comparison lib/CodeGen/LiveIntervals.cpp @ 134:3a76565eade5 LLVM5.0.1

update 5.0.1
author mir3636
date Sat, 17 Feb 2018 09:57:20 +0900
parents
children c2174574ed3a
comparison
equal deleted inserted replaced
133:c60214abe0e8 134:3a76565eade5
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file implements the LiveInterval analysis pass which is used
11 /// by the Linear Scan Register allocator. This pass linearizes the
12 /// basic blocks of the function in DFS order and computes live intervals for
13 /// each virtual and physical register.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "LiveRangeCalc.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveVariables.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBundle.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/VirtRegMap.h"
40 #include "llvm/MC/LaneBitmask.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BlockFrequency.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55
56 using namespace llvm;
57
58 #define DEBUG_TYPE "regalloc"
59
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63 "Live Interval Analysis", false, false)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68 "Live Interval Analysis", false, false)
69
70 #ifndef NDEBUG
71 static cl::opt<bool> EnablePrecomputePhysRegs(
72 "precompute-phys-liveness", cl::Hidden,
73 cl::desc("Eagerly compute live intervals for all physreg units."));
74 #else
75 static bool EnablePrecomputePhysRegs = false;
76 #endif // NDEBUG
77
78 namespace llvm {
79
80 cl::opt<bool> UseSegmentSetForPhysRegs(
81 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82 cl::desc(
83 "Use segment set for the computation of the live ranges of physregs."));
84
85 } // end namespace llvm
86
87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88 AU.setPreservesCFG();
89 AU.addRequired<AAResultsWrapperPass>();
90 AU.addPreserved<AAResultsWrapperPass>();
91 AU.addPreserved<LiveVariables>();
92 AU.addPreservedID(MachineLoopInfoID);
93 AU.addRequiredTransitiveID(MachineDominatorsID);
94 AU.addPreservedID(MachineDominatorsID);
95 AU.addPreserved<SlotIndexes>();
96 AU.addRequiredTransitive<SlotIndexes>();
97 MachineFunctionPass::getAnalysisUsage(AU);
98 }
99
100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102 }
103
104 LiveIntervals::~LiveIntervals() {
105 delete LRCalc;
106 }
107
108 void LiveIntervals::releaseMemory() {
109 // Free the live intervals themselves.
110 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
112 VirtRegIntervals.clear();
113 RegMaskSlots.clear();
114 RegMaskBits.clear();
115 RegMaskBlocks.clear();
116
117 for (LiveRange *LR : RegUnitRanges)
118 delete LR;
119 RegUnitRanges.clear();
120
121 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122 VNInfoAllocator.Reset();
123 }
124
125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126 MF = &fn;
127 MRI = &MF->getRegInfo();
128 TRI = MF->getSubtarget().getRegisterInfo();
129 TII = MF->getSubtarget().getInstrInfo();
130 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131 Indexes = &getAnalysis<SlotIndexes>();
132 DomTree = &getAnalysis<MachineDominatorTree>();
133
134 if (!LRCalc)
135 LRCalc = new LiveRangeCalc();
136
137 // Allocate space for all virtual registers.
138 VirtRegIntervals.resize(MRI->getNumVirtRegs());
139
140 computeVirtRegs();
141 computeRegMasks();
142 computeLiveInRegUnits();
143
144 if (EnablePrecomputePhysRegs) {
145 // For stress testing, precompute live ranges of all physical register
146 // units, including reserved registers.
147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148 getRegUnit(i);
149 }
150 DEBUG(dump());
151 return true;
152 }
153
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155 OS << "********** INTERVALS **********\n";
156
157 // Dump the regunits.
158 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159 if (LiveRange *LR = RegUnitRanges[Unit])
160 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
161
162 // Dump the virtregs.
163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
165 if (hasInterval(Reg))
166 OS << getInterval(Reg) << '\n';
167 }
168
169 OS << "RegMasks:";
170 for (SlotIndex Idx : RegMaskSlots)
171 OS << ' ' << Idx;
172 OS << '\n';
173
174 printInstrs(OS);
175 }
176
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178 OS << "********** MACHINEINSTRS **********\n";
179 MF->print(OS, Indexes);
180 }
181
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184 printInstrs(dbgs());
185 }
186 #endif
187
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190 return new LiveInterval(reg, Weight);
191 }
192
193 /// Compute the live interval of a virtual register, based on defs and uses.
194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195 assert(LRCalc && "LRCalc not initialized.");
196 assert(LI.empty() && "Should only compute empty intervals.");
197 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199 computeDeadValues(LI, nullptr);
200 }
201
202 void LiveIntervals::computeVirtRegs() {
203 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
204 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
205 if (MRI->reg_nodbg_empty(Reg))
206 continue;
207 createAndComputeVirtRegInterval(Reg);
208 }
209 }
210
211 void LiveIntervals::computeRegMasks() {
212 RegMaskBlocks.resize(MF->getNumBlockIDs());
213
214 // Find all instructions with regmask operands.
215 for (const MachineBasicBlock &MBB : *MF) {
216 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
217 RMB.first = RegMaskSlots.size();
218
219 // Some block starts, such as EH funclets, create masks.
220 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
221 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
222 RegMaskBits.push_back(Mask);
223 }
224
225 for (const MachineInstr &MI : MBB) {
226 for (const MachineOperand &MO : MI.operands()) {
227 if (!MO.isRegMask())
228 continue;
229 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
230 RegMaskBits.push_back(MO.getRegMask());
231 }
232 }
233
234 // Some block ends, such as funclet returns, create masks. Put the mask on
235 // the last instruction of the block, because MBB slot index intervals are
236 // half-open.
237 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
238 assert(!MBB.empty() && "empty return block?");
239 RegMaskSlots.push_back(
240 Indexes->getInstructionIndex(MBB.back()).getRegSlot());
241 RegMaskBits.push_back(Mask);
242 }
243
244 // Compute the number of register mask instructions in this block.
245 RMB.second = RegMaskSlots.size() - RMB.first;
246 }
247 }
248
249 //===----------------------------------------------------------------------===//
250 // Register Unit Liveness
251 //===----------------------------------------------------------------------===//
252 //
253 // Fixed interference typically comes from ABI boundaries: Function arguments
254 // and return values are passed in fixed registers, and so are exception
255 // pointers entering landing pads. Certain instructions require values to be
256 // present in specific registers. That is also represented through fixed
257 // interference.
258 //
259
260 /// Compute the live range of a register unit, based on the uses and defs of
261 /// aliasing registers. The range should be empty, or contain only dead
262 /// phi-defs from ABI blocks.
263 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
264 assert(LRCalc && "LRCalc not initialized.");
265 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
266
267 // The physregs aliasing Unit are the roots and their super-registers.
268 // Create all values as dead defs before extending to uses. Note that roots
269 // may share super-registers. That's OK because createDeadDefs() is
270 // idempotent. It is very rare for a register unit to have multiple roots, so
271 // uniquing super-registers is probably not worthwhile.
272 bool IsReserved = false;
273 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
274 bool IsRootReserved = true;
275 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
276 Super.isValid(); ++Super) {
277 unsigned Reg = *Super;
278 if (!MRI->reg_empty(Reg))
279 LRCalc->createDeadDefs(LR, Reg);
280 // A register unit is considered reserved if all its roots and all their
281 // super registers are reserved.
282 if (!MRI->isReserved(Reg))
283 IsRootReserved = false;
284 }
285 IsReserved |= IsRootReserved;
286 }
287 assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
288 "reserved computation mismatch");
289
290 // Now extend LR to reach all uses.
291 // Ignore uses of reserved registers. We only track defs of those.
292 if (!IsReserved) {
293 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
294 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
295 Super.isValid(); ++Super) {
296 unsigned Reg = *Super;
297 if (!MRI->reg_empty(Reg))
298 LRCalc->extendToUses(LR, Reg);
299 }
300 }
301 }
302
303 // Flush the segment set to the segment vector.
304 if (UseSegmentSetForPhysRegs)
305 LR.flushSegmentSet();
306 }
307
308 /// Precompute the live ranges of any register units that are live-in to an ABI
309 /// block somewhere. Register values can appear without a corresponding def when
310 /// entering the entry block or a landing pad.
311 void LiveIntervals::computeLiveInRegUnits() {
312 RegUnitRanges.resize(TRI->getNumRegUnits());
313 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
314
315 // Keep track of the live range sets allocated.
316 SmallVector<unsigned, 8> NewRanges;
317
318 // Check all basic blocks for live-ins.
319 for (const MachineBasicBlock &MBB : *MF) {
320 // We only care about ABI blocks: Entry + landing pads.
321 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
322 continue;
323
324 // Create phi-defs at Begin for all live-in registers.
325 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
326 DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
327 for (const auto &LI : MBB.liveins()) {
328 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
329 unsigned Unit = *Units;
330 LiveRange *LR = RegUnitRanges[Unit];
331 if (!LR) {
332 // Use segment set to speed-up initial computation of the live range.
333 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
334 NewRanges.push_back(Unit);
335 }
336 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
337 (void)VNI;
338 DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
339 }
340 }
341 DEBUG(dbgs() << '\n');
342 }
343 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
344
345 // Compute the 'normal' part of the ranges.
346 for (unsigned Unit : NewRanges)
347 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
348 }
349
350 static void createSegmentsForValues(LiveRange &LR,
351 iterator_range<LiveInterval::vni_iterator> VNIs) {
352 for (VNInfo *VNI : VNIs) {
353 if (VNI->isUnused())
354 continue;
355 SlotIndex Def = VNI->def;
356 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
357 }
358 }
359
360 using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
361
362 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
363 ShrinkToUsesWorkList &WorkList,
364 const LiveRange &OldRange) {
365 // Keep track of the PHIs that are in use.
366 SmallPtrSet<VNInfo*, 8> UsedPHIs;
367 // Blocks that have already been added to WorkList as live-out.
368 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
369
370 // Extend intervals to reach all uses in WorkList.
371 while (!WorkList.empty()) {
372 SlotIndex Idx = WorkList.back().first;
373 VNInfo *VNI = WorkList.back().second;
374 WorkList.pop_back();
375 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
376 SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
377
378 // Extend the live range for VNI to be live at Idx.
379 if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
380 assert(ExtVNI == VNI && "Unexpected existing value number");
381 (void)ExtVNI;
382 // Is this a PHIDef we haven't seen before?
383 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
384 !UsedPHIs.insert(VNI).second)
385 continue;
386 // The PHI is live, make sure the predecessors are live-out.
387 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
388 if (!LiveOut.insert(Pred).second)
389 continue;
390 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
391 // A predecessor is not required to have a live-out value for a PHI.
392 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
393 WorkList.push_back(std::make_pair(Stop, PVNI));
394 }
395 continue;
396 }
397
398 // VNI is live-in to MBB.
399 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
400 LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
401
402 // Make sure VNI is live-out from the predecessors.
403 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
404 if (!LiveOut.insert(Pred).second)
405 continue;
406 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
407 assert(OldRange.getVNInfoBefore(Stop) == VNI &&
408 "Wrong value out of predecessor");
409 WorkList.push_back(std::make_pair(Stop, VNI));
410 }
411 }
412 }
413
414 bool LiveIntervals::shrinkToUses(LiveInterval *li,
415 SmallVectorImpl<MachineInstr*> *dead) {
416 DEBUG(dbgs() << "Shrink: " << *li << '\n');
417 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
418 && "Can only shrink virtual registers");
419
420 // Shrink subregister live ranges.
421 bool NeedsCleanup = false;
422 for (LiveInterval::SubRange &S : li->subranges()) {
423 shrinkToUses(S, li->reg);
424 if (S.empty())
425 NeedsCleanup = true;
426 }
427 if (NeedsCleanup)
428 li->removeEmptySubRanges();
429
430 // Find all the values used, including PHI kills.
431 ShrinkToUsesWorkList WorkList;
432
433 // Visit all instructions reading li->reg.
434 unsigned Reg = li->reg;
435 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
436 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
437 continue;
438 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
439 LiveQueryResult LRQ = li->Query(Idx);
440 VNInfo *VNI = LRQ.valueIn();
441 if (!VNI) {
442 // This shouldn't happen: readsVirtualRegister returns true, but there is
443 // no live value. It is likely caused by a target getting <undef> flags
444 // wrong.
445 DEBUG(dbgs() << Idx << '\t' << UseMI
446 << "Warning: Instr claims to read non-existent value in "
447 << *li << '\n');
448 continue;
449 }
450 // Special case: An early-clobber tied operand reads and writes the
451 // register one slot early.
452 if (VNInfo *DefVNI = LRQ.valueDefined())
453 Idx = DefVNI->def;
454
455 WorkList.push_back(std::make_pair(Idx, VNI));
456 }
457
458 // Create new live ranges with only minimal live segments per def.
459 LiveRange NewLR;
460 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
461 extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
462
463 // Move the trimmed segments back.
464 li->segments.swap(NewLR.segments);
465
466 // Handle dead values.
467 bool CanSeparate = computeDeadValues(*li, dead);
468 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
469 return CanSeparate;
470 }
471
472 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
473 SmallVectorImpl<MachineInstr*> *dead) {
474 bool MayHaveSplitComponents = false;
475 for (VNInfo *VNI : LI.valnos) {
476 if (VNI->isUnused())
477 continue;
478 SlotIndex Def = VNI->def;
479 LiveRange::iterator I = LI.FindSegmentContaining(Def);
480 assert(I != LI.end() && "Missing segment for VNI");
481
482 // Is the register live before? Otherwise we may have to add a read-undef
483 // flag for subregister defs.
484 unsigned VReg = LI.reg;
485 if (MRI->shouldTrackSubRegLiveness(VReg)) {
486 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
487 MachineInstr *MI = getInstructionFromIndex(Def);
488 MI->setRegisterDefReadUndef(VReg);
489 }
490 }
491
492 if (I->end != Def.getDeadSlot())
493 continue;
494 if (VNI->isPHIDef()) {
495 // This is a dead PHI. Remove it.
496 VNI->markUnused();
497 LI.removeSegment(I);
498 DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
499 MayHaveSplitComponents = true;
500 } else {
501 // This is a dead def. Make sure the instruction knows.
502 MachineInstr *MI = getInstructionFromIndex(Def);
503 assert(MI && "No instruction defining live value");
504 MI->addRegisterDead(LI.reg, TRI);
505 if (dead && MI->allDefsAreDead()) {
506 DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
507 dead->push_back(MI);
508 }
509 }
510 }
511 return MayHaveSplitComponents;
512 }
513
514 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
515 DEBUG(dbgs() << "Shrink: " << SR << '\n');
516 assert(TargetRegisterInfo::isVirtualRegister(Reg)
517 && "Can only shrink virtual registers");
518 // Find all the values used, including PHI kills.
519 ShrinkToUsesWorkList WorkList;
520
521 // Visit all instructions reading Reg.
522 SlotIndex LastIdx;
523 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
524 // Skip "undef" uses.
525 if (!MO.readsReg())
526 continue;
527 // Maybe the operand is for a subregister we don't care about.
528 unsigned SubReg = MO.getSubReg();
529 if (SubReg != 0) {
530 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
531 if ((LaneMask & SR.LaneMask).none())
532 continue;
533 }
534 // We only need to visit each instruction once.
535 MachineInstr *UseMI = MO.getParent();
536 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
537 if (Idx == LastIdx)
538 continue;
539 LastIdx = Idx;
540
541 LiveQueryResult LRQ = SR.Query(Idx);
542 VNInfo *VNI = LRQ.valueIn();
543 // For Subranges it is possible that only undef values are left in that
544 // part of the subregister, so there is no real liverange at the use
545 if (!VNI)
546 continue;
547
548 // Special case: An early-clobber tied operand reads and writes the
549 // register one slot early.
550 if (VNInfo *DefVNI = LRQ.valueDefined())
551 Idx = DefVNI->def;
552
553 WorkList.push_back(std::make_pair(Idx, VNI));
554 }
555
556 // Create a new live ranges with only minimal live segments per def.
557 LiveRange NewLR;
558 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
559 extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
560
561 // Move the trimmed ranges back.
562 SR.segments.swap(NewLR.segments);
563
564 // Remove dead PHI value numbers
565 for (VNInfo *VNI : SR.valnos) {
566 if (VNI->isUnused())
567 continue;
568 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
569 assert(Segment != nullptr && "Missing segment for VNI");
570 if (Segment->end != VNI->def.getDeadSlot())
571 continue;
572 if (VNI->isPHIDef()) {
573 // This is a dead PHI. Remove it.
574 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
575 VNI->markUnused();
576 SR.removeSegment(*Segment);
577 }
578 }
579
580 DEBUG(dbgs() << "Shrunk: " << SR << '\n');
581 }
582
583 void LiveIntervals::extendToIndices(LiveRange &LR,
584 ArrayRef<SlotIndex> Indices,
585 ArrayRef<SlotIndex> Undefs) {
586 assert(LRCalc && "LRCalc not initialized.");
587 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
588 for (SlotIndex Idx : Indices)
589 LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
590 }
591
592 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
593 SmallVectorImpl<SlotIndex> *EndPoints) {
594 LiveQueryResult LRQ = LR.Query(Kill);
595 VNInfo *VNI = LRQ.valueOutOrDead();
596 if (!VNI)
597 return;
598
599 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
600 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
601
602 // If VNI isn't live out from KillMBB, the value is trivially pruned.
603 if (LRQ.endPoint() < MBBEnd) {
604 LR.removeSegment(Kill, LRQ.endPoint());
605 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
606 return;
607 }
608
609 // VNI is live out of KillMBB.
610 LR.removeSegment(Kill, MBBEnd);
611 if (EndPoints) EndPoints->push_back(MBBEnd);
612
613 // Find all blocks that are reachable from KillMBB without leaving VNI's live
614 // range. It is possible that KillMBB itself is reachable, so start a DFS
615 // from each successor.
616 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
617 VisitedTy Visited;
618 for (MachineBasicBlock *Succ : KillMBB->successors()) {
619 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
620 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
621 I != E;) {
622 MachineBasicBlock *MBB = *I;
623
624 // Check if VNI is live in to MBB.
625 SlotIndex MBBStart, MBBEnd;
626 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
627 LiveQueryResult LRQ = LR.Query(MBBStart);
628 if (LRQ.valueIn() != VNI) {
629 // This block isn't part of the VNI segment. Prune the search.
630 I.skipChildren();
631 continue;
632 }
633
634 // Prune the search if VNI is killed in MBB.
635 if (LRQ.endPoint() < MBBEnd) {
636 LR.removeSegment(MBBStart, LRQ.endPoint());
637 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
638 I.skipChildren();
639 continue;
640 }
641
642 // VNI is live through MBB.
643 LR.removeSegment(MBBStart, MBBEnd);
644 if (EndPoints) EndPoints->push_back(MBBEnd);
645 ++I;
646 }
647 }
648 }
649
650 //===----------------------------------------------------------------------===//
651 // Register allocator hooks.
652 //
653
654 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
655 // Keep track of regunit ranges.
656 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
657 // Keep track of subregister ranges.
658 SmallVector<std::pair<const LiveInterval::SubRange*,
659 LiveRange::const_iterator>, 4> SRs;
660
661 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
662 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
663 if (MRI->reg_nodbg_empty(Reg))
664 continue;
665 const LiveInterval &LI = getInterval(Reg);
666 if (LI.empty())
667 continue;
668
669 // Find the regunit intervals for the assigned register. They may overlap
670 // the virtual register live range, cancelling any kills.
671 RU.clear();
672 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
673 ++Unit) {
674 const LiveRange &RURange = getRegUnit(*Unit);
675 if (RURange.empty())
676 continue;
677 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
678 }
679
680 if (MRI->subRegLivenessEnabled()) {
681 SRs.clear();
682 for (const LiveInterval::SubRange &SR : LI.subranges()) {
683 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
684 }
685 }
686
687 // Every instruction that kills Reg corresponds to a segment range end
688 // point.
689 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
690 ++RI) {
691 // A block index indicates an MBB edge.
692 if (RI->end.isBlock())
693 continue;
694 MachineInstr *MI = getInstructionFromIndex(RI->end);
695 if (!MI)
696 continue;
697
698 // Check if any of the regunits are live beyond the end of RI. That could
699 // happen when a physreg is defined as a copy of a virtreg:
700 //
701 // %eax = COPY %5
702 // FOO %5 <--- MI, cancel kill because %eax is live.
703 // BAR killed %eax
704 //
705 // There should be no kill flag on FOO when %5 is rewritten as %eax.
706 for (auto &RUP : RU) {
707 const LiveRange &RURange = *RUP.first;
708 LiveRange::const_iterator &I = RUP.second;
709 if (I == RURange.end())
710 continue;
711 I = RURange.advanceTo(I, RI->end);
712 if (I == RURange.end() || I->start >= RI->end)
713 continue;
714 // I is overlapping RI.
715 goto CancelKill;
716 }
717
718 if (MRI->subRegLivenessEnabled()) {
719 // When reading a partial undefined value we must not add a kill flag.
720 // The regalloc might have used the undef lane for something else.
721 // Example:
722 // %1 = ... ; R32: %1
723 // %2:high16 = ... ; R64: %2
724 // = read killed %2 ; R64: %2
725 // = read %1 ; R32: %1
726 // The <kill> flag is correct for %2, but the register allocator may
727 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
728 // are actually never written by %2. After assignment the <kill>
729 // flag at the read instruction is invalid.
730 LaneBitmask DefinedLanesMask;
731 if (!SRs.empty()) {
732 // Compute a mask of lanes that are defined.
733 DefinedLanesMask = LaneBitmask::getNone();
734 for (auto &SRP : SRs) {
735 const LiveInterval::SubRange &SR = *SRP.first;
736 LiveRange::const_iterator &I = SRP.second;
737 if (I == SR.end())
738 continue;
739 I = SR.advanceTo(I, RI->end);
740 if (I == SR.end() || I->start >= RI->end)
741 continue;
742 // I is overlapping RI
743 DefinedLanesMask |= SR.LaneMask;
744 }
745 } else
746 DefinedLanesMask = LaneBitmask::getAll();
747
748 bool IsFullWrite = false;
749 for (const MachineOperand &MO : MI->operands()) {
750 if (!MO.isReg() || MO.getReg() != Reg)
751 continue;
752 if (MO.isUse()) {
753 // Reading any undefined lanes?
754 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
755 if ((UseMask & ~DefinedLanesMask).any())
756 goto CancelKill;
757 } else if (MO.getSubReg() == 0) {
758 // Writing to the full register?
759 assert(MO.isDef());
760 IsFullWrite = true;
761 }
762 }
763
764 // If an instruction writes to a subregister, a new segment starts in
765 // the LiveInterval. But as this is only overriding part of the register
766 // adding kill-flags is not correct here after registers have been
767 // assigned.
768 if (!IsFullWrite) {
769 // Next segment has to be adjacent in the subregister write case.
770 LiveRange::const_iterator N = std::next(RI);
771 if (N != LI.end() && N->start == RI->end)
772 goto CancelKill;
773 }
774 }
775
776 MI->addRegisterKilled(Reg, nullptr);
777 continue;
778 CancelKill:
779 MI->clearRegisterKills(Reg, nullptr);
780 }
781 }
782 }
783
784 MachineBasicBlock*
785 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
786 // A local live range must be fully contained inside the block, meaning it is
787 // defined and killed at instructions, not at block boundaries. It is not
788 // live in or or out of any block.
789 //
790 // It is technically possible to have a PHI-defined live range identical to a
791 // single block, but we are going to return false in that case.
792
793 SlotIndex Start = LI.beginIndex();
794 if (Start.isBlock())
795 return nullptr;
796
797 SlotIndex Stop = LI.endIndex();
798 if (Stop.isBlock())
799 return nullptr;
800
801 // getMBBFromIndex doesn't need to search the MBB table when both indexes
802 // belong to proper instructions.
803 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
804 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
805 return MBB1 == MBB2 ? MBB1 : nullptr;
806 }
807
808 bool
809 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
810 for (const VNInfo *PHI : LI.valnos) {
811 if (PHI->isUnused() || !PHI->isPHIDef())
812 continue;
813 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
814 // Conservatively return true instead of scanning huge predecessor lists.
815 if (PHIMBB->pred_size() > 100)
816 return true;
817 for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
818 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
819 return true;
820 }
821 return false;
822 }
823
824 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
825 const MachineBlockFrequencyInfo *MBFI,
826 const MachineInstr &MI) {
827 return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
828 }
829
830 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
831 const MachineBlockFrequencyInfo *MBFI,
832 const MachineBasicBlock *MBB) {
833 BlockFrequency Freq = MBFI->getBlockFreq(MBB);
834 const float Scale = 1.0f / MBFI->getEntryFreq();
835 return (isDef + isUse) * (Freq.getFrequency() * Scale);
836 }
837
838 LiveRange::Segment
839 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
840 LiveInterval& Interval = createEmptyInterval(reg);
841 VNInfo *VN = Interval.getNextValue(
842 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
843 getVNInfoAllocator());
844 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
845 getMBBEndIdx(startInst.getParent()), VN);
846 Interval.addSegment(S);
847
848 return S;
849 }
850
851 //===----------------------------------------------------------------------===//
852 // Register mask functions
853 //===----------------------------------------------------------------------===//
854
855 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
856 BitVector &UsableRegs) {
857 if (LI.empty())
858 return false;
859 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
860
861 // Use a smaller arrays for local live ranges.
862 ArrayRef<SlotIndex> Slots;
863 ArrayRef<const uint32_t*> Bits;
864 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
865 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
866 Bits = getRegMaskBitsInBlock(MBB->getNumber());
867 } else {
868 Slots = getRegMaskSlots();
869 Bits = getRegMaskBits();
870 }
871
872 // We are going to enumerate all the register mask slots contained in LI.
873 // Start with a binary search of RegMaskSlots to find a starting point.
874 ArrayRef<SlotIndex>::iterator SlotI =
875 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
876 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
877
878 // No slots in range, LI begins after the last call.
879 if (SlotI == SlotE)
880 return false;
881
882 bool Found = false;
883 while (true) {
884 assert(*SlotI >= LiveI->start);
885 // Loop over all slots overlapping this segment.
886 while (*SlotI < LiveI->end) {
887 // *SlotI overlaps LI. Collect mask bits.
888 if (!Found) {
889 // This is the first overlap. Initialize UsableRegs to all ones.
890 UsableRegs.clear();
891 UsableRegs.resize(TRI->getNumRegs(), true);
892 Found = true;
893 }
894 // Remove usable registers clobbered by this mask.
895 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
896 if (++SlotI == SlotE)
897 return Found;
898 }
899 // *SlotI is beyond the current LI segment.
900 LiveI = LI.advanceTo(LiveI, *SlotI);
901 if (LiveI == LiveE)
902 return Found;
903 // Advance SlotI until it overlaps.
904 while (*SlotI < LiveI->start)
905 if (++SlotI == SlotE)
906 return Found;
907 }
908 }
909
910 //===----------------------------------------------------------------------===//
911 // IntervalUpdate class.
912 //===----------------------------------------------------------------------===//
913
914 /// Toolkit used by handleMove to trim or extend live intervals.
915 class LiveIntervals::HMEditor {
916 private:
917 LiveIntervals& LIS;
918 const MachineRegisterInfo& MRI;
919 const TargetRegisterInfo& TRI;
920 SlotIndex OldIdx;
921 SlotIndex NewIdx;
922 SmallPtrSet<LiveRange*, 8> Updated;
923 bool UpdateFlags;
924
925 public:
926 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
927 const TargetRegisterInfo& TRI,
928 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
929 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
930 UpdateFlags(UpdateFlags) {}
931
932 // FIXME: UpdateFlags is a workaround that creates live intervals for all
933 // physregs, even those that aren't needed for regalloc, in order to update
934 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
935 // flags, and postRA passes will use a live register utility instead.
936 LiveRange *getRegUnitLI(unsigned Unit) {
937 if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
938 return &LIS.getRegUnit(Unit);
939 return LIS.getCachedRegUnit(Unit);
940 }
941
942 /// Update all live ranges touched by MI, assuming a move from OldIdx to
943 /// NewIdx.
944 void updateAllRanges(MachineInstr *MI) {
945 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
946 bool hasRegMask = false;
947 for (MachineOperand &MO : MI->operands()) {
948 if (MO.isRegMask())
949 hasRegMask = true;
950 if (!MO.isReg())
951 continue;
952 if (MO.isUse()) {
953 if (!MO.readsReg())
954 continue;
955 // Aggressively clear all kill flags.
956 // They are reinserted by VirtRegRewriter.
957 MO.setIsKill(false);
958 }
959
960 unsigned Reg = MO.getReg();
961 if (!Reg)
962 continue;
963 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
964 LiveInterval &LI = LIS.getInterval(Reg);
965 if (LI.hasSubRanges()) {
966 unsigned SubReg = MO.getSubReg();
967 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
968 : MRI.getMaxLaneMaskForVReg(Reg);
969 for (LiveInterval::SubRange &S : LI.subranges()) {
970 if ((S.LaneMask & LaneMask).none())
971 continue;
972 updateRange(S, Reg, S.LaneMask);
973 }
974 }
975 updateRange(LI, Reg, LaneBitmask::getNone());
976 continue;
977 }
978
979 // For physregs, only update the regunits that actually have a
980 // precomputed live range.
981 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
982 if (LiveRange *LR = getRegUnitLI(*Units))
983 updateRange(*LR, *Units, LaneBitmask::getNone());
984 }
985 if (hasRegMask)
986 updateRegMaskSlots();
987 }
988
989 private:
990 /// Update a single live range, assuming an instruction has been moved from
991 /// OldIdx to NewIdx.
992 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
993 if (!Updated.insert(&LR).second)
994 return;
995 DEBUG({
996 dbgs() << " ";
997 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
998 dbgs() << printReg(Reg);
999 if (LaneMask.any())
1000 dbgs() << " L" << PrintLaneMask(LaneMask);
1001 } else {
1002 dbgs() << printRegUnit(Reg, &TRI);
1003 }
1004 dbgs() << ":\t" << LR << '\n';
1005 });
1006 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1007 handleMoveDown(LR);
1008 else
1009 handleMoveUp(LR, Reg, LaneMask);
1010 DEBUG(dbgs() << " -->\t" << LR << '\n');
1011 LR.verify();
1012 }
1013
1014 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1015 /// to NewIdx (OldIdx < NewIdx).
1016 void handleMoveDown(LiveRange &LR) {
1017 LiveRange::iterator E = LR.end();
1018 // Segment going into OldIdx.
1019 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1020
1021 // No value live before or after OldIdx? Nothing to do.
1022 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1023 return;
1024
1025 LiveRange::iterator OldIdxOut;
1026 // Do we have a value live-in to OldIdx?
1027 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1028 // If the live-in value already extends to NewIdx, there is nothing to do.
1029 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1030 return;
1031 // Aggressively remove all kill flags from the old kill point.
1032 // Kill flags shouldn't be used while live intervals exist, they will be
1033 // reinserted by VirtRegRewriter.
1034 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1035 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1036 if (MO->isReg() && MO->isUse())
1037 MO->setIsKill(false);
1038
1039 // Is there a def before NewIdx which is not OldIdx?
1040 LiveRange::iterator Next = std::next(OldIdxIn);
1041 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1042 SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1043 // If we are here then OldIdx was just a use but not a def. We only have
1044 // to ensure liveness extends to NewIdx.
1045 LiveRange::iterator NewIdxIn =
1046 LR.advanceTo(Next, NewIdx.getBaseIndex());
1047 // Extend the segment before NewIdx if necessary.
1048 if (NewIdxIn == E ||
1049 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1050 LiveRange::iterator Prev = std::prev(NewIdxIn);
1051 Prev->end = NewIdx.getRegSlot();
1052 }
1053 // Extend OldIdxIn.
1054 OldIdxIn->end = Next->start;
1055 return;
1056 }
1057
1058 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1059 // invalid by overlapping ranges.
1060 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1061 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1062 // If this was not a kill, then there was no def and we're done.
1063 if (!isKill)
1064 return;
1065
1066 // Did we have a Def at OldIdx?
1067 OldIdxOut = Next;
1068 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1069 return;
1070 } else {
1071 OldIdxOut = OldIdxIn;
1072 }
1073
1074 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1075 // to the segment starting there.
1076 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1077 "No def?");
1078 VNInfo *OldIdxVNI = OldIdxOut->valno;
1079 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1080
1081 // If the defined value extends beyond NewIdx, just move the beginning
1082 // of the segment to NewIdx.
1083 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1084 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1085 OldIdxVNI->def = NewIdxDef;
1086 OldIdxOut->start = OldIdxVNI->def;
1087 return;
1088 }
1089
1090 // If we are here then we have a Definition at OldIdx which ends before
1091 // NewIdx.
1092
1093 // Is there an existing Def at NewIdx?
1094 LiveRange::iterator AfterNewIdx
1095 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1096 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1097 if (!OldIdxDefIsDead &&
1098 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1099 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1100 VNInfo *DefVNI;
1101 if (OldIdxOut != LR.begin() &&
1102 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1103 OldIdxOut->start)) {
1104 // There is no gap between OldIdxOut and its predecessor anymore,
1105 // merge them.
1106 LiveRange::iterator IPrev = std::prev(OldIdxOut);
1107 DefVNI = OldIdxVNI;
1108 IPrev->end = OldIdxOut->end;
1109 } else {
1110 // The value is live in to OldIdx
1111 LiveRange::iterator INext = std::next(OldIdxOut);
1112 assert(INext != E && "Must have following segment");
1113 // We merge OldIdxOut and its successor. As we're dealing with subreg
1114 // reordering, there is always a successor to OldIdxOut in the same BB
1115 // We don't need INext->valno anymore and will reuse for the new segment
1116 // we create later.
1117 DefVNI = OldIdxVNI;
1118 INext->start = OldIdxOut->end;
1119 INext->valno->def = INext->start;
1120 }
1121 // If NewIdx is behind the last segment, extend that and append a new one.
1122 if (AfterNewIdx == E) {
1123 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1124 // one position.
1125 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1126 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1127 std::copy(std::next(OldIdxOut), E, OldIdxOut);
1128 // The last segment is undefined now, reuse it for a dead def.
1129 LiveRange::iterator NewSegment = std::prev(E);
1130 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1131 DefVNI);
1132 DefVNI->def = NewIdxDef;
1133
1134 LiveRange::iterator Prev = std::prev(NewSegment);
1135 Prev->end = NewIdxDef;
1136 } else {
1137 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1138 // one position.
1139 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1140 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1141 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1142 LiveRange::iterator Prev = std::prev(AfterNewIdx);
1143 // We have two cases:
1144 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1145 // Case 1: NewIdx is inside a liverange. Split this liverange at
1146 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1147 LiveRange::iterator NewSegment = AfterNewIdx;
1148 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1149 Prev->valno->def = NewIdxDef;
1150
1151 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1152 DefVNI->def = Prev->start;
1153 } else {
1154 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1155 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1156 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1157 DefVNI->def = NewIdxDef;
1158 assert(DefVNI != AfterNewIdx->valno);
1159 }
1160 }
1161 return;
1162 }
1163
1164 if (AfterNewIdx != E &&
1165 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1166 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1167 // that value.
1168 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1169 LR.removeValNo(OldIdxVNI);
1170 } else {
1171 // There was no existing def at NewIdx. We need to create a dead def
1172 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1173 // a new segment at the place where we want to construct the dead def.
1174 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1175 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1176 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1177 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1178 // We can reuse OldIdxVNI now.
1179 LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1180 VNInfo *NewSegmentVNI = OldIdxVNI;
1181 NewSegmentVNI->def = NewIdxDef;
1182 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1183 NewSegmentVNI);
1184 }
1185 }
1186
1187 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1188 /// to NewIdx (NewIdx < OldIdx).
1189 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1190 LiveRange::iterator E = LR.end();
1191 // Segment going into OldIdx.
1192 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1193
1194 // No value live before or after OldIdx? Nothing to do.
1195 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1196 return;
1197
1198 LiveRange::iterator OldIdxOut;
1199 // Do we have a value live-in to OldIdx?
1200 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1201 // If the live-in value isn't killed here, then we have no Def at
1202 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1203 // to do.
1204 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1205 if (!isKill)
1206 return;
1207
1208 // At this point we have to move OldIdxIn->end back to the nearest
1209 // previous use or (dead-)def but no further than NewIdx.
1210 SlotIndex DefBeforeOldIdx
1211 = std::max(OldIdxIn->start.getDeadSlot(),
1212 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1213 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1214
1215 // Did we have a Def at OldIdx? If not we are done now.
1216 OldIdxOut = std::next(OldIdxIn);
1217 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1218 return;
1219 } else {
1220 OldIdxOut = OldIdxIn;
1221 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1222 }
1223
1224 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1225 // to the segment starting there.
1226 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1227 "No def?");
1228 VNInfo *OldIdxVNI = OldIdxOut->valno;
1229 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1230 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1231
1232 // Is there an existing def at NewIdx?
1233 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1234 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1235 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1236 assert(NewIdxOut->valno != OldIdxVNI &&
1237 "Same value defined more than once?");
1238 // If OldIdx was a dead def remove it.
1239 if (!OldIdxDefIsDead) {
1240 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1241 // NewIdx so it can take its place.
1242 OldIdxVNI->def = NewIdxDef;
1243 OldIdxOut->start = NewIdxDef;
1244 LR.removeValNo(NewIdxOut->valno);
1245 } else {
1246 // Simply remove the dead def at OldIdx.
1247 LR.removeValNo(OldIdxVNI);
1248 }
1249 } else {
1250 // Previously nothing was live after NewIdx, so all we have to do now is
1251 // move the begin of OldIdxOut to NewIdx.
1252 if (!OldIdxDefIsDead) {
1253 // Do we have any intermediate Defs between OldIdx and NewIdx?
1254 if (OldIdxIn != E &&
1255 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1256 // OldIdx is not a dead def and NewIdx is before predecessor start.
1257 LiveRange::iterator NewIdxIn = NewIdxOut;
1258 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1259 const SlotIndex SplitPos = NewIdxDef;
1260 OldIdxVNI = OldIdxIn->valno;
1261
1262 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1263 OldIdxOut->valno->def = OldIdxIn->start;
1264 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1265 OldIdxOut->valno);
1266 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1267 // We Slide [NewIdxIn, OldIdxIn) down one position.
1268 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1269 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1270 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1271 // NewIdxIn is now considered undef so we can reuse it for the moved
1272 // value.
1273 LiveRange::iterator NewSegment = NewIdxIn;
1274 LiveRange::iterator Next = std::next(NewSegment);
1275 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1276 // There is no gap between NewSegment and its predecessor.
1277 *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1278 Next->valno);
1279 *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
1280 Next->valno->def = SplitPos;
1281 } else {
1282 // There is a gap between NewSegment and its predecessor
1283 // Value becomes live in.
1284 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1285 NewSegment->valno->def = SplitPos;
1286 }
1287 } else {
1288 // Leave the end point of a live def.
1289 OldIdxOut->start = NewIdxDef;
1290 OldIdxVNI->def = NewIdxDef;
1291 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1292 OldIdxIn->end = NewIdx.getRegSlot();
1293 }
1294 } else {
1295 // OldIdxVNI is a dead def. It may have been moved across other values
1296 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1297 // down one position.
1298 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1299 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1300 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1301 // OldIdxVNI can be reused now to build a new dead def segment.
1302 LiveRange::iterator NewSegment = NewIdxOut;
1303 VNInfo *NewSegmentVNI = OldIdxVNI;
1304 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1305 NewSegmentVNI);
1306 NewSegmentVNI->def = NewIdxDef;
1307 }
1308 }
1309 }
1310
1311 void updateRegMaskSlots() {
1312 SmallVectorImpl<SlotIndex>::iterator RI =
1313 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1314 OldIdx);
1315 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1316 "No RegMask at OldIdx.");
1317 *RI = NewIdx.getRegSlot();
1318 assert((RI == LIS.RegMaskSlots.begin() ||
1319 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1320 "Cannot move regmask instruction above another call");
1321 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1322 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1323 "Cannot move regmask instruction below another call");
1324 }
1325
1326 // Return the last use of reg between NewIdx and OldIdx.
1327 SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1328 LaneBitmask LaneMask) {
1329 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1330 SlotIndex LastUse = Before;
1331 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1332 if (MO.isUndef())
1333 continue;
1334 unsigned SubReg = MO.getSubReg();
1335 if (SubReg != 0 && LaneMask.any()
1336 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1337 continue;
1338
1339 const MachineInstr &MI = *MO.getParent();
1340 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1341 if (InstSlot > LastUse && InstSlot < OldIdx)
1342 LastUse = InstSlot.getRegSlot();
1343 }
1344 return LastUse;
1345 }
1346
1347 // This is a regunit interval, so scanning the use list could be very
1348 // expensive. Scan upwards from OldIdx instead.
1349 assert(Before < OldIdx && "Expected upwards move");
1350 SlotIndexes *Indexes = LIS.getSlotIndexes();
1351 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1352
1353 // OldIdx may not correspond to an instruction any longer, so set MII to
1354 // point to the next instruction after OldIdx, or MBB->end().
1355 MachineBasicBlock::iterator MII = MBB->end();
1356 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1357 Indexes->getNextNonNullIndex(OldIdx)))
1358 if (MI->getParent() == MBB)
1359 MII = MI;
1360
1361 MachineBasicBlock::iterator Begin = MBB->begin();
1362 while (MII != Begin) {
1363 if ((--MII)->isDebugValue())
1364 continue;
1365 SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1366
1367 // Stop searching when Before is reached.
1368 if (!SlotIndex::isEarlierInstr(Before, Idx))
1369 return Before;
1370
1371 // Check if MII uses Reg.
1372 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1373 if (MO->isReg() && !MO->isUndef() &&
1374 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1375 TRI.hasRegUnit(MO->getReg(), Reg))
1376 return Idx.getRegSlot();
1377 }
1378 // Didn't reach Before. It must be the first instruction in the block.
1379 return Before;
1380 }
1381 };
1382
1383 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1384 assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
1385 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1386 Indexes->removeMachineInstrFromMaps(MI);
1387 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1388 assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1389 OldIndex < getMBBEndIdx(MI.getParent()) &&
1390 "Cannot handle moves across basic block boundaries.");
1391
1392 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1393 HME.updateAllRanges(&MI);
1394 }
1395
1396 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1397 MachineInstr &BundleStart,
1398 bool UpdateFlags) {
1399 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1400 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1401 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1402 HME.updateAllRanges(&MI);
1403 }
1404
1405 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1406 const MachineBasicBlock::iterator End,
1407 const SlotIndex endIdx,
1408 LiveRange &LR, const unsigned Reg,
1409 LaneBitmask LaneMask) {
1410 LiveInterval::iterator LII = LR.find(endIdx);
1411 SlotIndex lastUseIdx;
1412 if (LII == LR.begin()) {
1413 // This happens when the function is called for a subregister that only
1414 // occurs _after_ the range that is to be repaired.
1415 return;
1416 }
1417 if (LII != LR.end() && LII->start < endIdx)
1418 lastUseIdx = LII->end;
1419 else
1420 --LII;
1421
1422 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1423 --I;
1424 MachineInstr &MI = *I;
1425 if (MI.isDebugValue())
1426 continue;
1427
1428 SlotIndex instrIdx = getInstructionIndex(MI);
1429 bool isStartValid = getInstructionFromIndex(LII->start);
1430 bool isEndValid = getInstructionFromIndex(LII->end);
1431
1432 // FIXME: This doesn't currently handle early-clobber or multiple removed
1433 // defs inside of the region to repair.
1434 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1435 OE = MI.operands_end();
1436 OI != OE; ++OI) {
1437 const MachineOperand &MO = *OI;
1438 if (!MO.isReg() || MO.getReg() != Reg)
1439 continue;
1440
1441 unsigned SubReg = MO.getSubReg();
1442 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1443 if ((Mask & LaneMask).none())
1444 continue;
1445
1446 if (MO.isDef()) {
1447 if (!isStartValid) {
1448 if (LII->end.isDead()) {
1449 SlotIndex prevStart;
1450 if (LII != LR.begin())
1451 prevStart = std::prev(LII)->start;
1452
1453 // FIXME: This could be more efficient if there was a
1454 // removeSegment method that returned an iterator.
1455 LR.removeSegment(*LII, true);
1456 if (prevStart.isValid())
1457 LII = LR.find(prevStart);
1458 else
1459 LII = LR.begin();
1460 } else {
1461 LII->start = instrIdx.getRegSlot();
1462 LII->valno->def = instrIdx.getRegSlot();
1463 if (MO.getSubReg() && !MO.isUndef())
1464 lastUseIdx = instrIdx.getRegSlot();
1465 else
1466 lastUseIdx = SlotIndex();
1467 continue;
1468 }
1469 }
1470
1471 if (!lastUseIdx.isValid()) {
1472 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1473 LiveRange::Segment S(instrIdx.getRegSlot(),
1474 instrIdx.getDeadSlot(), VNI);
1475 LII = LR.addSegment(S);
1476 } else if (LII->start != instrIdx.getRegSlot()) {
1477 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1478 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1479 LII = LR.addSegment(S);
1480 }
1481
1482 if (MO.getSubReg() && !MO.isUndef())
1483 lastUseIdx = instrIdx.getRegSlot();
1484 else
1485 lastUseIdx = SlotIndex();
1486 } else if (MO.isUse()) {
1487 // FIXME: This should probably be handled outside of this branch,
1488 // either as part of the def case (for defs inside of the region) or
1489 // after the loop over the region.
1490 if (!isEndValid && !LII->end.isBlock())
1491 LII->end = instrIdx.getRegSlot();
1492 if (!lastUseIdx.isValid())
1493 lastUseIdx = instrIdx.getRegSlot();
1494 }
1495 }
1496 }
1497 }
1498
1499 void
1500 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1501 MachineBasicBlock::iterator Begin,
1502 MachineBasicBlock::iterator End,
1503 ArrayRef<unsigned> OrigRegs) {
1504 // Find anchor points, which are at the beginning/end of blocks or at
1505 // instructions that already have indexes.
1506 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1507 --Begin;
1508 while (End != MBB->end() && !Indexes->hasIndex(*End))
1509 ++End;
1510
1511 SlotIndex endIdx;
1512 if (End == MBB->end())
1513 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1514 else
1515 endIdx = getInstructionIndex(*End);
1516
1517 Indexes->repairIndexesInRange(MBB, Begin, End);
1518
1519 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1520 --I;
1521 MachineInstr &MI = *I;
1522 if (MI.isDebugValue())
1523 continue;
1524 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1525 MOE = MI.operands_end();
1526 MOI != MOE; ++MOI) {
1527 if (MOI->isReg() &&
1528 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1529 !hasInterval(MOI->getReg())) {
1530 createAndComputeVirtRegInterval(MOI->getReg());
1531 }
1532 }
1533 }
1534
1535 for (unsigned Reg : OrigRegs) {
1536 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1537 continue;
1538
1539 LiveInterval &LI = getInterval(Reg);
1540 // FIXME: Should we support undefs that gain defs?
1541 if (!LI.hasAtLeastOneValue())
1542 continue;
1543
1544 for (LiveInterval::SubRange &S : LI.subranges())
1545 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1546
1547 repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1548 }
1549 }
1550
1551 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1552 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1553 if (LiveRange *LR = getCachedRegUnit(*Unit))
1554 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1555 LR->removeValNo(VNI);
1556 }
1557 }
1558
1559 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1560 // LI may not have the main range computed yet, but its subranges may
1561 // be present.
1562 VNInfo *VNI = LI.getVNInfoAt(Pos);
1563 if (VNI != nullptr) {
1564 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1565 LI.removeValNo(VNI);
1566 }
1567
1568 // Also remove the value defined in subranges.
1569 for (LiveInterval::SubRange &S : LI.subranges()) {
1570 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1571 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1572 S.removeValNo(SVNI);
1573 }
1574 LI.removeEmptySubRanges();
1575 }
1576
1577 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1578 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1579 ConnectedVNInfoEqClasses ConEQ(*this);
1580 unsigned NumComp = ConEQ.Classify(LI);
1581 if (NumComp <= 1)
1582 return;
1583 DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1584 unsigned Reg = LI.reg;
1585 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1586 for (unsigned I = 1; I < NumComp; ++I) {
1587 unsigned NewVReg = MRI->createVirtualRegister(RegClass);
1588 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1589 SplitLIs.push_back(&NewLI);
1590 }
1591 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1592 }
1593
1594 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1595 assert(LRCalc && "LRCalc not initialized.");
1596 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1597 LRCalc->constructMainRangeFromSubranges(LI);
1598 }