diff lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp @ 120:1172e4bd9c6f

update 4.0.0
author mir3636
date Fri, 25 Nov 2016 19:14:25 +0900
parents 7d135dc70f03
children 803732b1fca8
line wrap: on
line diff
--- a/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp	Tue Jan 26 22:56:36 2016 +0900
+++ b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp	Fri Nov 25 19:14:25 2016 +0900
@@ -76,36 +76,17 @@
     return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
   }
 
-  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
-  // 0-7 and the difference between the 2 groups is given by the REX prefix.
-  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
-  // in 1's complement form, example:
-  //
-  //  ModRM field => XMM9 => 1
-  //  VEX.VVVV    => XMM9 => ~9
-  //
-  // See table 4-35 of Intel AVX Programming Reference for details.
-  unsigned char getVEXRegisterEncoding(const MCInst &MI,
-                                       unsigned OpNum) const {
-    unsigned SrcReg = MI.getOperand(OpNum).getReg();
-    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
-    if (X86II::isX86_64ExtendedReg(SrcReg))
-      SrcRegNum |= 8;
-
-    // The registers represented through VEX_VVVV should
-    // be encoded in 1's complement form.
-    return (~SrcRegNum) & 0xf;
+  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
+    return Ctx.getRegisterInfo()->getEncodingValue(
+                                                 MI.getOperand(OpNum).getReg());
   }
 
-  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
-                                             unsigned OpNum) const {
-    assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
-           "Invalid mask register as write-mask!");
-    unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
-    return MaskRegNum;
+  // Does this register require a bit to be set in REX prefix.
+  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
+    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
   }
 
-  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
+  void EmitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
     OS << (char)C;
     ++CurByte;
   }
@@ -125,8 +106,8 @@
                      SmallVectorImpl<MCFixup> &Fixups,
                      int ImmOffset = 0) const;
 
-  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
-                                        unsigned RM) {
+  inline static uint8_t ModRMByte(unsigned Mod, unsigned RegOpcode,
+                                  unsigned RM) {
     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
     return RM | (RegOpcode << 3) | (Mod << 6);
   }
@@ -142,11 +123,9 @@
     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
   }
 
-
-  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
-                        unsigned RegOpcodeField,
-                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
-                        SmallVectorImpl<MCFixup> &Fixups,
+  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
+                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
+                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const;
 
   void encodeInstruction(const MCInst &MI, raw_ostream &OS,
@@ -160,10 +139,12 @@
   void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
                                  const MCInst &MI, raw_ostream &OS) const;
 
-  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                         const MCInst &MI, const MCInstrDesc &Desc,
-                        const MCSubtargetInfo &STI,
-                        raw_ostream &OS) const;
+                        const MCSubtargetInfo &STI, raw_ostream &OS) const;
+
+  uint8_t DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
+                             int MemOperand, const MCInstrDesc &Desc) const;
 };
 
 } // end anonymous namespace
@@ -177,7 +158,7 @@
 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
 /// sign-extended field.
 static bool isDisp8(int Value) {
-  return Value == (signed char)Value;
+  return Value == (int8_t)Value;
 }
 
 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
@@ -198,7 +179,7 @@
   if (Value & Mask) // Unaligned offset
     return false;
   Value /= (int)CD8_Scale;
-  bool Ret = (Value == (signed char)Value);
+  bool Ret = (Value == (int8_t)Value);
 
   if (Ret)
     CValue = Value;
@@ -231,6 +212,10 @@
       (IndexReg.getReg() != 0 &&
        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
     return true;
+  if (BaseReg.getReg() == X86::EIP) {
+    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
+    return true;
+  }
   return false;
 }
 
@@ -343,7 +328,9 @@
   // the start of the field, not the end of the field.
   if (FixupKind == FK_PCRel_4 ||
       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
-      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
+      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
+      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
+      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex))
     ImmOffset -= 4;
   if (FixupKind == FK_PCRel_2)
     ImmOffset -= 2;
@@ -359,12 +346,12 @@
   EmitConstant(0, Size, CurByte, OS);
 }
 
-void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
+void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
                                         unsigned RegOpcodeField,
-                                        uint64_t TSFlags, unsigned &CurByte,
-                                        raw_ostream &OS,
+                                        uint64_t TSFlags, bool Rex,
+                                        unsigned &CurByte, raw_ostream &OS,
                                         SmallVectorImpl<MCFixup> &Fixups,
-                                        const MCSubtargetInfo &STI) const{
+                                        const MCSubtargetInfo &STI) const {
   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
@@ -373,18 +360,38 @@
   bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
 
   // Handle %rip relative addressing.
-  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
+  if (BaseReg == X86::RIP ||
+      BaseReg == X86::EIP) {    // [disp32+rIP] in X86-64 mode
     assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 
-    unsigned FixupKind = X86::reloc_riprel_4byte;
-
+    unsigned Opcode = MI.getOpcode();
     // movq loads are handled with a special relocation form which allows the
     // linker to eliminate some loads for GOT references which end up in the
     // same linkage unit.
-    if (MI.getOpcode() == X86::MOV64rm)
-      FixupKind = X86::reloc_riprel_4byte_movq_load;
+    unsigned FixupKind = [=]() {
+      switch (Opcode) {
+      default:
+        return X86::reloc_riprel_4byte;
+      case X86::MOV64rm:
+        assert(Rex);
+        return X86::reloc_riprel_4byte_movq_load;
+      case X86::CALL64m:
+      case X86::JMP64m:
+      case X86::TEST64rm:
+      case X86::ADC64rm:
+      case X86::ADD64rm:
+      case X86::AND64rm:
+      case X86::CMP64rm:
+      case X86::OR64rm:
+      case X86::SBB64rm:
+      case X86::SUB64rm:
+      case X86::XOR64rm:
+        return Rex ? X86::reloc_riprel_4byte_relax_rex
+                   : X86::reloc_riprel_4byte_relax;
+      }
+    }();
 
     // rip-relative addressing is actually relative to the *next* instruction.
     // Since an immediate can follow the mod/rm byte for an instruction, this
@@ -510,8 +517,11 @@
 
     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
-    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
-                  CurByte, OS, Fixups);
+    unsigned Opcode = MI.getOpcode();
+    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
+                                                : X86::reloc_signed_4byte;
+    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
+                  Fixups);
     return;
   }
 
@@ -593,8 +603,6 @@
   uint64_t Encoding = TSFlags & X86II::EncodingMask;
   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
-  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
-  bool HasMemOp4 = TSFlags & X86II::MemOp4;
   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
 
   // VEX_R: opcode externsion equivalent to REX.R in
@@ -603,26 +611,26 @@
   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
   //  0: Same as REX_R=1 (64 bit mode only)
   //
-  unsigned char VEX_R = 0x1;
-  unsigned char EVEX_R2 = 0x1;
+  uint8_t VEX_R = 0x1;
+  uint8_t EVEX_R2 = 0x1;
 
   // VEX_X: equivalent to REX.X, only used when a
   // register is used for index in SIB Byte.
   //
   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
   //  0: Same as REX.X=1 (64-bit mode only)
-  unsigned char VEX_X = 0x1;
+  uint8_t VEX_X = 0x1;
 
   // VEX_B:
   //
   //  1: Same as REX_B=0 (ignored in 32-bit mode)
   //  0: Same as REX_B=1 (64 bit mode only)
   //
-  unsigned char VEX_B = 0x1;
+  uint8_t VEX_B = 0x1;
 
   // VEX_W: opcode specific (use like REX.W, or used for
   // opcode extension, or ignored, depending on the opcode byte)
-  unsigned char VEX_W = 0;
+  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
 
   // VEX_5M (VEX m-mmmmm field):
   //
@@ -634,20 +642,31 @@
   //  0b01000: XOP map select - 08h instructions with imm byte
   //  0b01001: XOP map select - 09h instructions with no imm byte
   //  0b01010: XOP map select - 0Ah instructions with imm dword
-  unsigned char VEX_5M = 0;
+  uint8_t VEX_5M;
+  switch (TSFlags & X86II::OpMapMask) {
+  default: llvm_unreachable("Invalid prefix!");
+  case X86II::TB:   VEX_5M = 0x1; break; // 0F
+  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
+  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
+  case X86II::XOP8: VEX_5M = 0x8; break;
+  case X86II::XOP9: VEX_5M = 0x9; break;
+  case X86II::XOPA: VEX_5M = 0xA; break;
+  }
 
   // VEX_4V (VEX vvvv field): a register specifier
   // (in 1's complement form) or 1111 if unused.
-  unsigned char VEX_4V = 0xf;
-  unsigned char EVEX_V2 = 0x1;
+  uint8_t VEX_4V = 0xf;
+  uint8_t EVEX_V2 = 0x1;
 
-  // VEX_L (Vector Length):
+  // EVEX_L2/VEX_L (Vector Length):
   //
-  //  0: scalar or 128-bit vector
-  //  1: 256-bit vector
+  // L2 L
+  //  0 0: scalar or 128-bit vector
+  //  0 1: 256-bit vector
+  //  1 0: 512-bit vector
   //
-  unsigned char VEX_L = 0;
-  unsigned char EVEX_L2 = 0;
+  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
+  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
 
   // VEX_PP: opcode extension providing equivalent
   // functionality of a SIMD prefix
@@ -657,55 +676,31 @@
   //  0b10: F3
   //  0b11: F2
   //
-  unsigned char VEX_PP = 0;
-
-  // EVEX_U
-  unsigned char EVEX_U = 1; // Always '1' so far
-
-  // EVEX_z
-  unsigned char EVEX_z = 0;
-
-  // EVEX_b
-  unsigned char EVEX_b = 0;
-
-  // EVEX_rc
-  unsigned char EVEX_rc = 0;
-
-  // EVEX_aaa
-  unsigned char EVEX_aaa = 0;
-
-  bool EncodeRC = false;
-
-  if (TSFlags & X86II::VEX_W)
-    VEX_W = 1;
-
-  if (TSFlags & X86II::VEX_L)
-    VEX_L = 1;
-  if (TSFlags & X86II::EVEX_L2)
-    EVEX_L2 = 1;
-
-  if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
-    EVEX_z = 1;
-
-  if ((TSFlags & X86II::EVEX_B))
-    EVEX_b = 1;
-
+  uint8_t VEX_PP;
   switch (TSFlags & X86II::OpPrefixMask) {
-  default: break; // VEX_PP already correct
+  default: llvm_unreachable("Invalid op prefix!");
+  case X86II::PS: VEX_PP = 0x0; break; // none
   case X86II::PD: VEX_PP = 0x1; break; // 66
   case X86II::XS: VEX_PP = 0x2; break; // F3
   case X86II::XD: VEX_PP = 0x3; break; // F2
   }
 
-  switch (TSFlags & X86II::OpMapMask) {
-  default: llvm_unreachable("Invalid prefix!");
-  case X86II::TB:   VEX_5M = 0x1; break; // 0F
-  case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
-  case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
-  case X86II::XOP8: VEX_5M = 0x8; break;
-  case X86II::XOP9: VEX_5M = 0x9; break;
-  case X86II::XOPA: VEX_5M = 0xA; break;
-  }
+  // EVEX_U
+  uint8_t EVEX_U = 1; // Always '1' so far
+
+  // EVEX_z
+  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
+
+  // EVEX_b
+  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
+
+  // EVEX_rc
+  uint8_t EVEX_rc = 0;
+
+  // EVEX_aaa
+  uint8_t EVEX_aaa = 0;
+
+  bool EncodeRC = false;
 
   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
   unsigned NumOps = Desc.getNumOperands();
@@ -721,81 +716,88 @@
     //  MemAddr, src1(VEX_4V), src2(ModR/M)
     //  MemAddr, src1(ModR/M), imm8
     //
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
-                                                 X86::AddrBaseReg).getReg()))
-      VEX_B = 0x0;
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
-                                                 X86::AddrIndexReg).getReg()))
-      VEX_X = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
-                                          X86::AddrIndexReg).getReg()))
-      EVEX_V2 = 0x0;
+    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
+    VEX_B = ~(BaseRegEnc >> 3) & 1;
+    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
+    VEX_X = ~(IndexRegEnc >> 3) & 1;
+    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
+      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
 
     CurOp += X86::AddrNumOperands;
 
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-        EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
 
-    const MCOperand &MO = MI.getOperand(CurOp);
-    if (MO.isReg()) {
-      if (X86II::isX86_64ExtendedReg(MO.getReg()))
-        VEX_R = 0x0;
-      if (X86II::is32ExtendedReg(MO.getReg()))
-        EVEX_R2 = 0x0;
-    }
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+    EVEX_R2 = ~(RegEnc >> 4) & 1;
     break;
   }
-  case X86II::MRMSrcMem:
+  case X86II::MRMSrcMem: {
     // MRMSrcMem instructions forms:
     //  src1(ModR/M), MemAddr
     //  src1(ModR/M), src2(VEX_4V), MemAddr
     //  src1(ModR/M), MemAddr, imm8
-    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
     //
     //  FMA4:
-    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
-    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_R = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      EVEX_R2 = 0x0;
-    CurOp++;
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+    EVEX_R2 = ~(RegEnc >> 4) & 1;
 
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-        EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
 
-    if (X86II::isX86_64ExtendedReg(
-               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
-      VEX_B = 0x0;
-    if (X86II::isX86_64ExtendedReg(
-               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
-      VEX_X = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
-                               X86::AddrIndexReg).getReg()))
-      EVEX_V2 = 0x0;
+    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
+    VEX_B = ~(BaseRegEnc >> 3) & 1;
+    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
+    VEX_X = ~(IndexRegEnc >> 3) & 1;
+    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
+      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
+
+    break;
+  }
+  case X86II::MRMSrcMem4VOp3: {
+    // Instruction format for 4VOp3:
+    //   src1(ModR/M), MemAddr, src3(VEX_4V)
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
 
-    if (HasVEX_4VOp3)
-      // Instruction format for 4VOp3:
-      //   src1(ModR/M), MemAddr, src3(VEX_4V)
-      // CurOp points to start of the MemoryOperand,
-      //   it skips TIED_TO operands if exist, then increments past src1.
-      // CurOp + X86::AddrNumOperands will point to src3.
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
+    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
+    VEX_B = ~(BaseRegEnc >> 3) & 1;
+    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
+    VEX_X = ~(IndexRegEnc >> 3) & 1;
+
+    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
     break;
+  }
+  case X86II::MRMSrcMemOp4: {
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+
+    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_4V = ~VRegEnc & 0xf;
+
+    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
+    VEX_B = ~(BaseRegEnc >> 3) & 1;
+    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
+    VEX_X = ~(IndexRegEnc >> 3) & 1;
+    break;
+  }
   case X86II::MRM0m: case X86II::MRM1m:
   case X86II::MRM2m: case X86II::MRM3m:
   case X86II::MRM4m: case X86II::MRM5m:
@@ -804,58 +806,45 @@
     //  MemAddr
     //  src1(VEX_4V), MemAddr
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-        EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
 
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
-    if (X86II::isX86_64ExtendedReg(
-               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
-      VEX_B = 0x0;
-    if (X86II::isX86_64ExtendedReg(
-               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
-      VEX_X = 0x0;
+    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
+    VEX_B = ~(BaseRegEnc >> 3) & 1;
+    unsigned IndexRegEnc = getX86RegEncoding(MI, MemOperand+X86::AddrIndexReg);
+    VEX_X = ~(IndexRegEnc >> 3) & 1;
     break;
   }
-  case X86II::MRMSrcReg:
+  case X86II::MRMSrcReg: {
     // MRMSrcReg instructions forms:
-    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
     //  dst(ModR/M), src1(ModR/M)
     //  dst(ModR/M), src1(ModR/M), imm8
     //
     //  FMA4:
-    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
-    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_R = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      EVEX_R2 = 0x0;
-    CurOp++;
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+    EVEX_R2 = ~(RegEnc >> 4) & 1;
 
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-        EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
 
-    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
-      CurOp++;
+    RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_B = ~(RegEnc >> 3) & 1;
+    VEX_X = ~(RegEnc >> 4) & 1;
 
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_B = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_X = 0x0;
-    CurOp++;
-    if (HasVEX_4VOp3)
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
     if (EVEX_b) {
       if (HasEVEX_RC) {
         unsigned RcOperand = NumOps-1;
@@ -865,55 +854,80 @@
       EncodeRC = true;
     }
     break;
-  case X86II::MRMDestReg:
+  }
+  case X86II::MRMSrcReg4VOp3: {
+    // Instruction format for 4VOp3:
+    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+
+    RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_B = ~(RegEnc >> 3) & 1;
+
+    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
+    break;
+  }
+  case X86II::MRMSrcRegOp4: {
+    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+
+    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_4V = ~VRegEnc & 0xf;
+
+    // Skip second register source (encoded in Imm[7:4])
+    ++CurOp;
+
+    RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_B = ~(RegEnc >> 3) & 1;
+    VEX_X = ~(RegEnc >> 4) & 1;
+    break;
+  }
+  case X86II::MRMDestReg: {
     // MRMDestReg instructions forms:
     //  dst(ModR/M), src(ModR/M)
     //  dst(ModR/M), src(ModR/M), imm8
     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_B = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_X = 0x0;
-    CurOp++;
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_B = ~(RegEnc >> 3) & 1;
+    VEX_X = ~(RegEnc >> 4) & 1;
 
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-        EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
 
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_R = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      EVEX_R2 = 0x0;
+    RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_R = ~(RegEnc >> 3) & 1;
+    EVEX_R2 = ~(RegEnc >> 4) & 1;
     if (EVEX_b)
       EncodeRC = true;
     break;
+  }
   case X86II::MRM0r: case X86II::MRM1r:
   case X86II::MRM2r: case X86II::MRM3r:
   case X86II::MRM4r: case X86II::MRM5r:
-  case X86II::MRM6r: case X86II::MRM7r:
+  case X86II::MRM6r: case X86II::MRM7r: {
     // MRM0r-MRM7r instructions forms:
     //  dst(VEX_4V), src(ModR/M), imm8
     if (HasVEX_4V) {
-      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
-      if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-          EVEX_V2 = 0x0;
-      CurOp++;
+      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
+      VEX_4V = ~VRegEnc & 0xf;
+      EVEX_V2 = ~(VRegEnc >> 4) & 1;
     }
     if (HasEVEX_K)
-      EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
 
-    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_B = 0x0;
-    if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
-      VEX_X = 0x0;
+    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
+    VEX_B = ~(RegEnc >> 3) & 1;
+    VEX_X = ~(RegEnc >> 4) & 1;
     break;
   }
+  }
 
   if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
     // VEX opcode prefix can have 2 or 3 bytes
@@ -931,7 +945,7 @@
     //    +-----+ +--------------+ +-------------------+
     //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
     //    +-----+ +--------------+ +-------------------+
-    unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
 
     // Can we use the 2 byte VEX prefix?
     if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
@@ -954,8 +968,6 @@
     assert((VEX_5M & 0x3) == VEX_5M
            && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
 
-    VEX_5M &= 0x3;
-
     EmitByte(0x62, CurByte, OS);
     EmitByte((VEX_R   << 7) |
              (VEX_X   << 6) |
@@ -968,26 +980,27 @@
              VEX_PP, CurByte, OS);
     if (EncodeRC)
       EmitByte((EVEX_z  << 7) |
-              (EVEX_rc << 5) |
-              (EVEX_b  << 4) |
-              (EVEX_V2 << 3) |
-              EVEX_aaa, CurByte, OS);
+               (EVEX_rc << 5) |
+               (EVEX_b  << 4) |
+               (EVEX_V2 << 3) |
+               EVEX_aaa, CurByte, OS);
     else
       EmitByte((EVEX_z  << 7) |
-              (EVEX_L2 << 6) |
-              (VEX_L   << 5) |
-              (EVEX_b  << 4) |
-              (EVEX_V2 << 3) |
-              EVEX_aaa, CurByte, OS);
+               (EVEX_L2 << 6) |
+               (VEX_L   << 5) |
+               (EVEX_b  << 4) |
+               (EVEX_V2 << 3) |
+               EVEX_aaa, CurByte, OS);
   }
 }
 
 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 /// size, and 3) use of X86-64 extended registers.
-static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
-                                   const MCInstrDesc &Desc) {
-  unsigned REX = 0;
+uint8_t X86MCCodeEmitter::DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
+                                             int MemOperand,
+                                             const MCInstrDesc &Desc) const {
+  uint8_t REX = 0;
   bool UsesHighByteReg = false;
 
   if (TSFlags & X86II::REX_W)
@@ -996,85 +1009,60 @@
   if (MI.getNumOperands() == 0) return REX;
 
   unsigned NumOps = MI.getNumOperands();
-  // FIXME: MCInst should explicitize the two-addrness.
-  bool isTwoAddr = NumOps > 1 &&
-                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+  unsigned CurOp = X86II::getOperandBias(Desc);
 
   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
-  unsigned i = isTwoAddr ? 1 : 0;
-  for (; i != NumOps; ++i) {
+  for (unsigned i = CurOp; i != NumOps; ++i) {
     const MCOperand &MO = MI.getOperand(i);
     if (!MO.isReg()) continue;
     unsigned Reg = MO.getReg();
     if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
       UsesHighByteReg = true;
-    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
-    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
-    // that returns non-zero.
-    REX |= 0x40; // REX fixed encoding prefix
-    break;
+    if (X86II::isX86_64NonExtLowByteReg(Reg))
+      // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
+      // that returns non-zero.
+      REX |= 0x40; // REX fixed encoding prefix
   }
 
   switch (TSFlags & X86II::FormMask) {
+  case X86II::AddRegFrm:
+    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
+    break;
   case X86II::MRMSrcReg:
-    if (MI.getOperand(0).isReg() &&
-        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
-      REX |= 1 << 2; // set REX.R
-    i = isTwoAddr ? 2 : 1;
-    for (; i != NumOps; ++i) {
-      const MCOperand &MO = MI.getOperand(i);
-      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
-        REX |= 1 << 0; // set REX.B
-    }
+    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
+    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
     break;
   case X86II::MRMSrcMem: {
-    if (MI.getOperand(0).isReg() &&
-        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
-      REX |= 1 << 2; // set REX.R
-    unsigned Bit = 0;
-    i = isTwoAddr ? 2 : 1;
-    for (; i != NumOps; ++i) {
-      const MCOperand &MO = MI.getOperand(i);
-      if (MO.isReg()) {
-        if (X86II::isX86_64ExtendedReg(MO.getReg()))
-          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
-        Bit++;
-      }
-    }
+    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
+    CurOp += X86::AddrNumOperands;
     break;
   }
+  case X86II::MRMDestReg:
+    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
+    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
+    break;
+  case X86II::MRMDestMem:
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
+    CurOp += X86::AddrNumOperands;
+    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
+    break;
   case X86II::MRMXm:
   case X86II::MRM0m: case X86II::MRM1m:
   case X86II::MRM2m: case X86II::MRM3m:
   case X86II::MRM4m: case X86II::MRM5m:
   case X86II::MRM6m: case X86II::MRM7m:
-  case X86II::MRMDestMem: {
-    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
-    i = isTwoAddr ? 1 : 0;
-    if (NumOps > e && MI.getOperand(e).isReg() &&
-        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
-      REX |= 1 << 2; // set REX.R
-    unsigned Bit = 0;
-    for (; i != e; ++i) {
-      const MCOperand &MO = MI.getOperand(i);
-      if (MO.isReg()) {
-        if (X86II::isX86_64ExtendedReg(MO.getReg()))
-          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
-        Bit++;
-      }
-    }
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrBaseReg) << 0; // REX.B
+    REX |= isREXExtendedReg(MI, MemOperand+X86::AddrIndexReg) << 1; // REX.X
     break;
-  }
-  default:
-    if (MI.getOperand(0).isReg() &&
-        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
-      REX |= 1 << 0; // set REX.B
-    i = isTwoAddr ? 2 : 1;
-    for (unsigned e = NumOps; i != e; ++i) {
-      const MCOperand &MO = MI.getOperand(i);
-      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
-        REX |= 1 << 2; // set REX.R
-    }
+  case X86II::MRMXr:
+  case X86II::MRM0r: case X86II::MRM1r:
+  case X86II::MRM2r: case X86II::MRM3r:
+  case X86II::MRM4r: case X86II::MRM5r:
+  case X86II::MRM6r: case X86II::MRM7r:
+    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
     break;
   }
   if (REX && UsesHighByteReg)
@@ -1101,16 +1089,18 @@
   }
 }
 
-/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
+/// Emit all instruction prefixes prior to the opcode.
 ///
 /// MemOperand is the operand # of the start of a memory operand if present.  If
 /// Not present, it is -1.
-void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+///
+/// Returns true if a REX prefix was used.
+bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                         int MemOperand, const MCInst &MI,
                                         const MCInstrDesc &Desc,
                                         const MCSubtargetInfo &STI,
                                         raw_ostream &OS) const {
-
+  bool Ret = false;
   // Emit the operand size opcode prefix as needed.
   if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
                                                          : X86II::OpSize16))
@@ -1135,8 +1125,10 @@
   // Handle REX prefix.
   // FIXME: Can this come before F2 etc to simplify emission?
   if (is64BitMode(STI)) {
-    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
+    if (uint8_t REX = DetermineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
       EmitByte(0x40 | REX, CurByte, OS);
+      Ret = true;
+    }
   }
 
   // 0x0F escape code must be emitted just before the opcode.
@@ -1156,6 +1148,7 @@
     EmitByte(0x3A, CurByte, OS);
     break;
   }
+  return Ret;
 }
 
 void X86MCCodeEmitter::
@@ -1181,16 +1174,17 @@
 
   // It uses the VEX.VVVV field?
   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
-  bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
-  bool HasMemOp4 = TSFlags & X86II::MemOp4;
-  const unsigned MemOp4_I8IMMOperand = 2;
+  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
 
   // It uses the EVEX.aaa field?
   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
 
+  // Used if a register is encoded in 7:4 of immediate.
+  unsigned I8RegNum = 0;
+
   // Determine where the memory operand starts, if present.
-  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
   if (MemoryOperand != -1) MemoryOperand += CurOp;
 
   // Emit segment override opcode prefix as needed.
@@ -1226,19 +1220,20 @@
   if (need_address_override)
     EmitByte(0x67, CurByte, OS);
 
+  bool Rex = false;
   if (Encoding == 0)
-    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
+    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
   else
     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 
-  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
+  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
 
   if (TSFlags & X86II::Has3DNow0F0FOpcode)
     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
 
-  unsigned SrcRegNum = 0;
-  switch (TSFlags & X86II::FormMask) {
-  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
+  uint64_t Form = TSFlags & X86II::FormMask;
+  switch (Form) {
+  default: errs() << "FORM: " << Form << "\n";
     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
   case X86II::Pseudo:
     llvm_unreachable("Pseudo instruction shouldn't be emitted");
@@ -1315,12 +1310,12 @@
     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
     break;
 
-  case X86II::MRMDestReg:
+  case X86II::MRMDestReg: {
     EmitByte(BaseOpcode, CurByte, OS);
-    SrcRegNum = CurOp + 1;
+    unsigned SrcRegNum = CurOp + 1;
 
     if (HasEVEX_K) // Skip writemask
-      SrcRegNum++;
+      ++SrcRegNum;
 
     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
       ++SrcRegNum;
@@ -1329,71 +1324,111 @@
                      GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
     CurOp = SrcRegNum + 1;
     break;
-
-  case X86II::MRMDestMem:
+  }
+  case X86II::MRMDestMem: {
     EmitByte(BaseOpcode, CurByte, OS);
-    SrcRegNum = CurOp + X86::AddrNumOperands;
+    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
 
     if (HasEVEX_K) // Skip writemask
-      SrcRegNum++;
+      ++SrcRegNum;
 
     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
       ++SrcRegNum;
 
-    EmitMemModRMByte(MI, CurOp,
-                     GetX86RegNum(MI.getOperand(SrcRegNum)),
-                     TSFlags, CurByte, OS, Fixups, STI);
+    emitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
+                     Rex, CurByte, OS, Fixups, STI);
     CurOp = SrcRegNum + 1;
     break;
-
-  case X86II::MRMSrcReg:
+  }
+  case X86II::MRMSrcReg: {
     EmitByte(BaseOpcode, CurByte, OS);
-    SrcRegNum = CurOp + 1;
+    unsigned SrcRegNum = CurOp + 1;
 
     if (HasEVEX_K) // Skip writemask
-      SrcRegNum++;
+      ++SrcRegNum;
 
     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
       ++SrcRegNum;
 
-    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
-      ++SrcRegNum;
-
     EmitRegModRMByte(MI.getOperand(SrcRegNum),
                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
-
-    // 2 operands skipped with HasMemOp4, compensate accordingly
-    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
-    if (HasVEX_4VOp3)
-      ++CurOp;
+    CurOp = SrcRegNum + 1;
+    if (HasVEX_I8Reg)
+      I8RegNum = getX86RegEncoding(MI, CurOp++);
     // do not count the rounding control operand
     if (HasEVEX_RC)
-      NumOps--;
+      --NumOps;
     break;
+  }
+  case X86II::MRMSrcReg4VOp3: {
+    EmitByte(BaseOpcode, CurByte, OS);
+    unsigned SrcRegNum = CurOp + 1;
 
+    EmitRegModRMByte(MI.getOperand(SrcRegNum),
+                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+    CurOp = SrcRegNum + 1;
+    ++CurOp; // Encoded in VEX.VVVV
+    break;
+  }
+  case X86II::MRMSrcRegOp4: {
+    EmitByte(BaseOpcode, CurByte, OS);
+    unsigned SrcRegNum = CurOp + 1;
+
+    // Skip 1st src (which is encoded in VEX_VVVV)
+    ++SrcRegNum;
+
+    // Capture 2nd src (which is encoded in Imm[7:4])
+    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
+    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
+
+    EmitRegModRMByte(MI.getOperand(SrcRegNum),
+                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+    CurOp = SrcRegNum + 1;
+    break;
+  }
   case X86II::MRMSrcMem: {
-    int AddrOperands = X86::AddrNumOperands;
     unsigned FirstMemOp = CurOp+1;
 
-    if (HasEVEX_K) { // Skip writemask
-      ++AddrOperands;
+    if (HasEVEX_K) // Skip writemask
       ++FirstMemOp;
-    }
 
-    if (HasVEX_4V) {
-      ++AddrOperands;
+    if (HasVEX_4V)
       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
-    }
-    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
-      ++FirstMemOp;
 
     EmitByte(BaseOpcode, CurByte, OS);
 
-    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
-                     TSFlags, CurByte, OS, Fixups, STI);
-    CurOp += AddrOperands + 1;
-    if (HasVEX_4VOp3)
-      ++CurOp;
+    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+                     TSFlags, Rex, CurByte, OS, Fixups, STI);
+    CurOp = FirstMemOp + X86::AddrNumOperands;
+    if (HasVEX_I8Reg)
+      I8RegNum = getX86RegEncoding(MI, CurOp++);
+    break;
+  }
+  case X86II::MRMSrcMem4VOp3: {
+    unsigned FirstMemOp = CurOp+1;
+
+    EmitByte(BaseOpcode, CurByte, OS);
+
+    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+                     TSFlags, Rex, CurByte, OS, Fixups, STI);
+    CurOp = FirstMemOp + X86::AddrNumOperands;
+    ++CurOp; // Encoded in VEX.VVVV.
+    break;
+  }
+  case X86II::MRMSrcMemOp4: {
+    unsigned FirstMemOp = CurOp+1;
+
+    ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
+
+    // Capture second register source (encoded in Imm[7:4])
+    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
+    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
+
+    EmitByte(BaseOpcode, CurByte, OS);
+
+    emitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+                     TSFlags, Rex, CurByte, OS, Fixups, STI);
+    CurOp = FirstMemOp + X86::AddrNumOperands;
     break;
   }
 
@@ -1407,7 +1442,6 @@
     if (HasEVEX_K) // Skip writemask
       ++CurOp;
     EmitByte(BaseOpcode, CurByte, OS);
-    uint64_t Form = TSFlags & X86II::FormMask;
     EmitRegModRMByte(MI.getOperand(CurOp++),
                      (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
                      CurByte, OS);
@@ -1424,9 +1458,9 @@
     if (HasEVEX_K) // Skip writemask
       ++CurOp;
     EmitByte(BaseOpcode, CurByte, OS);
-    uint64_t Form = TSFlags & X86II::FormMask;
-    EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
-                     TSFlags, CurByte, OS, Fixups, STI);
+    emitMemModRMByte(MI, CurOp,
+                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
+                     Rex, CurByte, OS, Fixups, STI);
     CurOp += X86::AddrNumOperands;
     break;
   }
@@ -1453,38 +1487,27 @@
   case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
   case X86II::MRM_FF:
     EmitByte(BaseOpcode, CurByte, OS);
-
-    uint64_t Form = TSFlags & X86II::FormMask;
     EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
     break;
   }
 
-  // If there is a remaining operand, it must be a trailing immediate.  Emit it
-  // according to the right size for the instruction. Some instructions
-  // (SSE4a extrq and insertq) have two trailing immediates.
-  while (CurOp != NumOps && NumOps - CurOp <= 2) {
+  if (HasVEX_I8Reg) {
     // The last source register of a 4 operand instruction in AVX is encoded
     // in bits[7:4] of a immediate byte.
-    if (TSFlags & X86II::VEX_I8IMM) {
-      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
-                                                    : CurOp);
-      ++CurOp;
-      unsigned RegNum = GetX86RegNum(MO) << 4;
-      if (X86II::isX86_64ExtendedReg(MO.getReg()))
-        RegNum |= 1 << 7;
-      // If there is an additional 5th operand it must be an immediate, which
-      // is encoded in bits[3:0]
-      if (CurOp != NumOps) {
-        const MCOperand &MIMM = MI.getOperand(CurOp++);
-        if (MIMM.isImm()) {
-          unsigned Val = MIMM.getImm();
-          assert(Val < 16 && "Immediate operand value out of range");
-          RegNum |= Val;
-        }
-      }
-      EmitImmediate(MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1,
-                    CurByte, OS, Fixups);
-    } else {
+    assert(I8RegNum < 16 && "Register encoding out of range");
+    I8RegNum <<= 4;
+    if (CurOp != NumOps) {
+      unsigned Val = MI.getOperand(CurOp++).getImm();
+      assert(Val < 16 && "Immediate operand value out of range");
+      I8RegNum |= Val;
+    }
+    EmitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
+                  CurByte, OS, Fixups);
+  } else {
+    // If there is a remaining operand, it must be a trailing immediate. Emit it
+    // according to the right size for the instruction. Some instructions
+    // (SSE4a extrq and insertq) have two trailing immediates.
+    while (CurOp != NumOps && NumOps - CurOp <= 2) {
       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                     CurByte, OS, Fixups);