comparison include/llvm/Analysis/ScalarEvolutionExpressions.h @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Support/ErrorHandling.h"
20
21 namespace llvm {
22 class ConstantInt;
23 class ConstantRange;
24 class DominatorTree;
25
26 enum SCEVTypes {
27 // These should be ordered in terms of increasing complexity to make the
28 // folders simpler.
29 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
30 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
31 scUnknown, scCouldNotCompute
32 };
33
34 //===--------------------------------------------------------------------===//
35 /// SCEVConstant - This class represents a constant integer value.
36 ///
37 class SCEVConstant : public SCEV {
38 friend class ScalarEvolution;
39
40 ConstantInt *V;
41 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
42 SCEV(ID, scConstant), V(v) {}
43 public:
44 ConstantInt *getValue() const { return V; }
45
46 Type *getType() const { return V->getType(); }
47
48 /// Methods for support type inquiry through isa, cast, and dyn_cast:
49 static inline bool classof(const SCEV *S) {
50 return S->getSCEVType() == scConstant;
51 }
52 };
53
54 //===--------------------------------------------------------------------===//
55 /// SCEVCastExpr - This is the base class for unary cast operator classes.
56 ///
57 class SCEVCastExpr : public SCEV {
58 protected:
59 const SCEV *Op;
60 Type *Ty;
61
62 SCEVCastExpr(const FoldingSetNodeIDRef ID,
63 unsigned SCEVTy, const SCEV *op, Type *ty);
64
65 public:
66 const SCEV *getOperand() const { return Op; }
67 Type *getType() const { return Ty; }
68
69 /// Methods for support type inquiry through isa, cast, and dyn_cast:
70 static inline bool classof(const SCEV *S) {
71 return S->getSCEVType() == scTruncate ||
72 S->getSCEVType() == scZeroExtend ||
73 S->getSCEVType() == scSignExtend;
74 }
75 };
76
77 //===--------------------------------------------------------------------===//
78 /// SCEVTruncateExpr - This class represents a truncation of an integer value
79 /// to a smaller integer value.
80 ///
81 class SCEVTruncateExpr : public SCEVCastExpr {
82 friend class ScalarEvolution;
83
84 SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
85 const SCEV *op, Type *ty);
86
87 public:
88 /// Methods for support type inquiry through isa, cast, and dyn_cast:
89 static inline bool classof(const SCEV *S) {
90 return S->getSCEVType() == scTruncate;
91 }
92 };
93
94 //===--------------------------------------------------------------------===//
95 /// SCEVZeroExtendExpr - This class represents a zero extension of a small
96 /// integer value to a larger integer value.
97 ///
98 class SCEVZeroExtendExpr : public SCEVCastExpr {
99 friend class ScalarEvolution;
100
101 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
102 const SCEV *op, Type *ty);
103
104 public:
105 /// Methods for support type inquiry through isa, cast, and dyn_cast:
106 static inline bool classof(const SCEV *S) {
107 return S->getSCEVType() == scZeroExtend;
108 }
109 };
110
111 //===--------------------------------------------------------------------===//
112 /// SCEVSignExtendExpr - This class represents a sign extension of a small
113 /// integer value to a larger integer value.
114 ///
115 class SCEVSignExtendExpr : public SCEVCastExpr {
116 friend class ScalarEvolution;
117
118 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
119 const SCEV *op, Type *ty);
120
121 public:
122 /// Methods for support type inquiry through isa, cast, and dyn_cast:
123 static inline bool classof(const SCEV *S) {
124 return S->getSCEVType() == scSignExtend;
125 }
126 };
127
128
129 //===--------------------------------------------------------------------===//
130 /// SCEVNAryExpr - This node is a base class providing common
131 /// functionality for n'ary operators.
132 ///
133 class SCEVNAryExpr : public SCEV {
134 protected:
135 // Since SCEVs are immutable, ScalarEvolution allocates operand
136 // arrays with its SCEVAllocator, so this class just needs a simple
137 // pointer rather than a more elaborate vector-like data structure.
138 // This also avoids the need for a non-trivial destructor.
139 const SCEV *const *Operands;
140 size_t NumOperands;
141
142 SCEVNAryExpr(const FoldingSetNodeIDRef ID,
143 enum SCEVTypes T, const SCEV *const *O, size_t N)
144 : SCEV(ID, T), Operands(O), NumOperands(N) {}
145
146 public:
147 size_t getNumOperands() const { return NumOperands; }
148 const SCEV *getOperand(unsigned i) const {
149 assert(i < NumOperands && "Operand index out of range!");
150 return Operands[i];
151 }
152
153 typedef const SCEV *const *op_iterator;
154 op_iterator op_begin() const { return Operands; }
155 op_iterator op_end() const { return Operands + NumOperands; }
156
157 Type *getType() const { return getOperand(0)->getType(); }
158
159 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
160 return (NoWrapFlags)(SubclassData & Mask);
161 }
162
163 /// Methods for support type inquiry through isa, cast, and dyn_cast:
164 static inline bool classof(const SCEV *S) {
165 return S->getSCEVType() == scAddExpr ||
166 S->getSCEVType() == scMulExpr ||
167 S->getSCEVType() == scSMaxExpr ||
168 S->getSCEVType() == scUMaxExpr ||
169 S->getSCEVType() == scAddRecExpr;
170 }
171 };
172
173 //===--------------------------------------------------------------------===//
174 /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
175 /// operators.
176 ///
177 class SCEVCommutativeExpr : public SCEVNAryExpr {
178 protected:
179 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
180 enum SCEVTypes T, const SCEV *const *O, size_t N)
181 : SCEVNAryExpr(ID, T, O, N) {}
182
183 public:
184 /// Methods for support type inquiry through isa, cast, and dyn_cast:
185 static inline bool classof(const SCEV *S) {
186 return S->getSCEVType() == scAddExpr ||
187 S->getSCEVType() == scMulExpr ||
188 S->getSCEVType() == scSMaxExpr ||
189 S->getSCEVType() == scUMaxExpr;
190 }
191
192 /// Set flags for a non-recurrence without clearing previously set flags.
193 void setNoWrapFlags(NoWrapFlags Flags) {
194 SubclassData |= Flags;
195 }
196 };
197
198
199 //===--------------------------------------------------------------------===//
200 /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
201 ///
202 class SCEVAddExpr : public SCEVCommutativeExpr {
203 friend class ScalarEvolution;
204
205 SCEVAddExpr(const FoldingSetNodeIDRef ID,
206 const SCEV *const *O, size_t N)
207 : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
208 }
209
210 public:
211 Type *getType() const {
212 // Use the type of the last operand, which is likely to be a pointer
213 // type, if there is one. This doesn't usually matter, but it can help
214 // reduce casts when the expressions are expanded.
215 return getOperand(getNumOperands() - 1)->getType();
216 }
217
218 /// Methods for support type inquiry through isa, cast, and dyn_cast:
219 static inline bool classof(const SCEV *S) {
220 return S->getSCEVType() == scAddExpr;
221 }
222 };
223
224 //===--------------------------------------------------------------------===//
225 /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
226 ///
227 class SCEVMulExpr : public SCEVCommutativeExpr {
228 friend class ScalarEvolution;
229
230 SCEVMulExpr(const FoldingSetNodeIDRef ID,
231 const SCEV *const *O, size_t N)
232 : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
233 }
234
235 public:
236 /// Methods for support type inquiry through isa, cast, and dyn_cast:
237 static inline bool classof(const SCEV *S) {
238 return S->getSCEVType() == scMulExpr;
239 }
240 };
241
242
243 //===--------------------------------------------------------------------===//
244 /// SCEVUDivExpr - This class represents a binary unsigned division operation.
245 ///
246 class SCEVUDivExpr : public SCEV {
247 friend class ScalarEvolution;
248
249 const SCEV *LHS;
250 const SCEV *RHS;
251 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
252 : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
253
254 public:
255 const SCEV *getLHS() const { return LHS; }
256 const SCEV *getRHS() const { return RHS; }
257
258 Type *getType() const {
259 // In most cases the types of LHS and RHS will be the same, but in some
260 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
261 // depend on the type for correctness, but handling types carefully can
262 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
263 // a pointer type than the RHS, so use the RHS' type here.
264 return getRHS()->getType();
265 }
266
267 /// Methods for support type inquiry through isa, cast, and dyn_cast:
268 static inline bool classof(const SCEV *S) {
269 return S->getSCEVType() == scUDivExpr;
270 }
271 };
272
273
274 //===--------------------------------------------------------------------===//
275 /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
276 /// count of the specified loop. This is the primary focus of the
277 /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
278 /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
279 /// created and analyzed.
280 ///
281 /// All operands of an AddRec are required to be loop invariant.
282 ///
283 class SCEVAddRecExpr : public SCEVNAryExpr {
284 friend class ScalarEvolution;
285
286 const Loop *L;
287
288 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
289 const SCEV *const *O, size_t N, const Loop *l)
290 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
291
292 public:
293 const SCEV *getStart() const { return Operands[0]; }
294 const Loop *getLoop() const { return L; }
295
296 /// getStepRecurrence - This method constructs and returns the recurrence
297 /// indicating how much this expression steps by. If this is a polynomial
298 /// of degree N, it returns a chrec of degree N-1.
299 /// We cannot determine whether the step recurrence has self-wraparound.
300 const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
301 if (isAffine()) return getOperand(1);
302 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
303 op_end()),
304 getLoop(), FlagAnyWrap);
305 }
306
307 /// isAffine - Return true if this is an affine AddRec (i.e., it represents
308 /// an expressions A+B*x where A and B are loop invariant values.
309 bool isAffine() const {
310 // We know that the start value is invariant. This expression is thus
311 // affine iff the step is also invariant.
312 return getNumOperands() == 2;
313 }
314
315 /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
316 /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
317 /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N}
318 bool isQuadratic() const {
319 return getNumOperands() == 3;
320 }
321
322 /// Set flags for a recurrence without clearing any previously set flags.
323 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
324 /// to make it easier to propagate flags.
325 void setNoWrapFlags(NoWrapFlags Flags) {
326 if (Flags & (FlagNUW | FlagNSW))
327 Flags = ScalarEvolution::setFlags(Flags, FlagNW);
328 SubclassData |= Flags;
329 }
330
331 /// evaluateAtIteration - Return the value of this chain of recurrences at
332 /// the specified iteration number.
333 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
334
335 /// getNumIterationsInRange - Return the number of iterations of this loop
336 /// that produce values in the specified constant range. Another way of
337 /// looking at this is that it returns the first iteration number where the
338 /// value is not in the condition, thus computing the exit count. If the
339 /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
340 /// returned.
341 const SCEV *getNumIterationsInRange(ConstantRange Range,
342 ScalarEvolution &SE) const;
343
344 /// getPostIncExpr - Return an expression representing the value of
345 /// this expression one iteration of the loop ahead.
346 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
347 return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
348 }
349
350 /// Methods for support type inquiry through isa, cast, and dyn_cast:
351 static inline bool classof(const SCEV *S) {
352 return S->getSCEVType() == scAddRecExpr;
353 }
354
355 /// Splits the SCEV into two vectors of SCEVs representing the subscripts
356 /// and sizes of an array access. Returns the remainder of the
357 /// delinearization that is the offset start of the array.
358 const SCEV *delinearize(ScalarEvolution &SE,
359 SmallVectorImpl<const SCEV *> &Subscripts,
360 SmallVectorImpl<const SCEV *> &Sizes) const;
361 };
362
363 //===--------------------------------------------------------------------===//
364 /// SCEVSMaxExpr - This class represents a signed maximum selection.
365 ///
366 class SCEVSMaxExpr : public SCEVCommutativeExpr {
367 friend class ScalarEvolution;
368
369 SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
370 const SCEV *const *O, size_t N)
371 : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
372 // Max never overflows.
373 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
374 }
375
376 public:
377 /// Methods for support type inquiry through isa, cast, and dyn_cast:
378 static inline bool classof(const SCEV *S) {
379 return S->getSCEVType() == scSMaxExpr;
380 }
381 };
382
383
384 //===--------------------------------------------------------------------===//
385 /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
386 ///
387 class SCEVUMaxExpr : public SCEVCommutativeExpr {
388 friend class ScalarEvolution;
389
390 SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
391 const SCEV *const *O, size_t N)
392 : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
393 // Max never overflows.
394 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
395 }
396
397 public:
398 /// Methods for support type inquiry through isa, cast, and dyn_cast:
399 static inline bool classof(const SCEV *S) {
400 return S->getSCEVType() == scUMaxExpr;
401 }
402 };
403
404 //===--------------------------------------------------------------------===//
405 /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
406 /// value, and only represent it as its LLVM Value. This is the "bottom"
407 /// value for the analysis.
408 ///
409 class SCEVUnknown : public SCEV, private CallbackVH {
410 friend class ScalarEvolution;
411
412 // Implement CallbackVH.
413 virtual void deleted();
414 virtual void allUsesReplacedWith(Value *New);
415
416 /// SE - The parent ScalarEvolution value. This is used to update
417 /// the parent's maps when the value associated with a SCEVUnknown
418 /// is deleted or RAUW'd.
419 ScalarEvolution *SE;
420
421 /// Next - The next pointer in the linked list of all
422 /// SCEVUnknown instances owned by a ScalarEvolution.
423 SCEVUnknown *Next;
424
425 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
426 ScalarEvolution *se, SCEVUnknown *next) :
427 SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
428
429 public:
430 Value *getValue() const { return getValPtr(); }
431
432 /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
433 /// constant representing a type size, alignment, or field offset in
434 /// a target-independent manner, and hasn't happened to have been
435 /// folded with other operations into something unrecognizable. This
436 /// is mainly only useful for pretty-printing and other situations
437 /// where it isn't absolutely required for these to succeed.
438 bool isSizeOf(Type *&AllocTy) const;
439 bool isAlignOf(Type *&AllocTy) const;
440 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
441
442 Type *getType() const { return getValPtr()->getType(); }
443
444 /// Methods for support type inquiry through isa, cast, and dyn_cast:
445 static inline bool classof(const SCEV *S) {
446 return S->getSCEVType() == scUnknown;
447 }
448 };
449
450 /// SCEVVisitor - This class defines a simple visitor class that may be used
451 /// for various SCEV analysis purposes.
452 template<typename SC, typename RetVal=void>
453 struct SCEVVisitor {
454 RetVal visit(const SCEV *S) {
455 switch (S->getSCEVType()) {
456 case scConstant:
457 return ((SC*)this)->visitConstant((const SCEVConstant*)S);
458 case scTruncate:
459 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
460 case scZeroExtend:
461 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
462 case scSignExtend:
463 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
464 case scAddExpr:
465 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
466 case scMulExpr:
467 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
468 case scUDivExpr:
469 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
470 case scAddRecExpr:
471 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
472 case scSMaxExpr:
473 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
474 case scUMaxExpr:
475 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
476 case scUnknown:
477 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
478 case scCouldNotCompute:
479 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
480 default:
481 llvm_unreachable("Unknown SCEV type!");
482 }
483 }
484
485 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
486 llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
487 }
488 };
489
490 /// Visit all nodes in the expression tree using worklist traversal.
491 ///
492 /// Visitor implements:
493 /// // return true to follow this node.
494 /// bool follow(const SCEV *S);
495 /// // return true to terminate the search.
496 /// bool isDone();
497 template<typename SV>
498 class SCEVTraversal {
499 SV &Visitor;
500 SmallVector<const SCEV *, 8> Worklist;
501 SmallPtrSet<const SCEV *, 8> Visited;
502
503 void push(const SCEV *S) {
504 if (Visited.insert(S) && Visitor.follow(S))
505 Worklist.push_back(S);
506 }
507 public:
508 SCEVTraversal(SV& V): Visitor(V) {}
509
510 void visitAll(const SCEV *Root) {
511 push(Root);
512 while (!Worklist.empty() && !Visitor.isDone()) {
513 const SCEV *S = Worklist.pop_back_val();
514
515 switch (S->getSCEVType()) {
516 case scConstant:
517 case scUnknown:
518 break;
519 case scTruncate:
520 case scZeroExtend:
521 case scSignExtend:
522 push(cast<SCEVCastExpr>(S)->getOperand());
523 break;
524 case scAddExpr:
525 case scMulExpr:
526 case scSMaxExpr:
527 case scUMaxExpr:
528 case scAddRecExpr: {
529 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
530 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
531 E = NAry->op_end(); I != E; ++I) {
532 push(*I);
533 }
534 break;
535 }
536 case scUDivExpr: {
537 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
538 push(UDiv->getLHS());
539 push(UDiv->getRHS());
540 break;
541 }
542 case scCouldNotCompute:
543 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
544 default:
545 llvm_unreachable("Unknown SCEV kind!");
546 }
547 }
548 }
549 };
550
551 /// Use SCEVTraversal to visit all nodes in the givien expression tree.
552 template<typename SV>
553 void visitAll(const SCEV *Root, SV& Visitor) {
554 SCEVTraversal<SV> T(Visitor);
555 T.visitAll(Root);
556 }
557
558 typedef DenseMap<const Value*, Value*> ValueToValueMap;
559
560 /// The SCEVParameterRewriter takes a scalar evolution expression and updates
561 /// the SCEVUnknown components following the Map (Value -> Value).
562 struct SCEVParameterRewriter
563 : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
564 public:
565 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
566 ValueToValueMap &Map) {
567 SCEVParameterRewriter Rewriter(SE, Map);
568 return Rewriter.visit(Scev);
569 }
570
571 SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M)
572 : SE(S), Map(M) {}
573
574 const SCEV *visitConstant(const SCEVConstant *Constant) {
575 return Constant;
576 }
577
578 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
579 const SCEV *Operand = visit(Expr->getOperand());
580 return SE.getTruncateExpr(Operand, Expr->getType());
581 }
582
583 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
584 const SCEV *Operand = visit(Expr->getOperand());
585 return SE.getZeroExtendExpr(Operand, Expr->getType());
586 }
587
588 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
589 const SCEV *Operand = visit(Expr->getOperand());
590 return SE.getSignExtendExpr(Operand, Expr->getType());
591 }
592
593 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
594 SmallVector<const SCEV *, 2> Operands;
595 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
596 Operands.push_back(visit(Expr->getOperand(i)));
597 return SE.getAddExpr(Operands);
598 }
599
600 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
601 SmallVector<const SCEV *, 2> Operands;
602 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
603 Operands.push_back(visit(Expr->getOperand(i)));
604 return SE.getMulExpr(Operands);
605 }
606
607 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
608 return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
609 }
610
611 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
612 SmallVector<const SCEV *, 2> Operands;
613 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
614 Operands.push_back(visit(Expr->getOperand(i)));
615 return SE.getAddRecExpr(Operands, Expr->getLoop(),
616 Expr->getNoWrapFlags());
617 }
618
619 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
620 SmallVector<const SCEV *, 2> Operands;
621 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
622 Operands.push_back(visit(Expr->getOperand(i)));
623 return SE.getSMaxExpr(Operands);
624 }
625
626 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
627 SmallVector<const SCEV *, 2> Operands;
628 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
629 Operands.push_back(visit(Expr->getOperand(i)));
630 return SE.getUMaxExpr(Operands);
631 }
632
633 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
634 Value *V = Expr->getValue();
635 if (Map.count(V))
636 return SE.getUnknown(Map[V]);
637 return Expr;
638 }
639
640 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
641 return Expr;
642 }
643
644 private:
645 ScalarEvolution &SE;
646 ValueToValueMap &Map;
647 };
648
649 typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
650
651 /// The SCEVApplyRewriter takes a scalar evolution expression and applies
652 /// the Map (Loop -> SCEV) to all AddRecExprs.
653 struct SCEVApplyRewriter
654 : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
655 public:
656 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
657 ScalarEvolution &SE) {
658 SCEVApplyRewriter Rewriter(SE, Map);
659 return Rewriter.visit(Scev);
660 }
661
662 SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
663 : SE(S), Map(M) {}
664
665 const SCEV *visitConstant(const SCEVConstant *Constant) {
666 return Constant;
667 }
668
669 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
670 const SCEV *Operand = visit(Expr->getOperand());
671 return SE.getTruncateExpr(Operand, Expr->getType());
672 }
673
674 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
675 const SCEV *Operand = visit(Expr->getOperand());
676 return SE.getZeroExtendExpr(Operand, Expr->getType());
677 }
678
679 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
680 const SCEV *Operand = visit(Expr->getOperand());
681 return SE.getSignExtendExpr(Operand, Expr->getType());
682 }
683
684 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
685 SmallVector<const SCEV *, 2> Operands;
686 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
687 Operands.push_back(visit(Expr->getOperand(i)));
688 return SE.getAddExpr(Operands);
689 }
690
691 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
692 SmallVector<const SCEV *, 2> Operands;
693 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
694 Operands.push_back(visit(Expr->getOperand(i)));
695 return SE.getMulExpr(Operands);
696 }
697
698 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
699 return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
700 }
701
702 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
703 SmallVector<const SCEV *, 2> Operands;
704 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
705 Operands.push_back(visit(Expr->getOperand(i)));
706
707 const Loop *L = Expr->getLoop();
708 const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
709
710 if (0 == Map.count(L))
711 return Res;
712
713 const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
714 return Rec->evaluateAtIteration(Map[L], SE);
715 }
716
717 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
718 SmallVector<const SCEV *, 2> Operands;
719 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
720 Operands.push_back(visit(Expr->getOperand(i)));
721 return SE.getSMaxExpr(Operands);
722 }
723
724 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
725 SmallVector<const SCEV *, 2> Operands;
726 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
727 Operands.push_back(visit(Expr->getOperand(i)));
728 return SE.getUMaxExpr(Operands);
729 }
730
731 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
732 return Expr;
733 }
734
735 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
736 return Expr;
737 }
738
739 private:
740 ScalarEvolution &SE;
741 LoopToScevMapT &Map;
742 };
743
744 /// Applies the Map (Loop -> SCEV) to the given Scev.
745 static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
746 ScalarEvolution &SE) {
747 return SCEVApplyRewriter::rewrite(Scev, Map, SE);
748 }
749
750 }
751
752 #endif