Mercurial > hg > CbC > CbC_llvm
comparison test/CodeGen/X86/load-slice.ll @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS | |
2 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR | |
3 ; | |
4 ; <rdar://problem/14477220> | |
5 | |
6 %class.Complex = type { float, float } | |
7 | |
8 | |
9 ; Check that independant slices leads to independant loads then the slices leads to | |
10 ; different register file. | |
11 ; | |
12 ; The layout is: | |
13 ; LSB 0 1 2 3 | 4 5 6 7 MSB | |
14 ; Low High | |
15 ; The base address points to 0 and is 8-bytes aligned. | |
16 ; Low slice starts at 0 (base) and is 8-bytes aligned. | |
17 ; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned. | |
18 ; | |
19 ; STRESS-LABEL: t1: | |
20 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. | |
21 ; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]] | |
22 ; Add low slice: out[out_start].real, this is base + 0. | |
23 ; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] | |
24 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. | |
25 ; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] | |
26 ; Add high slice: out[out_start].imm, this is base + 4. | |
27 ; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] | |
28 ; Swap Imm and Real. | |
29 ; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] | |
30 ; Put the results back into out[out_start]. | |
31 ; STRESS-NEXT: vmovq [[RES_Vec]], ([[BASE]]) | |
32 ; | |
33 ; Same for REGULAR, we eliminate register bank copy with each slices. | |
34 ; REGULAR-LABEL: t1: | |
35 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. | |
36 ; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]] | |
37 ; Add low slice: out[out_start].real, this is base + 0. | |
38 ; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] | |
39 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. | |
40 ; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] | |
41 ; Add high slice: out[out_start].imm, this is base + 4. | |
42 ; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] | |
43 ; Swap Imm and Real. | |
44 ; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] | |
45 ; Put the results back into out[out_start]. | |
46 ; REGULAR-NEXT: vmovq [[RES_Vec]], ([[BASE]]) | |
47 define void @t1(%class.Complex* nocapture %out, i64 %out_start) { | |
48 entry: | |
49 %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start | |
50 %tmp = bitcast %class.Complex* %arrayidx to i64* | |
51 %tmp1 = load i64* %tmp, align 8 | |
52 %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32 | |
53 %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float | |
54 %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32 | |
55 %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32 | |
56 %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float | |
57 %add = add i64 %out_start, 8 | |
58 %arrayidx2 = getelementptr inbounds %class.Complex* %out, i64 %add | |
59 %i.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 0 | |
60 %tmp4 = load float* %i.i, align 4 | |
61 %add.i = fadd float %tmp4, %tmp2 | |
62 %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0 | |
63 %r.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 1 | |
64 %tmp5 = load float* %r.i, align 4 | |
65 %add5.i = fadd float %tmp5, %tmp3 | |
66 %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1 | |
67 %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>* | |
68 store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4 | |
69 ret void | |
70 } | |
71 | |
72 ; Function Attrs: nounwind | |
73 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1 | |
74 | |
75 ; Function Attrs: nounwind | |
76 declare void @llvm.lifetime.start(i64, i8* nocapture) | |
77 | |
78 ; Function Attrs: nounwind | |
79 declare void @llvm.lifetime.end(i64, i8* nocapture) | |
80 | |
81 ; Check that we do not read outside of the chunk of bits of the original loads. | |
82 ; | |
83 ; The 64-bits should have been split in one 32-bits and one 16-bits slices. | |
84 ; The 16-bits should be zero extended to match the final type. | |
85 ; | |
86 ; The memory layout is: | |
87 ; LSB 0 1 2 3 | 4 5 | 6 7 MSB | |
88 ; Low High | |
89 ; The base address points to 0 and is 8-bytes aligned. | |
90 ; Low slice starts at 0 (base) and is 8-bytes aligned. | |
91 ; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned. | |
92 ; | |
93 ; STRESS-LABEL: t2: | |
94 ; STRESS: movzwl 6([[BASE:[^)]+]]), %eax | |
95 ; STRESS-NEXT: addl ([[BASE]]), %eax | |
96 ; STRESS-NEXT: ret | |
97 ; | |
98 ; For the REGULAR heuristic, this is not profitable to slice things that are not | |
99 ; next to each other in memory. Here we have a hole with bytes #4-5. | |
100 ; REGULAR-LABEL: t2: | |
101 ; REGULAR: shrq $48 | |
102 define i32 @t2(%class.Complex* nocapture %out, i64 %out_start) { | |
103 %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start | |
104 %bitcast = bitcast %class.Complex* %arrayidx to i64* | |
105 %chunk64 = load i64* %bitcast, align 8 | |
106 %slice32_low = trunc i64 %chunk64 to i32 | |
107 %shift48 = lshr i64 %chunk64, 48 | |
108 %slice32_high = trunc i64 %shift48 to i32 | |
109 %res = add i32 %slice32_high, %slice32_low | |
110 ret i32 %res | |
111 } | |
112 | |
113 ; Check that we do not optimize overlapping slices. | |
114 ; | |
115 ; The 64-bits should NOT have been split in as slices are overlapping. | |
116 ; First slice uses bytes numbered 0 to 3. | |
117 ; Second slice uses bytes numbered 6 and 7. | |
118 ; Third slice uses bytes numbered 4 to 7. | |
119 ; | |
120 ; STRESS-LABEL: t3: | |
121 ; STRESS: shrq $48 | |
122 ; STRESS: shrq $32 | |
123 ; | |
124 ; REGULAR-LABEL: t3: | |
125 ; REGULAR: shrq $48 | |
126 ; REGULAR: shrq $32 | |
127 define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) { | |
128 %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start | |
129 %bitcast = bitcast %class.Complex* %arrayidx to i64* | |
130 %chunk64 = load i64* %bitcast, align 8 | |
131 %slice32_low = trunc i64 %chunk64 to i32 | |
132 %shift48 = lshr i64 %chunk64, 48 | |
133 %slice32_high = trunc i64 %shift48 to i32 | |
134 %shift32 = lshr i64 %chunk64, 32 | |
135 %slice32_lowhigh = trunc i64 %shift32 to i32 | |
136 %tmpres = add i32 %slice32_high, %slice32_low | |
137 %res = add i32 %slice32_lowhigh, %tmpres | |
138 ret i32 %res | |
139 } |