scalable and non-scalable types with the same minimum size
155 // are not considered equal.
156 ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
157 ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
158
159 // Check that we can obtain a known-exact size from a non-scalable type.
160 EXPECT_EQ(v4i32.getSizeInBits(), 128U);
161 EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
162
163 // Check that we can query the known minimum size for both scalable and
164 // fixed length types.
165 EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
166 EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
167 EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
168 nxv2i32.getSizeInBits().getKnownMinSize());
169
170 // Check scalable property.
171 ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
172 ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
173
174 // Check convenience size scaling methods.
175 EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
176 EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
177 EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
178 }
179
180 } // end anonymous namespace