150
|
1 // RUN: toyc-ch7 %s -emit=mlir -opt 2>&1 | FileCheck %s
|
|
2
|
|
3 // Check the result of inlining+shape inference on an input module.
|
|
4
|
|
5 func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64>
|
|
6 attributes { sym_visibility = "private" } {
|
173
|
7 %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64>
|
|
8 %1 = toy.transpose(%arg1 : tensor<*xf64>) to tensor<*xf64>
|
|
9 %2 = toy.mul %0, %1 : tensor<*xf64>
|
|
10 toy.return %2 : tensor<*xf64>
|
150
|
11 }
|
|
12 func @main() {
|
173
|
13 %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
|
|
14 %1 = toy.reshape(%0 : tensor<2x3xf64>) to tensor<2x3xf64>
|
|
15 %2 = toy.constant dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>
|
|
16 %3 = toy.reshape(%2 : tensor<6xf64>) to tensor<2x3xf64>
|
|
17 %4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
|
18 %5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
|
|
19 toy.print %5 : tensor<*xf64>
|
|
20 toy.return
|
150
|
21 }
|
|
22
|
|
23 // CHECK-NOT: func @multiply_transpose
|
|
24 // CHECK-NOT: tensor<*xf64>
|
|
25
|
|
26 // CHECK-LABEL: func @main()
|
173
|
27 // CHECK: [[VAL_0:%.*]] = toy.constant dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
|
|
28 // CHECK: [[VAL_1:%.*]] = toy.transpose([[VAL_0]] : tensor<2x3xf64>) to tensor<3x2xf64>
|
|
29 // CHECK: [[VAL_2:%.*]] = toy.mul [[VAL_1]], [[VAL_1]] : tensor<3x2xf64>
|
|
30 // CHECK: toy.print [[VAL_2]] : tensor<3x2xf64>
|
|
31 // CHECK: toy.return
|