150
|
1 //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #include "llvm/CodeGen/ValueTypes.h"
|
|
10 #include "llvm/IR/DerivedTypes.h"
|
|
11 #include "llvm/IR/LLVMContext.h"
|
|
12 #include "llvm/Support/MachineValueType.h"
|
|
13 #include "llvm/Support/TypeSize.h"
|
|
14 #include "gtest/gtest.h"
|
|
15
|
|
16 using namespace llvm;
|
|
17
|
|
18 namespace {
|
|
19
|
|
20 TEST(ScalableVectorMVTsTest, IntegerMVTs) {
|
|
21 for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
|
|
22 ASSERT_TRUE(VecTy.isValid());
|
|
23 ASSERT_TRUE(VecTy.isInteger());
|
|
24 ASSERT_TRUE(VecTy.isVector());
|
|
25 ASSERT_TRUE(VecTy.isScalableVector());
|
|
26 ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
27
|
|
28 ASSERT_FALSE(VecTy.isFloatingPoint());
|
|
29 }
|
|
30 }
|
|
31
|
|
32 TEST(ScalableVectorMVTsTest, FloatMVTs) {
|
|
33 for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
|
|
34 ASSERT_TRUE(VecTy.isValid());
|
|
35 ASSERT_TRUE(VecTy.isFloatingPoint());
|
|
36 ASSERT_TRUE(VecTy.isVector());
|
|
37 ASSERT_TRUE(VecTy.isScalableVector());
|
|
38 ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
39
|
|
40 ASSERT_FALSE(VecTy.isInteger());
|
|
41 }
|
|
42 }
|
|
43
|
|
44 TEST(ScalableVectorMVTsTest, HelperFuncs) {
|
|
45 LLVMContext Ctx;
|
|
46
|
|
47 // Create with scalable flag
|
|
48 EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
|
|
49 ASSERT_TRUE(Vnx4i32.isScalableVector());
|
|
50
|
|
51 // Create with separate llvm::ElementCount
|
|
52 auto EltCnt = ElementCount(2, true);
|
|
53 EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
|
|
54 ASSERT_TRUE(Vnx2i32.isScalableVector());
|
|
55
|
|
56 // Create with inline llvm::ElementCount
|
|
57 EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
|
|
58 ASSERT_TRUE(Vnx2i64.isScalableVector());
|
|
59
|
|
60 // Check that changing scalar types/element count works
|
|
61 EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
|
|
62 EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
|
|
63
|
|
64 // Check that overloaded '*' and '/' operators work
|
|
65 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
|
|
66 EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
|
|
67
|
|
68 // Check that float->int conversion works
|
|
69 EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
|
|
70 EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
|
|
71
|
|
72 // Check fields inside llvm::ElementCount
|
|
73 EltCnt = Vnx4i32.getVectorElementCount();
|
|
74 EXPECT_EQ(EltCnt.Min, 4U);
|
|
75 ASSERT_TRUE(EltCnt.Scalable);
|
|
76
|
|
77 // Check that fixed-length vector types aren't scalable.
|
|
78 EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
|
|
79 ASSERT_FALSE(V8i32.isScalableVector());
|
|
80 EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
|
|
81 ASSERT_FALSE(V4f64.isScalableVector());
|
|
82
|
|
83 // Check that llvm::ElementCount works for fixed-length types.
|
|
84 EltCnt = V8i32.getVectorElementCount();
|
|
85 EXPECT_EQ(EltCnt.Min, 8U);
|
|
86 ASSERT_FALSE(EltCnt.Scalable);
|
|
87 }
|
|
88
|
|
89 TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
|
|
90 LLVMContext Ctx;
|
|
91
|
|
92 Type *Int64Ty = Type::getInt64Ty(Ctx);
|
|
93 VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
|
|
94
|
|
95 // Check that we can map a scalable IR type to an MVT
|
|
96 MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
|
|
97 ASSERT_TRUE(Mnxv8i64.isScalableVector());
|
|
98 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
|
|
99 ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
|
|
100 Mnxv8i64.getScalarType());
|
|
101
|
|
102 // Check that we can map a scalable IR type to an EVT
|
|
103 EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
|
|
104 ASSERT_TRUE(Enxv8i64.isScalableVector());
|
|
105 ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
|
|
106 ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
|
|
107 Enxv8i64.getScalarType());
|
|
108 }
|
|
109
|
|
110 TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
|
|
111 LLVMContext Ctx;
|
|
112
|
|
113 EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
|
|
114
|
|
115 Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
|
|
116 VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
|
|
117 ASSERT_TRUE(ScV4Float64Ty->isScalable());
|
|
118 ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
|
|
119 ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
|
|
120 ScV4Float64Ty->getElementType());
|
|
121 }
|
|
122
|
|
123 TEST(ScalableVectorMVTsTest, SizeQueries) {
|
|
124 LLVMContext Ctx;
|
|
125
|
|
126 EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
|
|
127 EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
|
|
128 EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
|
|
129 EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
|
|
130
|
|
131 EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
|
|
132 EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
|
|
133 EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
|
|
134 EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
|
|
135
|
|
136 // Check equivalence and ordering on scalable types.
|
|
137 EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
138 EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
139 EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
140 EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
141 EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
142 EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
|
|
143 EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
144
|
|
145 // Check equivalence and ordering on fixed types.
|
|
146 EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
147 EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
|
|
148 EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
|
|
149 EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
150 EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
151 EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
|
|
152 EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
|
|
153
|
|
154 // Check that scalable and non-scalable types with the same minimum size
|
|
155 // are not considered equal.
|
|
156 ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
|
|
157 ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
|
|
158
|
|
159 // Check that we can obtain a known-exact size from a non-scalable type.
|
|
160 EXPECT_EQ(v4i32.getSizeInBits(), 128U);
|
|
161 EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
|
|
162
|
|
163 // Check that we can query the known minimum size for both scalable and
|
|
164 // fixed length types.
|
|
165 EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
|
|
166 EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
|
|
167 EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
|
|
168 nxv2i32.getSizeInBits().getKnownMinSize());
|
|
169
|
|
170 // Check scalable property.
|
|
171 ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
|
|
172 ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
|
|
173
|
|
174 // Check convenience size scaling methods.
|
|
175 EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
|
|
176 EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
177 EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
|
|
178 }
|
|
179
|
|
180 } // end anonymous namespace
|