Mercurial > hg > CbC > CbC_llvm
diff lib/Target/SystemZ/SystemZInstrDFP.td @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children | c2174574ed3a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/Target/SystemZ/SystemZInstrDFP.td Fri Oct 27 17:07:41 2017 +0900 @@ -0,0 +1,231 @@ +//==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The instructions in this file implement SystemZ decimal floating-point +// arithmetic. These instructions are inot currently used for code generation, +// are provided for use with the assembler and disassembler only. If LLVM +// ever supports decimal floating-point types (_Decimal64 etc.), they can +// also be used for code generation for those types. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Move instructions +//===----------------------------------------------------------------------===// + +// Load and test. +let Defs = [CC] in { + def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>; + def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>; +} + + +//===----------------------------------------------------------------------===// +// Conversion instructions +//===----------------------------------------------------------------------===// + +// Convert floating-point values to narrower representations. The destination +// of LDXTR is a 128-bit value, but only the first register of the pair is used. +def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>; +def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>; + +// Extend floating-point values to wider representations. +def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>; +def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>; + +// Convert a signed integer value to a floating-point one. +def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>; +def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>; +let Predicates = [FeatureFPExtension] in { + def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>; + def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>; + def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>; + def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>; +} + +// Convert an unsigned integer value to a floating-point one. +let Predicates = [FeatureFPExtension] in { + def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>; + def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>; + def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>; + def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>; +} + +// Convert a floating-point value to a signed integer value. +let Defs = [CC] in { + def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>; + def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>; + let Predicates = [FeatureFPExtension] in { + def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>; + def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>; + def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>; + def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>; + } +} + +// Convert a floating-point value to an unsigned integer value. +let Defs = [CC] in { + let Predicates = [FeatureFPExtension] in { + def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>; + def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>; + def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>; + def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>; + } +} + +// Convert a packed value to a floating-point one. +def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>; +def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>; +def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>; +def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>; + +// Convert a floating-point value to a packed value. +def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>; +def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>; +def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>; +def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>; + +// Convert from/to memory values in the zoned format. +let Predicates = [FeatureDFPZonedConversion] in { + def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>; + def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>; + def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>; + def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>; +} + +// Convert from/to memory values in the packed format. +let Predicates = [FeatureDFPPackedConversion] in { + def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>; + def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>; + def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>; + def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>; +} + +// Perform floating-point operation. +let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in + def PFPO : SideEffectInherentE<"pfpo", 0x010A>; + + +//===----------------------------------------------------------------------===// +// Unary arithmetic +//===----------------------------------------------------------------------===// + +// Round to an integer, with the second operand (M3) specifying the rounding +// mode. M4 can be set to 4 to suppress detection of inexact conditions. +def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>; +def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>; + +// Extract biased exponent. +def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>; +def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>; + +// Extract significance. +def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>; +def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>; + + +//===----------------------------------------------------------------------===// +// Binary arithmetic +//===----------------------------------------------------------------------===// + +// Addition. +let Defs = [CC] in { + let isCommutable = 1 in { + def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>; + def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>; + } + let Predicates = [FeatureFPExtension] in { + def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>; + def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>; + } +} + +// Subtraction. +let Defs = [CC] in { + def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>; + def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>; + let Predicates = [FeatureFPExtension] in { + def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>; + def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>; + } +} + +// Multiplication. +let isCommutable = 1 in { + def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>; + def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>; +} +let Predicates = [FeatureFPExtension] in { + def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>; + def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>; +} + +// Division. +def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>; +def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>; +let Predicates = [FeatureFPExtension] in { + def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>; + def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>; +} + +// Quantize. +def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>; +def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>; + +// Reround. +def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>; +def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>; + +// Shift significand left/right. +def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>; +def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>; +def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>; +def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>; + +// Insert biased exponent. +def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>; +def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>; + + +//===----------------------------------------------------------------------===// +// Comparisons +//===----------------------------------------------------------------------===// + +// Compare. +let Defs = [CC] in { + def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>; + def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>; +} + +// Compare and signal. +let Defs = [CC] in { + def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>; + def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>; +} + +// Compare biased exponent. +let Defs = [CC] in { + def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>; + def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>; +} + +// Test Data Class. +let Defs = [CC] in { + def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>; + def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>; + def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>; +} + +// Test Data Group. +let Defs = [CC] in { + def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>; + def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>; + def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>; +} +