diff lib/CodeGen/LiveIntervals.cpp @ 134:3a76565eade5 LLVM5.0.1

update 5.0.1
author mir3636
date Sat, 17 Feb 2018 09:57:20 +0900
parents
children c2174574ed3a
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/CodeGen/LiveIntervals.cpp	Sat Feb 17 09:57:20 2018 +0900
@@ -0,0 +1,1598 @@
+//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LiveInterval analysis pass which is used
+/// by the Linear Scan Register allocator. This pass linearizes the
+/// basic blocks of the function in DFS order and computes live intervals for
+/// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "LiveRangeCalc.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+char LiveIntervals::ID = 0;
+char &llvm::LiveIntervalsID = LiveIntervals::ID;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+                "Live Interval Analysis", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+                "Live Interval Analysis", false, false)
+
+#ifndef NDEBUG
+static cl::opt<bool> EnablePrecomputePhysRegs(
+  "precompute-phys-liveness", cl::Hidden,
+  cl::desc("Eagerly compute live intervals for all physreg units."));
+#else
+static bool EnablePrecomputePhysRegs = false;
+#endif // NDEBUG
+
+namespace llvm {
+
+cl::opt<bool> UseSegmentSetForPhysRegs(
+    "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
+    cl::desc(
+        "Use segment set for the computation of the live ranges of physregs."));
+
+} // end namespace llvm
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesCFG();
+  AU.addRequired<AAResultsWrapperPass>();
+  AU.addPreserved<AAResultsWrapperPass>();
+  AU.addPreserved<LiveVariables>();
+  AU.addPreservedID(MachineLoopInfoID);
+  AU.addRequiredTransitiveID(MachineDominatorsID);
+  AU.addPreservedID(MachineDominatorsID);
+  AU.addPreserved<SlotIndexes>();
+  AU.addRequiredTransitive<SlotIndexes>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
+  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+}
+
+LiveIntervals::~LiveIntervals() {
+  delete LRCalc;
+}
+
+void LiveIntervals::releaseMemory() {
+  // Free the live intervals themselves.
+  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
+    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
+  VirtRegIntervals.clear();
+  RegMaskSlots.clear();
+  RegMaskBits.clear();
+  RegMaskBlocks.clear();
+
+  for (LiveRange *LR : RegUnitRanges)
+    delete LR;
+  RegUnitRanges.clear();
+
+  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+  VNInfoAllocator.Reset();
+}
+
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+  MF = &fn;
+  MRI = &MF->getRegInfo();
+  TRI = MF->getSubtarget().getRegisterInfo();
+  TII = MF->getSubtarget().getInstrInfo();
+  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+  Indexes = &getAnalysis<SlotIndexes>();
+  DomTree = &getAnalysis<MachineDominatorTree>();
+
+  if (!LRCalc)
+    LRCalc = new LiveRangeCalc();
+
+  // Allocate space for all virtual registers.
+  VirtRegIntervals.resize(MRI->getNumVirtRegs());
+
+  computeVirtRegs();
+  computeRegMasks();
+  computeLiveInRegUnits();
+
+  if (EnablePrecomputePhysRegs) {
+    // For stress testing, precompute live ranges of all physical register
+    // units, including reserved registers.
+    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
+      getRegUnit(i);
+  }
+  DEBUG(dump());
+  return true;
+}
+
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+  OS << "********** INTERVALS **********\n";
+
+  // Dump the regunits.
+  for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
+    if (LiveRange *LR = RegUnitRanges[Unit])
+      OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
+
+  // Dump the virtregs.
+  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+    if (hasInterval(Reg))
+      OS << getInterval(Reg) << '\n';
+  }
+
+  OS << "RegMasks:";
+  for (SlotIndex Idx : RegMaskSlots)
+    OS << ' ' << Idx;
+  OS << '\n';
+
+  printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+  OS << "********** MACHINEINSTRS **********\n";
+  MF->print(OS, Indexes);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
+  printInstrs(dbgs());
+}
+#endif
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
+  return new LiveInterval(reg, Weight);
+}
+
+/// Compute the live interval of a virtual register, based on defs and uses.
+void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
+  assert(LRCalc && "LRCalc not initialized.");
+  assert(LI.empty() && "Should only compute empty intervals.");
+  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+  LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
+  computeDeadValues(LI, nullptr);
+}
+
+void LiveIntervals::computeVirtRegs() {
+  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+    if (MRI->reg_nodbg_empty(Reg))
+      continue;
+    createAndComputeVirtRegInterval(Reg);
+  }
+}
+
+void LiveIntervals::computeRegMasks() {
+  RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+  // Find all instructions with regmask operands.
+  for (const MachineBasicBlock &MBB : *MF) {
+    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
+    RMB.first = RegMaskSlots.size();
+
+    // Some block starts, such as EH funclets, create masks.
+    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
+      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
+      RegMaskBits.push_back(Mask);
+    }
+
+    for (const MachineInstr &MI : MBB) {
+      for (const MachineOperand &MO : MI.operands()) {
+        if (!MO.isRegMask())
+          continue;
+        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
+        RegMaskBits.push_back(MO.getRegMask());
+      }
+    }
+
+    // Some block ends, such as funclet returns, create masks. Put the mask on
+    // the last instruction of the block, because MBB slot index intervals are
+    // half-open.
+    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
+      assert(!MBB.empty() && "empty return block?");
+      RegMaskSlots.push_back(
+          Indexes->getInstructionIndex(MBB.back()).getRegSlot());
+      RegMaskBits.push_back(Mask);
+    }
+
+    // Compute the number of register mask instructions in this block.
+    RMB.second = RegMaskSlots.size() - RMB.first;
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//                           Register Unit Liveness
+//===----------------------------------------------------------------------===//
+//
+// Fixed interference typically comes from ABI boundaries: Function arguments
+// and return values are passed in fixed registers, and so are exception
+// pointers entering landing pads. Certain instructions require values to be
+// present in specific registers. That is also represented through fixed
+// interference.
+//
+
+/// Compute the live range of a register unit, based on the uses and defs of
+/// aliasing registers.  The range should be empty, or contain only dead
+/// phi-defs from ABI blocks.
+void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
+  assert(LRCalc && "LRCalc not initialized.");
+  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+
+  // The physregs aliasing Unit are the roots and their super-registers.
+  // Create all values as dead defs before extending to uses. Note that roots
+  // may share super-registers. That's OK because createDeadDefs() is
+  // idempotent. It is very rare for a register unit to have multiple roots, so
+  // uniquing super-registers is probably not worthwhile.
+  bool IsReserved = false;
+  for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
+    bool IsRootReserved = true;
+    for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
+         Super.isValid(); ++Super) {
+      unsigned Reg = *Super;
+      if (!MRI->reg_empty(Reg))
+        LRCalc->createDeadDefs(LR, Reg);
+      // A register unit is considered reserved if all its roots and all their
+      // super registers are reserved.
+      if (!MRI->isReserved(Reg))
+        IsRootReserved = false;
+    }
+    IsReserved |= IsRootReserved;
+  }
+  assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
+         "reserved computation mismatch");
+
+  // Now extend LR to reach all uses.
+  // Ignore uses of reserved registers. We only track defs of those.
+  if (!IsReserved) {
+    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
+      for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
+           Super.isValid(); ++Super) {
+        unsigned Reg = *Super;
+        if (!MRI->reg_empty(Reg))
+          LRCalc->extendToUses(LR, Reg);
+      }
+    }
+  }
+
+  // Flush the segment set to the segment vector.
+  if (UseSegmentSetForPhysRegs)
+    LR.flushSegmentSet();
+}
+
+/// Precompute the live ranges of any register units that are live-in to an ABI
+/// block somewhere. Register values can appear without a corresponding def when
+/// entering the entry block or a landing pad.
+void LiveIntervals::computeLiveInRegUnits() {
+  RegUnitRanges.resize(TRI->getNumRegUnits());
+  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
+
+  // Keep track of the live range sets allocated.
+  SmallVector<unsigned, 8> NewRanges;
+
+  // Check all basic blocks for live-ins.
+  for (const MachineBasicBlock &MBB : *MF) {
+    // We only care about ABI blocks: Entry + landing pads.
+    if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
+      continue;
+
+    // Create phi-defs at Begin for all live-in registers.
+    SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
+    DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
+    for (const auto &LI : MBB.liveins()) {
+      for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
+        unsigned Unit = *Units;
+        LiveRange *LR = RegUnitRanges[Unit];
+        if (!LR) {
+          // Use segment set to speed-up initial computation of the live range.
+          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
+          NewRanges.push_back(Unit);
+        }
+        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
+        (void)VNI;
+        DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
+      }
+    }
+    DEBUG(dbgs() << '\n');
+  }
+  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
+
+  // Compute the 'normal' part of the ranges.
+  for (unsigned Unit : NewRanges)
+    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
+}
+
+static void createSegmentsForValues(LiveRange &LR,
+    iterator_range<LiveInterval::vni_iterator> VNIs) {
+  for (VNInfo *VNI : VNIs) {
+    if (VNI->isUnused())
+      continue;
+    SlotIndex Def = VNI->def;
+    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
+  }
+}
+
+using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
+
+static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
+                                 ShrinkToUsesWorkList &WorkList,
+                                 const LiveRange &OldRange) {
+  // Keep track of the PHIs that are in use.
+  SmallPtrSet<VNInfo*, 8> UsedPHIs;
+  // Blocks that have already been added to WorkList as live-out.
+  SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
+
+  // Extend intervals to reach all uses in WorkList.
+  while (!WorkList.empty()) {
+    SlotIndex Idx = WorkList.back().first;
+    VNInfo *VNI = WorkList.back().second;
+    WorkList.pop_back();
+    const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
+    SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
+
+    // Extend the live range for VNI to be live at Idx.
+    if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
+      assert(ExtVNI == VNI && "Unexpected existing value number");
+      (void)ExtVNI;
+      // Is this a PHIDef we haven't seen before?
+      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
+          !UsedPHIs.insert(VNI).second)
+        continue;
+      // The PHI is live, make sure the predecessors are live-out.
+      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+        if (!LiveOut.insert(Pred).second)
+          continue;
+        SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+        // A predecessor is not required to have a live-out value for a PHI.
+        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
+          WorkList.push_back(std::make_pair(Stop, PVNI));
+      }
+      continue;
+    }
+
+    // VNI is live-in to MBB.
+    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+    LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
+
+    // Make sure VNI is live-out from the predecessors.
+    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+      if (!LiveOut.insert(Pred).second)
+        continue;
+      SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+      assert(OldRange.getVNInfoBefore(Stop) == VNI &&
+             "Wrong value out of predecessor");
+      WorkList.push_back(std::make_pair(Stop, VNI));
+    }
+  }
+}
+
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+                                 SmallVectorImpl<MachineInstr*> *dead) {
+  DEBUG(dbgs() << "Shrink: " << *li << '\n');
+  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+         && "Can only shrink virtual registers");
+
+  // Shrink subregister live ranges.
+  bool NeedsCleanup = false;
+  for (LiveInterval::SubRange &S : li->subranges()) {
+    shrinkToUses(S, li->reg);
+    if (S.empty())
+      NeedsCleanup = true;
+  }
+  if (NeedsCleanup)
+    li->removeEmptySubRanges();
+
+  // Find all the values used, including PHI kills.
+  ShrinkToUsesWorkList WorkList;
+
+  // Visit all instructions reading li->reg.
+  unsigned Reg = li->reg;
+  for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
+    if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
+      continue;
+    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+    LiveQueryResult LRQ = li->Query(Idx);
+    VNInfo *VNI = LRQ.valueIn();
+    if (!VNI) {
+      // This shouldn't happen: readsVirtualRegister returns true, but there is
+      // no live value. It is likely caused by a target getting <undef> flags
+      // wrong.
+      DEBUG(dbgs() << Idx << '\t' << UseMI
+                   << "Warning: Instr claims to read non-existent value in "
+                   << *li << '\n');
+      continue;
+    }
+    // Special case: An early-clobber tied operand reads and writes the
+    // register one slot early.
+    if (VNInfo *DefVNI = LRQ.valueDefined())
+      Idx = DefVNI->def;
+
+    WorkList.push_back(std::make_pair(Idx, VNI));
+  }
+
+  // Create new live ranges with only minimal live segments per def.
+  LiveRange NewLR;
+  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
+  extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
+
+  // Move the trimmed segments back.
+  li->segments.swap(NewLR.segments);
+
+  // Handle dead values.
+  bool CanSeparate = computeDeadValues(*li, dead);
+  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+  return CanSeparate;
+}
+
+bool LiveIntervals::computeDeadValues(LiveInterval &LI,
+                                      SmallVectorImpl<MachineInstr*> *dead) {
+  bool MayHaveSplitComponents = false;
+  for (VNInfo *VNI : LI.valnos) {
+    if (VNI->isUnused())
+      continue;
+    SlotIndex Def = VNI->def;
+    LiveRange::iterator I = LI.FindSegmentContaining(Def);
+    assert(I != LI.end() && "Missing segment for VNI");
+
+    // Is the register live before? Otherwise we may have to add a read-undef
+    // flag for subregister defs.
+    unsigned VReg = LI.reg;
+    if (MRI->shouldTrackSubRegLiveness(VReg)) {
+      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
+        MachineInstr *MI = getInstructionFromIndex(Def);
+        MI->setRegisterDefReadUndef(VReg);
+      }
+    }
+
+    if (I->end != Def.getDeadSlot())
+      continue;
+    if (VNI->isPHIDef()) {
+      // This is a dead PHI. Remove it.
+      VNI->markUnused();
+      LI.removeSegment(I);
+      DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
+      MayHaveSplitComponents = true;
+    } else {
+      // This is a dead def. Make sure the instruction knows.
+      MachineInstr *MI = getInstructionFromIndex(Def);
+      assert(MI && "No instruction defining live value");
+      MI->addRegisterDead(LI.reg, TRI);
+      if (dead && MI->allDefsAreDead()) {
+        DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
+        dead->push_back(MI);
+      }
+    }
+  }
+  return MayHaveSplitComponents;
+}
+
+void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
+  DEBUG(dbgs() << "Shrink: " << SR << '\n');
+  assert(TargetRegisterInfo::isVirtualRegister(Reg)
+         && "Can only shrink virtual registers");
+  // Find all the values used, including PHI kills.
+  ShrinkToUsesWorkList WorkList;
+
+  // Visit all instructions reading Reg.
+  SlotIndex LastIdx;
+  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+    // Skip "undef" uses.
+    if (!MO.readsReg())
+      continue;
+    // Maybe the operand is for a subregister we don't care about.
+    unsigned SubReg = MO.getSubReg();
+    if (SubReg != 0) {
+      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
+      if ((LaneMask & SR.LaneMask).none())
+        continue;
+    }
+    // We only need to visit each instruction once.
+    MachineInstr *UseMI = MO.getParent();
+    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
+    if (Idx == LastIdx)
+      continue;
+    LastIdx = Idx;
+
+    LiveQueryResult LRQ = SR.Query(Idx);
+    VNInfo *VNI = LRQ.valueIn();
+    // For Subranges it is possible that only undef values are left in that
+    // part of the subregister, so there is no real liverange at the use
+    if (!VNI)
+      continue;
+
+    // Special case: An early-clobber tied operand reads and writes the
+    // register one slot early.
+    if (VNInfo *DefVNI = LRQ.valueDefined())
+      Idx = DefVNI->def;
+
+    WorkList.push_back(std::make_pair(Idx, VNI));
+  }
+
+  // Create a new live ranges with only minimal live segments per def.
+  LiveRange NewLR;
+  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
+  extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
+
+  // Move the trimmed ranges back.
+  SR.segments.swap(NewLR.segments);
+
+  // Remove dead PHI value numbers
+  for (VNInfo *VNI : SR.valnos) {
+    if (VNI->isUnused())
+      continue;
+    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
+    assert(Segment != nullptr && "Missing segment for VNI");
+    if (Segment->end != VNI->def.getDeadSlot())
+      continue;
+    if (VNI->isPHIDef()) {
+      // This is a dead PHI. Remove it.
+      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+      VNI->markUnused();
+      SR.removeSegment(*Segment);
+    }
+  }
+
+  DEBUG(dbgs() << "Shrunk: " << SR << '\n');
+}
+
+void LiveIntervals::extendToIndices(LiveRange &LR,
+                                    ArrayRef<SlotIndex> Indices,
+                                    ArrayRef<SlotIndex> Undefs) {
+  assert(LRCalc && "LRCalc not initialized.");
+  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+  for (SlotIndex Idx : Indices)
+    LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
+}
+
+void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
+                               SmallVectorImpl<SlotIndex> *EndPoints) {
+  LiveQueryResult LRQ = LR.Query(Kill);
+  VNInfo *VNI = LRQ.valueOutOrDead();
+  if (!VNI)
+    return;
+
+  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
+  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
+
+  // If VNI isn't live out from KillMBB, the value is trivially pruned.
+  if (LRQ.endPoint() < MBBEnd) {
+    LR.removeSegment(Kill, LRQ.endPoint());
+    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+    return;
+  }
+
+  // VNI is live out of KillMBB.
+  LR.removeSegment(Kill, MBBEnd);
+  if (EndPoints) EndPoints->push_back(MBBEnd);
+
+  // Find all blocks that are reachable from KillMBB without leaving VNI's live
+  // range. It is possible that KillMBB itself is reachable, so start a DFS
+  // from each successor.
+  using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
+  VisitedTy Visited;
+  for (MachineBasicBlock *Succ : KillMBB->successors()) {
+    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
+         I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
+         I != E;) {
+      MachineBasicBlock *MBB = *I;
+
+      // Check if VNI is live in to MBB.
+      SlotIndex MBBStart, MBBEnd;
+      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
+      LiveQueryResult LRQ = LR.Query(MBBStart);
+      if (LRQ.valueIn() != VNI) {
+        // This block isn't part of the VNI segment. Prune the search.
+        I.skipChildren();
+        continue;
+      }
+
+      // Prune the search if VNI is killed in MBB.
+      if (LRQ.endPoint() < MBBEnd) {
+        LR.removeSegment(MBBStart, LRQ.endPoint());
+        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+        I.skipChildren();
+        continue;
+      }
+
+      // VNI is live through MBB.
+      LR.removeSegment(MBBStart, MBBEnd);
+      if (EndPoints) EndPoints->push_back(MBBEnd);
+      ++I;
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
+  // Keep track of regunit ranges.
+  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
+  // Keep track of subregister ranges.
+  SmallVector<std::pair<const LiveInterval::SubRange*,
+                        LiveRange::const_iterator>, 4> SRs;
+
+  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+    if (MRI->reg_nodbg_empty(Reg))
+      continue;
+    const LiveInterval &LI = getInterval(Reg);
+    if (LI.empty())
+      continue;
+
+    // Find the regunit intervals for the assigned register. They may overlap
+    // the virtual register live range, cancelling any kills.
+    RU.clear();
+    for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
+         ++Unit) {
+      const LiveRange &RURange = getRegUnit(*Unit);
+      if (RURange.empty())
+        continue;
+      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
+    }
+
+    if (MRI->subRegLivenessEnabled()) {
+      SRs.clear();
+      for (const LiveInterval::SubRange &SR : LI.subranges()) {
+        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
+      }
+    }
+
+    // Every instruction that kills Reg corresponds to a segment range end
+    // point.
+    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
+         ++RI) {
+      // A block index indicates an MBB edge.
+      if (RI->end.isBlock())
+        continue;
+      MachineInstr *MI = getInstructionFromIndex(RI->end);
+      if (!MI)
+        continue;
+
+      // Check if any of the regunits are live beyond the end of RI. That could
+      // happen when a physreg is defined as a copy of a virtreg:
+      //
+      //   %eax = COPY %5
+      //   FOO %5             <--- MI, cancel kill because %eax is live.
+      //   BAR killed %eax
+      //
+      // There should be no kill flag on FOO when %5 is rewritten as %eax.
+      for (auto &RUP : RU) {
+        const LiveRange &RURange = *RUP.first;
+        LiveRange::const_iterator &I = RUP.second;
+        if (I == RURange.end())
+          continue;
+        I = RURange.advanceTo(I, RI->end);
+        if (I == RURange.end() || I->start >= RI->end)
+          continue;
+        // I is overlapping RI.
+        goto CancelKill;
+      }
+
+      if (MRI->subRegLivenessEnabled()) {
+        // When reading a partial undefined value we must not add a kill flag.
+        // The regalloc might have used the undef lane for something else.
+        // Example:
+        //     %1 = ...                  ; R32: %1
+        //     %2:high16 = ...           ; R64: %2
+        //        = read killed %2        ; R64: %2
+        //        = read %1              ; R32: %1
+        // The <kill> flag is correct for %2, but the register allocator may
+        // assign R0L to %1, and R0 to %2 because the low 32bits of R0
+        // are actually never written by %2. After assignment the <kill>
+        // flag at the read instruction is invalid.
+        LaneBitmask DefinedLanesMask;
+        if (!SRs.empty()) {
+          // Compute a mask of lanes that are defined.
+          DefinedLanesMask = LaneBitmask::getNone();
+          for (auto &SRP : SRs) {
+            const LiveInterval::SubRange &SR = *SRP.first;
+            LiveRange::const_iterator &I = SRP.second;
+            if (I == SR.end())
+              continue;
+            I = SR.advanceTo(I, RI->end);
+            if (I == SR.end() || I->start >= RI->end)
+              continue;
+            // I is overlapping RI
+            DefinedLanesMask |= SR.LaneMask;
+          }
+        } else
+          DefinedLanesMask = LaneBitmask::getAll();
+
+        bool IsFullWrite = false;
+        for (const MachineOperand &MO : MI->operands()) {
+          if (!MO.isReg() || MO.getReg() != Reg)
+            continue;
+          if (MO.isUse()) {
+            // Reading any undefined lanes?
+            LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+            if ((UseMask & ~DefinedLanesMask).any())
+              goto CancelKill;
+          } else if (MO.getSubReg() == 0) {
+            // Writing to the full register?
+            assert(MO.isDef());
+            IsFullWrite = true;
+          }
+        }
+
+        // If an instruction writes to a subregister, a new segment starts in
+        // the LiveInterval. But as this is only overriding part of the register
+        // adding kill-flags is not correct here after registers have been
+        // assigned.
+        if (!IsFullWrite) {
+          // Next segment has to be adjacent in the subregister write case.
+          LiveRange::const_iterator N = std::next(RI);
+          if (N != LI.end() && N->start == RI->end)
+            goto CancelKill;
+        }
+      }
+
+      MI->addRegisterKilled(Reg, nullptr);
+      continue;
+CancelKill:
+      MI->clearRegisterKills(Reg, nullptr);
+    }
+  }
+}
+
+MachineBasicBlock*
+LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
+  // A local live range must be fully contained inside the block, meaning it is
+  // defined and killed at instructions, not at block boundaries. It is not
+  // live in or or out of any block.
+  //
+  // It is technically possible to have a PHI-defined live range identical to a
+  // single block, but we are going to return false in that case.
+
+  SlotIndex Start = LI.beginIndex();
+  if (Start.isBlock())
+    return nullptr;
+
+  SlotIndex Stop = LI.endIndex();
+  if (Stop.isBlock())
+    return nullptr;
+
+  // getMBBFromIndex doesn't need to search the MBB table when both indexes
+  // belong to proper instructions.
+  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
+  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
+  return MBB1 == MBB2 ? MBB1 : nullptr;
+}
+
+bool
+LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
+  for (const VNInfo *PHI : LI.valnos) {
+    if (PHI->isUnused() || !PHI->isPHIDef())
+      continue;
+    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
+    // Conservatively return true instead of scanning huge predecessor lists.
+    if (PHIMBB->pred_size() > 100)
+      return true;
+    for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
+      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
+        return true;
+  }
+  return false;
+}
+
+float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
+                                    const MachineBlockFrequencyInfo *MBFI,
+                                    const MachineInstr &MI) {
+  return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
+}
+
+float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
+                                    const MachineBlockFrequencyInfo *MBFI,
+                                    const MachineBasicBlock *MBB) {
+  BlockFrequency Freq = MBFI->getBlockFreq(MBB);
+  const float Scale = 1.0f / MBFI->getEntryFreq();
+  return (isDef + isUse) * (Freq.getFrequency() * Scale);
+}
+
+LiveRange::Segment
+LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
+  LiveInterval& Interval = createEmptyInterval(reg);
+  VNInfo *VN = Interval.getNextValue(
+      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+      getVNInfoAllocator());
+  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+                       getMBBEndIdx(startInst.getParent()), VN);
+  Interval.addSegment(S);
+
+  return S;
+}
+
+//===----------------------------------------------------------------------===//
+//                          Register mask functions
+//===----------------------------------------------------------------------===//
+
+bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
+                                             BitVector &UsableRegs) {
+  if (LI.empty())
+    return false;
+  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
+
+  // Use a smaller arrays for local live ranges.
+  ArrayRef<SlotIndex> Slots;
+  ArrayRef<const uint32_t*> Bits;
+  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
+    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
+    Bits = getRegMaskBitsInBlock(MBB->getNumber());
+  } else {
+    Slots = getRegMaskSlots();
+    Bits = getRegMaskBits();
+  }
+
+  // We are going to enumerate all the register mask slots contained in LI.
+  // Start with a binary search of RegMaskSlots to find a starting point.
+  ArrayRef<SlotIndex>::iterator SlotI =
+    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
+  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
+
+  // No slots in range, LI begins after the last call.
+  if (SlotI == SlotE)
+    return false;
+
+  bool Found = false;
+  while (true) {
+    assert(*SlotI >= LiveI->start);
+    // Loop over all slots overlapping this segment.
+    while (*SlotI < LiveI->end) {
+      // *SlotI overlaps LI. Collect mask bits.
+      if (!Found) {
+        // This is the first overlap. Initialize UsableRegs to all ones.
+        UsableRegs.clear();
+        UsableRegs.resize(TRI->getNumRegs(), true);
+        Found = true;
+      }
+      // Remove usable registers clobbered by this mask.
+      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
+      if (++SlotI == SlotE)
+        return Found;
+    }
+    // *SlotI is beyond the current LI segment.
+    LiveI = LI.advanceTo(LiveI, *SlotI);
+    if (LiveI == LiveE)
+      return Found;
+    // Advance SlotI until it overlaps.
+    while (*SlotI < LiveI->start)
+      if (++SlotI == SlotE)
+        return Found;
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//                         IntervalUpdate class.
+//===----------------------------------------------------------------------===//
+
+/// Toolkit used by handleMove to trim or extend live intervals.
+class LiveIntervals::HMEditor {
+private:
+  LiveIntervals& LIS;
+  const MachineRegisterInfo& MRI;
+  const TargetRegisterInfo& TRI;
+  SlotIndex OldIdx;
+  SlotIndex NewIdx;
+  SmallPtrSet<LiveRange*, 8> Updated;
+  bool UpdateFlags;
+
+public:
+  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
+           const TargetRegisterInfo& TRI,
+           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
+    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
+      UpdateFlags(UpdateFlags) {}
+
+  // FIXME: UpdateFlags is a workaround that creates live intervals for all
+  // physregs, even those that aren't needed for regalloc, in order to update
+  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
+  // flags, and postRA passes will use a live register utility instead.
+  LiveRange *getRegUnitLI(unsigned Unit) {
+    if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
+      return &LIS.getRegUnit(Unit);
+    return LIS.getCachedRegUnit(Unit);
+  }
+
+  /// Update all live ranges touched by MI, assuming a move from OldIdx to
+  /// NewIdx.
+  void updateAllRanges(MachineInstr *MI) {
+    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
+    bool hasRegMask = false;
+    for (MachineOperand &MO : MI->operands()) {
+      if (MO.isRegMask())
+        hasRegMask = true;
+      if (!MO.isReg())
+        continue;
+      if (MO.isUse()) {
+        if (!MO.readsReg())
+          continue;
+        // Aggressively clear all kill flags.
+        // They are reinserted by VirtRegRewriter.
+        MO.setIsKill(false);
+      }
+
+      unsigned Reg = MO.getReg();
+      if (!Reg)
+        continue;
+      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+        LiveInterval &LI = LIS.getInterval(Reg);
+        if (LI.hasSubRanges()) {
+          unsigned SubReg = MO.getSubReg();
+          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
+                                        : MRI.getMaxLaneMaskForVReg(Reg);
+          for (LiveInterval::SubRange &S : LI.subranges()) {
+            if ((S.LaneMask & LaneMask).none())
+              continue;
+            updateRange(S, Reg, S.LaneMask);
+          }
+        }
+        updateRange(LI, Reg, LaneBitmask::getNone());
+        continue;
+      }
+
+      // For physregs, only update the regunits that actually have a
+      // precomputed live range.
+      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
+        if (LiveRange *LR = getRegUnitLI(*Units))
+          updateRange(*LR, *Units, LaneBitmask::getNone());
+    }
+    if (hasRegMask)
+      updateRegMaskSlots();
+  }
+
+private:
+  /// Update a single live range, assuming an instruction has been moved from
+  /// OldIdx to NewIdx.
+  void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
+    if (!Updated.insert(&LR).second)
+      return;
+    DEBUG({
+      dbgs() << "     ";
+      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+        dbgs() << printReg(Reg);
+        if (LaneMask.any())
+          dbgs() << " L" << PrintLaneMask(LaneMask);
+      } else {
+        dbgs() << printRegUnit(Reg, &TRI);
+      }
+      dbgs() << ":\t" << LR << '\n';
+    });
+    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
+      handleMoveDown(LR);
+    else
+      handleMoveUp(LR, Reg, LaneMask);
+    DEBUG(dbgs() << "        -->\t" << LR << '\n');
+    LR.verify();
+  }
+
+  /// Update LR to reflect an instruction has been moved downwards from OldIdx
+  /// to NewIdx (OldIdx < NewIdx).
+  void handleMoveDown(LiveRange &LR) {
+    LiveRange::iterator E = LR.end();
+    // Segment going into OldIdx.
+    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
+
+    // No value live before or after OldIdx? Nothing to do.
+    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
+      return;
+
+    LiveRange::iterator OldIdxOut;
+    // Do we have a value live-in to OldIdx?
+    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
+      // If the live-in value already extends to NewIdx, there is nothing to do.
+      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
+        return;
+      // Aggressively remove all kill flags from the old kill point.
+      // Kill flags shouldn't be used while live intervals exist, they will be
+      // reinserted by VirtRegRewriter.
+      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
+        for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
+          if (MO->isReg() && MO->isUse())
+            MO->setIsKill(false);
+
+      // Is there a def before NewIdx which is not OldIdx?
+      LiveRange::iterator Next = std::next(OldIdxIn);
+      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
+          SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
+        // If we are here then OldIdx was just a use but not a def. We only have
+        // to ensure liveness extends to NewIdx.
+        LiveRange::iterator NewIdxIn =
+          LR.advanceTo(Next, NewIdx.getBaseIndex());
+        // Extend the segment before NewIdx if necessary.
+        if (NewIdxIn == E ||
+            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
+          LiveRange::iterator Prev = std::prev(NewIdxIn);
+          Prev->end = NewIdx.getRegSlot();
+        }
+        // Extend OldIdxIn.
+        OldIdxIn->end = Next->start;
+        return;
+      }
+
+      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
+      // invalid by overlapping ranges.
+      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
+      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
+      // If this was not a kill, then there was no def and we're done.
+      if (!isKill)
+        return;
+
+      // Did we have a Def at OldIdx?
+      OldIdxOut = Next;
+      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
+        return;
+    } else {
+      OldIdxOut = OldIdxIn;
+    }
+
+    // If we are here then there is a Definition at OldIdx. OldIdxOut points
+    // to the segment starting there.
+    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
+           "No def?");
+    VNInfo *OldIdxVNI = OldIdxOut->valno;
+    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
+
+    // If the defined value extends beyond NewIdx, just move the beginning
+    // of the segment to NewIdx.
+    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
+    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
+      OldIdxVNI->def = NewIdxDef;
+      OldIdxOut->start = OldIdxVNI->def;
+      return;
+    }
+
+    // If we are here then we have a Definition at OldIdx which ends before
+    // NewIdx.
+
+    // Is there an existing Def at NewIdx?
+    LiveRange::iterator AfterNewIdx
+      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
+    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
+    if (!OldIdxDefIsDead &&
+        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
+      // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
+      VNInfo *DefVNI;
+      if (OldIdxOut != LR.begin() &&
+          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
+                                     OldIdxOut->start)) {
+        // There is no gap between OldIdxOut and its predecessor anymore,
+        // merge them.
+        LiveRange::iterator IPrev = std::prev(OldIdxOut);
+        DefVNI = OldIdxVNI;
+        IPrev->end = OldIdxOut->end;
+      } else {
+        // The value is live in to OldIdx
+        LiveRange::iterator INext = std::next(OldIdxOut);
+        assert(INext != E && "Must have following segment");
+        // We merge OldIdxOut and its successor. As we're dealing with subreg
+        // reordering, there is always a successor to OldIdxOut in the same BB
+        // We don't need INext->valno anymore and will reuse for the new segment
+        // we create later.
+        DefVNI = OldIdxVNI;
+        INext->start = OldIdxOut->end;
+        INext->valno->def = INext->start;
+      }
+      // If NewIdx is behind the last segment, extend that and append a new one.
+      if (AfterNewIdx == E) {
+        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
+        // one position.
+        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
+        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
+        std::copy(std::next(OldIdxOut), E, OldIdxOut);
+        // The last segment is undefined now, reuse it for a dead def.
+        LiveRange::iterator NewSegment = std::prev(E);
+        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+                                         DefVNI);
+        DefVNI->def = NewIdxDef;
+
+        LiveRange::iterator Prev = std::prev(NewSegment);
+        Prev->end = NewIdxDef;
+      } else {
+        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
+        // one position.
+        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
+        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
+        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
+        LiveRange::iterator Prev = std::prev(AfterNewIdx);
+        // We have two cases:
+        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
+          // Case 1: NewIdx is inside a liverange. Split this liverange at
+          // NewIdxDef into the segment "Prev" followed by "NewSegment".
+          LiveRange::iterator NewSegment = AfterNewIdx;
+          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
+          Prev->valno->def = NewIdxDef;
+
+          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
+          DefVNI->def = Prev->start;
+        } else {
+          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
+          // turn Prev into a segment from NewIdx to AfterNewIdx->start.
+          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
+          DefVNI->def = NewIdxDef;
+          assert(DefVNI != AfterNewIdx->valno);
+        }
+      }
+      return;
+    }
+
+    if (AfterNewIdx != E &&
+        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
+      // There is an existing def at NewIdx. The def at OldIdx is coalesced into
+      // that value.
+      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
+      LR.removeValNo(OldIdxVNI);
+    } else {
+      // There was no existing def at NewIdx. We need to create a dead def
+      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
+      // a new segment at the place where we want to construct the dead def.
+      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
+      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
+      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
+      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
+      // We can reuse OldIdxVNI now.
+      LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
+      VNInfo *NewSegmentVNI = OldIdxVNI;
+      NewSegmentVNI->def = NewIdxDef;
+      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+                                       NewSegmentVNI);
+    }
+  }
+
+  /// Update LR to reflect an instruction has been moved upwards from OldIdx
+  /// to NewIdx (NewIdx < OldIdx).
+  void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
+    LiveRange::iterator E = LR.end();
+    // Segment going into OldIdx.
+    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
+
+    // No value live before or after OldIdx? Nothing to do.
+    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
+      return;
+
+    LiveRange::iterator OldIdxOut;
+    // Do we have a value live-in to OldIdx?
+    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
+      // If the live-in value isn't killed here, then we have no Def at
+      // OldIdx, moreover the value must be live at NewIdx so there is nothing
+      // to do.
+      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
+      if (!isKill)
+        return;
+
+      // At this point we have to move OldIdxIn->end back to the nearest
+      // previous use or (dead-)def but no further than NewIdx.
+      SlotIndex DefBeforeOldIdx
+        = std::max(OldIdxIn->start.getDeadSlot(),
+                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
+      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
+
+      // Did we have a Def at OldIdx? If not we are done now.
+      OldIdxOut = std::next(OldIdxIn);
+      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
+        return;
+    } else {
+      OldIdxOut = OldIdxIn;
+      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
+    }
+
+    // If we are here then there is a Definition at OldIdx. OldIdxOut points
+    // to the segment starting there.
+    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
+           "No def?");
+    VNInfo *OldIdxVNI = OldIdxOut->valno;
+    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
+    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
+
+    // Is there an existing def at NewIdx?
+    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
+    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
+    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
+      assert(NewIdxOut->valno != OldIdxVNI &&
+             "Same value defined more than once?");
+      // If OldIdx was a dead def remove it.
+      if (!OldIdxDefIsDead) {
+        // Remove segment starting at NewIdx and move begin of OldIdxOut to
+        // NewIdx so it can take its place.
+        OldIdxVNI->def = NewIdxDef;
+        OldIdxOut->start = NewIdxDef;
+        LR.removeValNo(NewIdxOut->valno);
+      } else {
+        // Simply remove the dead def at OldIdx.
+        LR.removeValNo(OldIdxVNI);
+      }
+    } else {
+      // Previously nothing was live after NewIdx, so all we have to do now is
+      // move the begin of OldIdxOut to NewIdx.
+      if (!OldIdxDefIsDead) {
+        // Do we have any intermediate Defs between OldIdx and NewIdx?
+        if (OldIdxIn != E &&
+            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
+          // OldIdx is not a dead def and NewIdx is before predecessor start.
+          LiveRange::iterator NewIdxIn = NewIdxOut;
+          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
+          const SlotIndex SplitPos = NewIdxDef;
+          OldIdxVNI = OldIdxIn->valno;
+
+          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
+          OldIdxOut->valno->def = OldIdxIn->start;
+          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
+                                          OldIdxOut->valno);
+          // OldIdxIn and OldIdxVNI are now undef and can be overridden.
+          // We Slide [NewIdxIn, OldIdxIn) down one position.
+          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
+          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
+          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
+          // NewIdxIn is now considered undef so we can reuse it for the moved
+          // value.
+          LiveRange::iterator NewSegment = NewIdxIn;
+          LiveRange::iterator Next = std::next(NewSegment);
+          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
+            // There is no gap between NewSegment and its predecessor.
+            *NewSegment = LiveRange::Segment(Next->start, SplitPos,
+                                             Next->valno);
+            *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
+            Next->valno->def = SplitPos;
+          } else {
+            // There is a gap between NewSegment and its predecessor
+            // Value becomes live in.
+            *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
+            NewSegment->valno->def = SplitPos;
+          }
+        } else {
+          // Leave the end point of a live def.
+          OldIdxOut->start = NewIdxDef;
+          OldIdxVNI->def = NewIdxDef;
+          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
+            OldIdxIn->end = NewIdx.getRegSlot();
+        }
+      } else {
+        // OldIdxVNI is a dead def. It may have been moved across other values
+        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
+        // down one position.
+        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
+        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
+        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
+        // OldIdxVNI can be reused now to build a new dead def segment.
+        LiveRange::iterator NewSegment = NewIdxOut;
+        VNInfo *NewSegmentVNI = OldIdxVNI;
+        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
+                                         NewSegmentVNI);
+        NewSegmentVNI->def = NewIdxDef;
+      }
+    }
+  }
+
+  void updateRegMaskSlots() {
+    SmallVectorImpl<SlotIndex>::iterator RI =
+      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
+                       OldIdx);
+    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
+           "No RegMask at OldIdx.");
+    *RI = NewIdx.getRegSlot();
+    assert((RI == LIS.RegMaskSlots.begin() ||
+            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
+           "Cannot move regmask instruction above another call");
+    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
+            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
+           "Cannot move regmask instruction below another call");
+  }
+
+  // Return the last use of reg between NewIdx and OldIdx.
+  SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
+                              LaneBitmask LaneMask) {
+    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+      SlotIndex LastUse = Before;
+      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
+        if (MO.isUndef())
+          continue;
+        unsigned SubReg = MO.getSubReg();
+        if (SubReg != 0 && LaneMask.any()
+            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
+          continue;
+
+        const MachineInstr &MI = *MO.getParent();
+        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
+        if (InstSlot > LastUse && InstSlot < OldIdx)
+          LastUse = InstSlot.getRegSlot();
+      }
+      return LastUse;
+    }
+
+    // This is a regunit interval, so scanning the use list could be very
+    // expensive. Scan upwards from OldIdx instead.
+    assert(Before < OldIdx && "Expected upwards move");
+    SlotIndexes *Indexes = LIS.getSlotIndexes();
+    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
+
+    // OldIdx may not correspond to an instruction any longer, so set MII to
+    // point to the next instruction after OldIdx, or MBB->end().
+    MachineBasicBlock::iterator MII = MBB->end();
+    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
+                           Indexes->getNextNonNullIndex(OldIdx)))
+      if (MI->getParent() == MBB)
+        MII = MI;
+
+    MachineBasicBlock::iterator Begin = MBB->begin();
+    while (MII != Begin) {
+      if ((--MII)->isDebugValue())
+        continue;
+      SlotIndex Idx = Indexes->getInstructionIndex(*MII);
+
+      // Stop searching when Before is reached.
+      if (!SlotIndex::isEarlierInstr(Before, Idx))
+        return Before;
+
+      // Check if MII uses Reg.
+      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
+        if (MO->isReg() && !MO->isUndef() &&
+            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
+            TRI.hasRegUnit(MO->getReg(), Reg))
+          return Idx.getRegSlot();
+    }
+    // Didn't reach Before. It must be the first instruction in the block.
+    return Before;
+  }
+};
+
+void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
+  assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
+  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+  Indexes->removeMachineInstrFromMaps(MI);
+  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
+  assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
+         OldIndex < getMBBEndIdx(MI.getParent()) &&
+         "Cannot handle moves across basic block boundaries.");
+
+  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+  HME.updateAllRanges(&MI);
+}
+
+void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
+                                         MachineInstr &BundleStart,
+                                         bool UpdateFlags) {
+  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
+  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+  HME.updateAllRanges(&MI);
+}
+
+void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
+                                        const MachineBasicBlock::iterator End,
+                                        const SlotIndex endIdx,
+                                        LiveRange &LR, const unsigned Reg,
+                                        LaneBitmask LaneMask) {
+  LiveInterval::iterator LII = LR.find(endIdx);
+  SlotIndex lastUseIdx;
+  if (LII == LR.begin()) {
+    // This happens when the function is called for a subregister that only
+    // occurs _after_ the range that is to be repaired.
+    return;
+  }
+  if (LII != LR.end() && LII->start < endIdx)
+    lastUseIdx = LII->end;
+  else
+    --LII;
+
+  for (MachineBasicBlock::iterator I = End; I != Begin;) {
+    --I;
+    MachineInstr &MI = *I;
+    if (MI.isDebugValue())
+      continue;
+
+    SlotIndex instrIdx = getInstructionIndex(MI);
+    bool isStartValid = getInstructionFromIndex(LII->start);
+    bool isEndValid = getInstructionFromIndex(LII->end);
+
+    // FIXME: This doesn't currently handle early-clobber or multiple removed
+    // defs inside of the region to repair.
+    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
+                                    OE = MI.operands_end();
+         OI != OE; ++OI) {
+      const MachineOperand &MO = *OI;
+      if (!MO.isReg() || MO.getReg() != Reg)
+        continue;
+
+      unsigned SubReg = MO.getSubReg();
+      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
+      if ((Mask & LaneMask).none())
+        continue;
+
+      if (MO.isDef()) {
+        if (!isStartValid) {
+          if (LII->end.isDead()) {
+            SlotIndex prevStart;
+            if (LII != LR.begin())
+              prevStart = std::prev(LII)->start;
+
+            // FIXME: This could be more efficient if there was a
+            // removeSegment method that returned an iterator.
+            LR.removeSegment(*LII, true);
+            if (prevStart.isValid())
+              LII = LR.find(prevStart);
+            else
+              LII = LR.begin();
+          } else {
+            LII->start = instrIdx.getRegSlot();
+            LII->valno->def = instrIdx.getRegSlot();
+            if (MO.getSubReg() && !MO.isUndef())
+              lastUseIdx = instrIdx.getRegSlot();
+            else
+              lastUseIdx = SlotIndex();
+            continue;
+          }
+        }
+
+        if (!lastUseIdx.isValid()) {
+          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+          LiveRange::Segment S(instrIdx.getRegSlot(),
+                               instrIdx.getDeadSlot(), VNI);
+          LII = LR.addSegment(S);
+        } else if (LII->start != instrIdx.getRegSlot()) {
+          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
+          LII = LR.addSegment(S);
+        }
+
+        if (MO.getSubReg() && !MO.isUndef())
+          lastUseIdx = instrIdx.getRegSlot();
+        else
+          lastUseIdx = SlotIndex();
+      } else if (MO.isUse()) {
+        // FIXME: This should probably be handled outside of this branch,
+        // either as part of the def case (for defs inside of the region) or
+        // after the loop over the region.
+        if (!isEndValid && !LII->end.isBlock())
+          LII->end = instrIdx.getRegSlot();
+        if (!lastUseIdx.isValid())
+          lastUseIdx = instrIdx.getRegSlot();
+      }
+    }
+  }
+}
+
+void
+LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
+                                      MachineBasicBlock::iterator Begin,
+                                      MachineBasicBlock::iterator End,
+                                      ArrayRef<unsigned> OrigRegs) {
+  // Find anchor points, which are at the beginning/end of blocks or at
+  // instructions that already have indexes.
+  while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
+    --Begin;
+  while (End != MBB->end() && !Indexes->hasIndex(*End))
+    ++End;
+
+  SlotIndex endIdx;
+  if (End == MBB->end())
+    endIdx = getMBBEndIdx(MBB).getPrevSlot();
+  else
+    endIdx = getInstructionIndex(*End);
+
+  Indexes->repairIndexesInRange(MBB, Begin, End);
+
+  for (MachineBasicBlock::iterator I = End; I != Begin;) {
+    --I;
+    MachineInstr &MI = *I;
+    if (MI.isDebugValue())
+      continue;
+    for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
+                                          MOE = MI.operands_end();
+         MOI != MOE; ++MOI) {
+      if (MOI->isReg() &&
+          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
+          !hasInterval(MOI->getReg())) {
+        createAndComputeVirtRegInterval(MOI->getReg());
+      }
+    }
+  }
+
+  for (unsigned Reg : OrigRegs) {
+    if (!TargetRegisterInfo::isVirtualRegister(Reg))
+      continue;
+
+    LiveInterval &LI = getInterval(Reg);
+    // FIXME: Should we support undefs that gain defs?
+    if (!LI.hasAtLeastOneValue())
+      continue;
+
+    for (LiveInterval::SubRange &S : LI.subranges())
+      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
+
+    repairOldRegInRange(Begin, End, endIdx, LI, Reg);
+  }
+}
+
+void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
+  for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
+    if (LiveRange *LR = getCachedRegUnit(*Unit))
+      if (VNInfo *VNI = LR->getVNInfoAt(Pos))
+        LR->removeValNo(VNI);
+  }
+}
+
+void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
+  // LI may not have the main range computed yet, but its subranges may
+  // be present.
+  VNInfo *VNI = LI.getVNInfoAt(Pos);
+  if (VNI != nullptr) {
+    assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
+    LI.removeValNo(VNI);
+  }
+
+  // Also remove the value defined in subranges.
+  for (LiveInterval::SubRange &S : LI.subranges()) {
+    if (VNInfo *SVNI = S.getVNInfoAt(Pos))
+      if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
+        S.removeValNo(SVNI);
+  }
+  LI.removeEmptySubRanges();
+}
+
+void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
+    SmallVectorImpl<LiveInterval*> &SplitLIs) {
+  ConnectedVNInfoEqClasses ConEQ(*this);
+  unsigned NumComp = ConEQ.Classify(LI);
+  if (NumComp <= 1)
+    return;
+  DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
+  unsigned Reg = LI.reg;
+  const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
+  for (unsigned I = 1; I < NumComp; ++I) {
+    unsigned NewVReg = MRI->createVirtualRegister(RegClass);
+    LiveInterval &NewLI = createEmptyInterval(NewVReg);
+    SplitLIs.push_back(&NewLI);
+  }
+  ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
+}
+
+void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
+  assert(LRCalc && "LRCalc not initialized.");
+  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+  LRCalc->constructMainRangeFromSubranges(LI);
+}