diff lib/Target/SystemZ/SystemZInstrDFP.td @ 121:803732b1fca8

LLVM 5.0
author kono
date Fri, 27 Oct 2017 17:07:41 +0900
parents
children c2174574ed3a
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Target/SystemZ/SystemZInstrDFP.td	Fri Oct 27 17:07:41 2017 +0900
@@ -0,0 +1,231 @@
+//==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The instructions in this file implement SystemZ decimal floating-point
+// arithmetic.  These instructions are inot currently used for code generation,
+// are provided for use with the assembler and disassembler only.  If LLVM
+// ever supports decimal floating-point types (_Decimal64 etc.), they can
+// also be used for code generation for those types.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Load and test.
+let Defs = [CC] in {
+  def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64,  FP64>;
+  def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Conversion instructions
+//===----------------------------------------------------------------------===//
+
+// Convert floating-point values to narrower representations.  The destination
+// of LDXTR is a 128-bit value, but only the first register of the pair is used.
+def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32,  FP64>;
+def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
+
+// Extend floating-point values to wider representations.
+def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64,  FP32>;
+def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
+
+// Convert a signed integer value to a floating-point one.
+def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64,  GR64>;
+def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
+let Predicates = [FeatureFPExtension] in {
+  def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64,  GR64>;
+  def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
+  def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64,  GR32>;
+  def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
+}
+
+// Convert an unsigned integer value to a floating-point one.
+let Predicates = [FeatureFPExtension] in {
+  def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64,  GR64>;
+  def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
+  def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64,  GR32>;
+  def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
+}
+
+// Convert a floating-point value to a signed integer value.
+let Defs = [CC] in {
+  def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
+  def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
+  let Predicates = [FeatureFPExtension] in {
+    def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
+    def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
+    def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
+    def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
+  }
+}
+
+// Convert a floating-point value to an unsigned integer value.
+let Defs = [CC] in {
+  let Predicates = [FeatureFPExtension] in {
+    def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
+    def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
+    def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
+    def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
+  }
+}
+
+// Convert a packed value to a floating-point one.
+def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64,  GR64>;
+def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
+def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64,  GR64>;
+def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;
+
+// Convert a floating-point value to a packed value.
+def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64,  FP64>;
+def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
+def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64,  FP64>;
+def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;
+
+// Convert from/to memory values in the zoned format.
+let Predicates = [FeatureDFPZonedConversion] in {
+  def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
+  def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
+  def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
+  def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
+}
+
+// Convert from/to memory values in the packed format.
+let Predicates = [FeatureDFPPackedConversion] in {
+  def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
+  def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
+  def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
+  def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
+}
+
+// Perform floating-point operation.
+let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in
+  def PFPO : SideEffectInherentE<"pfpo", 0x010A>;
+
+
+//===----------------------------------------------------------------------===//
+// Unary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Round to an integer, with the second operand (M3) specifying the rounding
+// mode.  M4 can be set to 4 to suppress detection of inexact conditions.
+def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64,  FP64>;
+def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
+
+// Extract biased exponent.
+def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64,  FP64>;
+def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;
+
+// Extract significance.
+def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64,  FP64>;
+def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;
+
+
+//===----------------------------------------------------------------------===//
+// Binary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Addition.
+let Defs = [CC] in {
+  let isCommutable = 1 in {
+    def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64,  FP64,  FP64>;
+    def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
+  }
+  let Predicates = [FeatureFPExtension] in {
+    def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64,  FP64,  FP64>;
+    def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
+  }
+}
+
+// Subtraction.
+let Defs = [CC] in {
+  def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64,  FP64,  FP64>;
+  def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
+  let Predicates = [FeatureFPExtension] in {
+    def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64,  FP64,  FP64>;
+    def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
+  }
+}
+
+// Multiplication.
+let isCommutable = 1 in {
+  def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64,  FP64,  FP64>;
+  def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
+}
+let Predicates = [FeatureFPExtension] in {
+  def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64,  FP64,  FP64>;
+  def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
+}
+
+// Division.
+def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64,  FP64,  FP64>;
+def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
+let Predicates = [FeatureFPExtension] in {
+  def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64,  FP64,  FP64>;
+  def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
+}
+
+// Quantize.
+def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64,  FP64,  FP64>;
+def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
+
+// Reround.
+def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64,  FP64,  FP64>;
+def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
+
+// Shift significand left/right.
+def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64,  FP64,  null_frag, 0>;
+def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
+def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64,  FP64,  null_frag, 0>;
+def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;
+
+// Insert biased exponent.
+def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64,  FP64,   FP64>;
+def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;
+
+
+//===----------------------------------------------------------------------===//
+// Comparisons
+//===----------------------------------------------------------------------===//
+
+// Compare.
+let Defs = [CC] in {
+  def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64,  FP64>;
+  def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
+}
+
+// Compare and signal.
+let Defs = [CC] in {
+  def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64,  FP64>;
+  def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
+}
+
+// Compare biased exponent.
+let Defs = [CC] in {
+  def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64,  FP64>;
+  def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
+}
+
+// Test Data Class.
+let Defs = [CC] in {
+  def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
+  def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
+  def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
+}
+
+// Test Data Group.
+let Defs = [CC] in {
+  def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
+  def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
+  def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
+}
+