Mercurial > hg > CbC > CbC_llvm
diff mlir/test/Examples/Toy/Ch7/shape_inference.mlir @ 173:0572611fdcc8 llvm10 llvm12
reorgnization done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 11:55:54 +0900 |
parents | 1d019706d866 |
children | 2e18cbf3894f |
line wrap: on
line diff
--- a/mlir/test/Examples/Toy/Ch7/shape_inference.mlir Mon May 25 11:50:15 2020 +0900 +++ b/mlir/test/Examples/Toy/Ch7/shape_inference.mlir Mon May 25 11:55:54 2020 +0900 @@ -4,28 +4,28 @@ func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> attributes { sym_visibility = "private" } { - %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64> - %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64> - %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64> - "toy.return"(%2) : (tensor<*xf64>) -> () + %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64> + %1 = toy.transpose(%arg1 : tensor<*xf64>) to tensor<*xf64> + %2 = toy.mul %0, %1 : tensor<*xf64> + toy.return %2 : tensor<*xf64> } func @main() { - %0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64> - %1 = "toy.reshape"(%0) : (tensor<2x3xf64>) -> tensor<2x3xf64> - %2 = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64> - %3 = "toy.reshape"(%2) : (tensor<6xf64>) -> tensor<2x3xf64> - %4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> - %5 = "toy.generic_call"(%3, %1) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> - "toy.print"(%5) : (tensor<*xf64>) -> () - "toy.return"() : () -> () + %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64> + %1 = toy.reshape(%0 : tensor<2x3xf64>) to tensor<2x3xf64> + %2 = toy.constant dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64> + %3 = toy.reshape(%2 : tensor<6xf64>) to tensor<2x3xf64> + %4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> + %5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> + toy.print %5 : tensor<*xf64> + toy.return } // CHECK-NOT: func @multiply_transpose // CHECK-NOT: tensor<*xf64> // CHECK-LABEL: func @main() -// CHECK: [[VAL_0:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64> -// CHECK: [[VAL_1:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64> -// CHECK: [[VAL_2:%.*]] = "toy.mul"([[VAL_1]], [[VAL_1]]) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64> -// CHECK: "toy.print"([[VAL_2]]) : (tensor<3x2xf64>) -> () -// CHECK: "toy.return"() : () -> () +// CHECK: [[VAL_0:%.*]] = toy.constant dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64> +// CHECK: [[VAL_1:%.*]] = toy.transpose([[VAL_0]] : tensor<2x3xf64>) to tensor<3x2xf64> +// CHECK: [[VAL_2:%.*]] = toy.mul [[VAL_1]], [[VAL_1]] : tensor<3x2xf64> +// CHECK: toy.print [[VAL_2]] : tensor<3x2xf64> +// CHECK: toy.return