Mercurial > hg > CbC > CbC_llvm
diff include/llvm/Analysis/ScalarEvolutionExpressions.h @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/llvm/Analysis/ScalarEvolutionExpressions.h Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,752 @@ +//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the classes used to represent and build scalar expressions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H +#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H + +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Support/ErrorHandling.h" + +namespace llvm { + class ConstantInt; + class ConstantRange; + class DominatorTree; + + enum SCEVTypes { + // These should be ordered in terms of increasing complexity to make the + // folders simpler. + scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, + scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, + scUnknown, scCouldNotCompute + }; + + //===--------------------------------------------------------------------===// + /// SCEVConstant - This class represents a constant integer value. + /// + class SCEVConstant : public SCEV { + friend class ScalarEvolution; + + ConstantInt *V; + SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : + SCEV(ID, scConstant), V(v) {} + public: + ConstantInt *getValue() const { return V; } + + Type *getType() const { return V->getType(); } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scConstant; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVCastExpr - This is the base class for unary cast operator classes. + /// + class SCEVCastExpr : public SCEV { + protected: + const SCEV *Op; + Type *Ty; + + SCEVCastExpr(const FoldingSetNodeIDRef ID, + unsigned SCEVTy, const SCEV *op, Type *ty); + + public: + const SCEV *getOperand() const { return Op; } + Type *getType() const { return Ty; } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scTruncate || + S->getSCEVType() == scZeroExtend || + S->getSCEVType() == scSignExtend; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVTruncateExpr - This class represents a truncation of an integer value + /// to a smaller integer value. + /// + class SCEVTruncateExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVTruncateExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scTruncate; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVZeroExtendExpr - This class represents a zero extension of a small + /// integer value to a larger integer value. + /// + class SCEVZeroExtendExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scZeroExtend; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVSignExtendExpr - This class represents a sign extension of a small + /// integer value to a larger integer value. + /// + class SCEVSignExtendExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scSignExtend; + } + }; + + + //===--------------------------------------------------------------------===// + /// SCEVNAryExpr - This node is a base class providing common + /// functionality for n'ary operators. + /// + class SCEVNAryExpr : public SCEV { + protected: + // Since SCEVs are immutable, ScalarEvolution allocates operand + // arrays with its SCEVAllocator, so this class just needs a simple + // pointer rather than a more elaborate vector-like data structure. + // This also avoids the need for a non-trivial destructor. + const SCEV *const *Operands; + size_t NumOperands; + + SCEVNAryExpr(const FoldingSetNodeIDRef ID, + enum SCEVTypes T, const SCEV *const *O, size_t N) + : SCEV(ID, T), Operands(O), NumOperands(N) {} + + public: + size_t getNumOperands() const { return NumOperands; } + const SCEV *getOperand(unsigned i) const { + assert(i < NumOperands && "Operand index out of range!"); + return Operands[i]; + } + + typedef const SCEV *const *op_iterator; + op_iterator op_begin() const { return Operands; } + op_iterator op_end() const { return Operands + NumOperands; } + + Type *getType() const { return getOperand(0)->getType(); } + + NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { + return (NoWrapFlags)(SubclassData & Mask); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr || + S->getSCEVType() == scMulExpr || + S->getSCEVType() == scSMaxExpr || + S->getSCEVType() == scUMaxExpr || + S->getSCEVType() == scAddRecExpr; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVCommutativeExpr - This node is the base class for n'ary commutative + /// operators. + /// + class SCEVCommutativeExpr : public SCEVNAryExpr { + protected: + SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, + enum SCEVTypes T, const SCEV *const *O, size_t N) + : SCEVNAryExpr(ID, T, O, N) {} + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr || + S->getSCEVType() == scMulExpr || + S->getSCEVType() == scSMaxExpr || + S->getSCEVType() == scUMaxExpr; + } + + /// Set flags for a non-recurrence without clearing previously set flags. + void setNoWrapFlags(NoWrapFlags Flags) { + SubclassData |= Flags; + } + }; + + + //===--------------------------------------------------------------------===// + /// SCEVAddExpr - This node represents an addition of some number of SCEVs. + /// + class SCEVAddExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVAddExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scAddExpr, O, N) { + } + + public: + Type *getType() const { + // Use the type of the last operand, which is likely to be a pointer + // type, if there is one. This doesn't usually matter, but it can help + // reduce casts when the expressions are expanded. + return getOperand(getNumOperands() - 1)->getType(); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVMulExpr - This node represents multiplication of some number of SCEVs. + /// + class SCEVMulExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVMulExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scMulExpr, O, N) { + } + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scMulExpr; + } + }; + + + //===--------------------------------------------------------------------===// + /// SCEVUDivExpr - This class represents a binary unsigned division operation. + /// + class SCEVUDivExpr : public SCEV { + friend class ScalarEvolution; + + const SCEV *LHS; + const SCEV *RHS; + SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) + : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {} + + public: + const SCEV *getLHS() const { return LHS; } + const SCEV *getRHS() const { return RHS; } + + Type *getType() const { + // In most cases the types of LHS and RHS will be the same, but in some + // crazy cases one or the other may be a pointer. ScalarEvolution doesn't + // depend on the type for correctness, but handling types carefully can + // avoid extra casts in the SCEVExpander. The LHS is more likely to be + // a pointer type than the RHS, so use the RHS' type here. + return getRHS()->getType(); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scUDivExpr; + } + }; + + + //===--------------------------------------------------------------------===// + /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip + /// count of the specified loop. This is the primary focus of the + /// ScalarEvolution framework; all the other SCEV subclasses are mostly just + /// supporting infrastructure to allow SCEVAddRecExpr expressions to be + /// created and analyzed. + /// + /// All operands of an AddRec are required to be loop invariant. + /// + class SCEVAddRecExpr : public SCEVNAryExpr { + friend class ScalarEvolution; + + const Loop *L; + + SCEVAddRecExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N, const Loop *l) + : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} + + public: + const SCEV *getStart() const { return Operands[0]; } + const Loop *getLoop() const { return L; } + + /// getStepRecurrence - This method constructs and returns the recurrence + /// indicating how much this expression steps by. If this is a polynomial + /// of degree N, it returns a chrec of degree N-1. + /// We cannot determine whether the step recurrence has self-wraparound. + const SCEV *getStepRecurrence(ScalarEvolution &SE) const { + if (isAffine()) return getOperand(1); + return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, + op_end()), + getLoop(), FlagAnyWrap); + } + + /// isAffine - Return true if this is an affine AddRec (i.e., it represents + /// an expressions A+B*x where A and B are loop invariant values. + bool isAffine() const { + // We know that the start value is invariant. This expression is thus + // affine iff the step is also invariant. + return getNumOperands() == 2; + } + + /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it + /// represents an expressions A+B*x+C*x^2 where A, B and C are loop + /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} + bool isQuadratic() const { + return getNumOperands() == 3; + } + + /// Set flags for a recurrence without clearing any previously set flags. + /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here + /// to make it easier to propagate flags. + void setNoWrapFlags(NoWrapFlags Flags) { + if (Flags & (FlagNUW | FlagNSW)) + Flags = ScalarEvolution::setFlags(Flags, FlagNW); + SubclassData |= Flags; + } + + /// evaluateAtIteration - Return the value of this chain of recurrences at + /// the specified iteration number. + const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; + + /// getNumIterationsInRange - Return the number of iterations of this loop + /// that produce values in the specified constant range. Another way of + /// looking at this is that it returns the first iteration number where the + /// value is not in the condition, thus computing the exit count. If the + /// iteration count can't be computed, an instance of SCEVCouldNotCompute is + /// returned. + const SCEV *getNumIterationsInRange(ConstantRange Range, + ScalarEvolution &SE) const; + + /// getPostIncExpr - Return an expression representing the value of + /// this expression one iteration of the loop ahead. + const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const { + return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE))); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddRecExpr; + } + + /// Splits the SCEV into two vectors of SCEVs representing the subscripts + /// and sizes of an array access. Returns the remainder of the + /// delinearization that is the offset start of the array. + const SCEV *delinearize(ScalarEvolution &SE, + SmallVectorImpl<const SCEV *> &Subscripts, + SmallVectorImpl<const SCEV *> &Sizes) const; + }; + + //===--------------------------------------------------------------------===// + /// SCEVSMaxExpr - This class represents a signed maximum selection. + /// + class SCEVSMaxExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVSMaxExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { + // Max never overflows. + setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); + } + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scSMaxExpr; + } + }; + + + //===--------------------------------------------------------------------===// + /// SCEVUMaxExpr - This class represents an unsigned maximum selection. + /// + class SCEVUMaxExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVUMaxExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { + // Max never overflows. + setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); + } + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scUMaxExpr; + } + }; + + //===--------------------------------------------------------------------===// + /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV + /// value, and only represent it as its LLVM Value. This is the "bottom" + /// value for the analysis. + /// + class SCEVUnknown : public SCEV, private CallbackVH { + friend class ScalarEvolution; + + // Implement CallbackVH. + virtual void deleted(); + virtual void allUsesReplacedWith(Value *New); + + /// SE - The parent ScalarEvolution value. This is used to update + /// the parent's maps when the value associated with a SCEVUnknown + /// is deleted or RAUW'd. + ScalarEvolution *SE; + + /// Next - The next pointer in the linked list of all + /// SCEVUnknown instances owned by a ScalarEvolution. + SCEVUnknown *Next; + + SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, + ScalarEvolution *se, SCEVUnknown *next) : + SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {} + + public: + Value *getValue() const { return getValPtr(); } + + /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special + /// constant representing a type size, alignment, or field offset in + /// a target-independent manner, and hasn't happened to have been + /// folded with other operations into something unrecognizable. This + /// is mainly only useful for pretty-printing and other situations + /// where it isn't absolutely required for these to succeed. + bool isSizeOf(Type *&AllocTy) const; + bool isAlignOf(Type *&AllocTy) const; + bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; + + Type *getType() const { return getValPtr()->getType(); } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scUnknown; + } + }; + + /// SCEVVisitor - This class defines a simple visitor class that may be used + /// for various SCEV analysis purposes. + template<typename SC, typename RetVal=void> + struct SCEVVisitor { + RetVal visit(const SCEV *S) { + switch (S->getSCEVType()) { + case scConstant: + return ((SC*)this)->visitConstant((const SCEVConstant*)S); + case scTruncate: + return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); + case scZeroExtend: + return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); + case scSignExtend: + return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); + case scAddExpr: + return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); + case scMulExpr: + return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); + case scUDivExpr: + return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); + case scAddRecExpr: + return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); + case scSMaxExpr: + return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); + case scUMaxExpr: + return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); + case scUnknown: + return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); + case scCouldNotCompute: + return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); + default: + llvm_unreachable("Unknown SCEV type!"); + } + } + + RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { + llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); + } + }; + + /// Visit all nodes in the expression tree using worklist traversal. + /// + /// Visitor implements: + /// // return true to follow this node. + /// bool follow(const SCEV *S); + /// // return true to terminate the search. + /// bool isDone(); + template<typename SV> + class SCEVTraversal { + SV &Visitor; + SmallVector<const SCEV *, 8> Worklist; + SmallPtrSet<const SCEV *, 8> Visited; + + void push(const SCEV *S) { + if (Visited.insert(S) && Visitor.follow(S)) + Worklist.push_back(S); + } + public: + SCEVTraversal(SV& V): Visitor(V) {} + + void visitAll(const SCEV *Root) { + push(Root); + while (!Worklist.empty() && !Visitor.isDone()) { + const SCEV *S = Worklist.pop_back_val(); + + switch (S->getSCEVType()) { + case scConstant: + case scUnknown: + break; + case scTruncate: + case scZeroExtend: + case scSignExtend: + push(cast<SCEVCastExpr>(S)->getOperand()); + break; + case scAddExpr: + case scMulExpr: + case scSMaxExpr: + case scUMaxExpr: + case scAddRecExpr: { + const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); + for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), + E = NAry->op_end(); I != E; ++I) { + push(*I); + } + break; + } + case scUDivExpr: { + const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); + push(UDiv->getLHS()); + push(UDiv->getRHS()); + break; + } + case scCouldNotCompute: + llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); + default: + llvm_unreachable("Unknown SCEV kind!"); + } + } + } + }; + + /// Use SCEVTraversal to visit all nodes in the givien expression tree. + template<typename SV> + void visitAll(const SCEV *Root, SV& Visitor) { + SCEVTraversal<SV> T(Visitor); + T.visitAll(Root); + } + + typedef DenseMap<const Value*, Value*> ValueToValueMap; + + /// The SCEVParameterRewriter takes a scalar evolution expression and updates + /// the SCEVUnknown components following the Map (Value -> Value). + struct SCEVParameterRewriter + : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> { + public: + static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, + ValueToValueMap &Map) { + SCEVParameterRewriter Rewriter(SE, Map); + return Rewriter.visit(Scev); + } + + SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M) + : SE(S), Map(M) {} + + const SCEV *visitConstant(const SCEVConstant *Constant) { + return Constant; + } + + const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getTruncateExpr(Operand, Expr->getType()); + } + + const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getZeroExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getSignExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getAddExpr(Operands); + } + + const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getMulExpr(Operands); + } + + const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { + return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS())); + } + + const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getAddRecExpr(Operands, Expr->getLoop(), + Expr->getNoWrapFlags()); + } + + const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getSMaxExpr(Operands); + } + + const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getUMaxExpr(Operands); + } + + const SCEV *visitUnknown(const SCEVUnknown *Expr) { + Value *V = Expr->getValue(); + if (Map.count(V)) + return SE.getUnknown(Map[V]); + return Expr; + } + + const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { + return Expr; + } + + private: + ScalarEvolution &SE; + ValueToValueMap ⤅ + }; + + typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT; + + /// The SCEVApplyRewriter takes a scalar evolution expression and applies + /// the Map (Loop -> SCEV) to all AddRecExprs. + struct SCEVApplyRewriter + : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> { + public: + static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, + ScalarEvolution &SE) { + SCEVApplyRewriter Rewriter(SE, Map); + return Rewriter.visit(Scev); + } + + SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M) + : SE(S), Map(M) {} + + const SCEV *visitConstant(const SCEVConstant *Constant) { + return Constant; + } + + const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getTruncateExpr(Operand, Expr->getType()); + } + + const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getZeroExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { + const SCEV *Operand = visit(Expr->getOperand()); + return SE.getSignExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getAddExpr(Operands); + } + + const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getMulExpr(Operands); + } + + const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { + return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS())); + } + + const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + + const Loop *L = Expr->getLoop(); + const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); + + if (0 == Map.count(L)) + return Res; + + const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res; + return Rec->evaluateAtIteration(Map[L], SE); + } + + const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getSMaxExpr(Operands); + } + + const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) + Operands.push_back(visit(Expr->getOperand(i))); + return SE.getUMaxExpr(Operands); + } + + const SCEV *visitUnknown(const SCEVUnknown *Expr) { + return Expr; + } + + const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { + return Expr; + } + + private: + ScalarEvolution &SE; + LoopToScevMapT ⤅ + }; + +/// Applies the Map (Loop -> SCEV) to the given Scev. +static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map, + ScalarEvolution &SE) { + return SCEVApplyRewriter::rewrite(Scev, Map, SE); +} + +} + +#endif