Mercurial > hg > CbC > CbC_llvm
view lld/MachO/InputFiles.cpp @ 207:2e18cbf3894f
LLVM12
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Jun 2021 06:07:14 +0900 |
parents | 0572611fdcc8 |
children | 5f17cb93ff66 |
line wrap: on
line source
//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains functions to parse Mach-O object files. In this comment, // we describe the Mach-O file structure and how we parse it. // // Mach-O is not very different from ELF or COFF. The notion of symbols, // sections and relocations exists in Mach-O as it does in ELF and COFF. // // Perhaps the notion that is new to those who know ELF/COFF is "subsections". // In ELF/COFF, sections are an atomic unit of data copied from input files to // output files. When we merge or garbage-collect sections, we treat each // section as an atomic unit. In Mach-O, that's not the case. Sections can // consist of multiple subsections, and subsections are a unit of merging and // garbage-collecting. Therefore, Mach-O's subsections are more similar to // ELF/COFF's sections than Mach-O's sections are. // // A section can have multiple symbols. A symbol that does not have the // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by // definition, a symbol is always present at the beginning of each subsection. A // symbol with N_ALT_ENTRY attribute does not start a new subsection and can // point to a middle of a subsection. // // The notion of subsections also affects how relocations are represented in // Mach-O. All references within a section need to be explicitly represented as // relocations if they refer to different subsections, because we obviously need // to fix up addresses if subsections are laid out in an output file differently // than they were in object files. To represent that, Mach-O relocations can // refer to an unnamed location via its address. Scattered relocations (those // with the R_SCATTERED bit set) always refer to unnamed locations. // Non-scattered relocations refer to an unnamed location if r_extern is not set // and r_symbolnum is zero. // // Without the above differences, I think you can use your knowledge about ELF // and COFF for Mach-O. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "Driver.h" #include "Dwarf.h" #include "ExportTrie.h" #include "InputSection.h" #include "MachOStructs.h" #include "ObjC.h" #include "OutputSection.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "Target.h" #include "lld/Common/DWARF.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Reproduce.h" #include "llvm/ADT/iterator.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" #include "llvm/TextAPI/Architecture.h" #include "llvm/TextAPI/InterfaceFile.h" using namespace llvm; using namespace llvm::MachO; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::macho; // Returns "<internal>", "foo.a(bar.o)", or "baz.o". std::string lld::toString(const InputFile *f) { if (!f) return "<internal>"; // Multiple dylibs can be defined in one .tbd file. if (auto dylibFile = dyn_cast<DylibFile>(f)) if (f->getName().endswith(".tbd")) return (f->getName() + "(" + dylibFile->installName + ")").str(); if (f->archiveName.empty()) return std::string(f->getName()); return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); } SetVector<InputFile *> macho::inputFiles; std::unique_ptr<TarWriter> macho::tar; int InputFile::idCount = 0; static VersionTuple decodeVersion(uint32_t version) { unsigned major = version >> 16; unsigned minor = (version >> 8) & 0xffu; unsigned subMinor = version & 0xffu; return VersionTuple(major, minor, subMinor); } static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) return {}; const char *hdr = input->mb.getBufferStart(); std::vector<PlatformInfo> platformInfos; for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { PlatformInfo info; info.target.Platform = static_cast<PlatformKind>(cmd->platform); info.minimum = decodeVersion(cmd->minos); platformInfos.emplace_back(std::move(info)); } for (auto *cmd : findCommands<version_min_command>( hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { PlatformInfo info; switch (cmd->cmd) { case LC_VERSION_MIN_MACOSX: info.target.Platform = PlatformKind::macOS; break; case LC_VERSION_MIN_IPHONEOS: info.target.Platform = PlatformKind::iOS; break; case LC_VERSION_MIN_TVOS: info.target.Platform = PlatformKind::tvOS; break; case LC_VERSION_MIN_WATCHOS: info.target.Platform = PlatformKind::watchOS; break; } info.minimum = decodeVersion(cmd->version); platformInfos.emplace_back(std::move(info)); } return platformInfos; } static PlatformKind removeSimulator(PlatformKind platform) { // Mapping of platform to simulator and vice-versa. static const std::map<PlatformKind, PlatformKind> platformMap = { {PlatformKind::iOSSimulator, PlatformKind::iOS}, {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; auto iter = platformMap.find(platform); if (iter == platformMap.end()) return platform; return iter->second; } static bool checkCompatibility(const InputFile *input) { std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); if (platformInfos.empty()) return true; auto it = find_if(platformInfos, [&](const PlatformInfo &info) { return removeSimulator(info.target.Platform) == removeSimulator(config->platform()); }); if (it == platformInfos.end()) { std::string platformNames; raw_string_ostream os(platformNames); interleave( platformInfos, os, [&](const PlatformInfo &info) { os << getPlatformName(info.target.Platform); }, "/"); error(toString(input) + " has platform " + platformNames + Twine(", which is different from target platform ") + getPlatformName(config->platform())); return false; } if (it->minimum <= config->platformInfo.minimum) return true; error(toString(input) + " has version " + it->minimum.getAsString() + ", which is newer than target minimum of " + config->platformInfo.minimum.getAsString()); return false; } // Open a given file path and return it as a memory-mapped file. Optional<MemoryBufferRef> macho::readFile(StringRef path) { ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); if (std::error_code ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership // If this is a regular non-fat file, return it. const char *buf = mbref.getBufferStart(); const auto *hdr = reinterpret_cast<const fat_header *>(buf); if (mbref.getBufferSize() < sizeof(uint32_t) || read32be(&hdr->magic) != FAT_MAGIC) { if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return mbref; } // Object files and archive files may be fat files, which contain multiple // real files for different CPU ISAs. Here, we search for a file that matches // with the current link target and returns it as a MemoryBufferRef. const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { if (reinterpret_cast<const char *>(arch + i + 1) > buf + mbref.getBufferSize()) { error(path + ": fat_arch struct extends beyond end of file"); return None; } if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || read32be(&arch[i].cpusubtype) != target->cpuSubtype) continue; uint32_t offset = read32be(&arch[i].offset); uint32_t size = read32be(&arch[i].size); if (offset + size > mbref.getBufferSize()) error(path + ": slice extends beyond end of file"); if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); } error("unable to find matching architecture in " + path); return None; } InputFile::InputFile(Kind kind, const InterfaceFile &interface) : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} template <class Section> void ObjFile::parseSections(ArrayRef<Section> sections) { subsections.reserve(sections.size()); auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); for (const Section &sec : sections) { InputSection *isec = make<InputSection>(); isec->file = this; isec->name = StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); isec->segname = StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, static_cast<size_t>(sec.size)}; if (sec.align >= 32) error("alignment " + std::to_string(sec.align) + " of section " + isec->name + " is too large"); else isec->align = 1 << sec.align; isec->flags = sec.flags; if (!(isDebugSection(isec->flags) && isec->segname == segment_names::dwarf)) { subsections.push_back({{0, isec}}); } else { // Instead of emitting DWARF sections, we emit STABS symbols to the // object files that contain them. We filter them out early to avoid // parsing their relocations unnecessarily. But we must still push an // empty map to ensure the indices line up for the remaining sections. subsections.push_back({}); debugSections.push_back(isec); } } } // Find the subsection corresponding to the greatest section offset that is <= // that of the given offset. // // offset: an offset relative to the start of the original InputSection (before // any subsection splitting has occurred). It will be updated to represent the // same location as an offset relative to the start of the containing // subsection. static InputSection *findContainingSubsection(SubsectionMap &map, uint64_t *offset) { auto it = std::prev(llvm::upper_bound( map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { return value < subsecEntry.offset; })); *offset -= it->offset; return it->isec; } template <class Section> static bool validateRelocationInfo(InputFile *file, const Section &sec, relocation_info rel) { const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); bool valid = true; auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { valid = false; return (relocAttrs.name + " relocation " + diagnostic + " at offset " + std::to_string(rel.r_address) + " of " + sec.segname + "," + sec.sectname + " in " + toString(file)) .str(); }; if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) error(message("must be extern")); if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + "be PC-relative")); if (isThreadLocalVariables(sec.flags) && !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) error(message("not allowed in thread-local section, must be UNSIGNED")); if (rel.r_length < 2 || rel.r_length > 3 || !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; error(message("has width " + std::to_string(1 << rel.r_length) + " bytes, but must be " + widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + " bytes")); } return valid; } template <class Section> void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, const Section &sec, SubsectionMap &subsecMap) { auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); ArrayRef<relocation_info> relInfos( reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); for (size_t i = 0; i < relInfos.size(); i++) { // Paired relocations serve as Mach-O's method for attaching a // supplemental datum to a primary relocation record. ELF does not // need them because the *_RELOC_RELA records contain the extra // addend field, vs. *_RELOC_REL which omit the addend. // // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, // and the paired *_RELOC_UNSIGNED record holds the minuend. The // datum for each is a symbolic address. The result is the offset // between two addresses. // // The ARM64_RELOC_ADDEND record holds the addend, and the paired // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the // base symbolic address. // // Note: X86 does not use *_RELOC_ADDEND because it can embed an // addend into the instruction stream. On X86, a relocatable address // field always occupies an entire contiguous sequence of byte(s), // so there is no need to merge opcode bits with address // bits. Therefore, it's easy and convenient to store addends in the // instruction-stream bytes that would otherwise contain zeroes. By // contrast, RISC ISAs such as ARM64 mix opcode bits with with // address bits so that bitwise arithmetic is necessary to extract // and insert them. Storing addends in the instruction stream is // possible, but inconvenient and more costly at link time. int64_t pairedAddend = 0; relocation_info relInfo = relInfos[i]; if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); relInfo = relInfos[++i]; } assert(i < relInfos.size()); if (!validateRelocationInfo(this, sec, relInfo)) continue; if (relInfo.r_address & R_SCATTERED) fatal("TODO: Scattered relocations not supported"); bool isSubtrahend = target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); assert(!(embeddedAddend && pairedAddend)); int64_t totalAddend = pairedAddend + embeddedAddend; Reloc r; r.type = relInfo.r_type; r.pcrel = relInfo.r_pcrel; r.length = relInfo.r_length; r.offset = relInfo.r_address; if (relInfo.r_extern) { r.referent = symbols[relInfo.r_symbolnum]; r.addend = isSubtrahend ? 0 : totalAddend; } else { assert(!isSubtrahend); const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; uint64_t referentOffset; if (relInfo.r_pcrel) { // The implicit addend for pcrel section relocations is the pcrel offset // in terms of the addresses in the input file. Here we adjust it so // that it describes the offset from the start of the referent section. // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't // have pcrel section relocations. We may want to factor this out into // the arch-specific .cpp file. assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; } else { // The addend for a non-pcrel relocation is its absolute address. referentOffset = totalAddend - referentSec.addr; } SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); r.addend = referentOffset; } InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); subsec->relocs.push_back(r); if (isSubtrahend) { relocation_info minuendInfo = relInfos[++i]; // SUBTRACTOR relocations should always be followed by an UNSIGNED one // attached to the same address. assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && relInfo.r_address == minuendInfo.r_address); Reloc p; p.type = minuendInfo.r_type; if (minuendInfo.r_extern) { p.referent = symbols[minuendInfo.r_symbolnum]; p.addend = totalAddend; } else { uint64_t referentOffset = totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; SubsectionMap &referentSubsecMap = subsections[minuendInfo.r_symbolnum - 1]; p.referent = findContainingSubsection(referentSubsecMap, &referentOffset); p.addend = referentOffset; } subsec->relocs.push_back(p); } } } template <class NList> static macho::Symbol *createDefined(const NList &sym, StringRef name, InputSection *isec, uint64_t value, uint64_t size) { // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): // N_EXT: Global symbols. These go in the symbol table during the link, // and also in the export table of the output so that the dynamic // linker sees them. // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the // symbol table during the link so that duplicates are // either reported (for non-weak symbols) or merged // (for weak symbols), but they do not go in the export // table of the output. // N_PEXT: Does not occur in input files in practice, // a private extern must be external. // 0: Translation-unit scoped. These are not in the symbol table during // link, and not in the export table of the output either. bool isWeakDefCanBeHidden = (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); if (sym.n_type & (N_EXT | N_PEXT)) { assert((sym.n_type & N_EXT) && "invalid input"); bool isPrivateExtern = sym.n_type & N_PEXT; // lld's behavior for merging symbols is slightly different from ld64: // ld64 picks the winning symbol based on several criteria (see // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld // just merges metadata and keeps the contents of the first symbol // with that name (see SymbolTable::addDefined). For: // * inline function F in a TU built with -fvisibility-inlines-hidden // * and inline function F in another TU built without that flag // ld64 will pick the one from the file built without // -fvisibility-inlines-hidden. // lld will instead pick the one listed first on the link command line and // give it visibility as if the function was built without // -fvisibility-inlines-hidden. // If both functions have the same contents, this will have the same // behavior. If not, it won't, but the input had an ODR violation in // that case. // // Similarly, merging a symbol // that's isPrivateExtern and not isWeakDefCanBeHidden with one // that's not isPrivateExtern but isWeakDefCanBeHidden technically // should produce one // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters // with ld64's semantics, because it means the non-private-extern // definition will continue to take priority if more private extern // definitions are encountered. With lld's semantics there's no observable // difference between a symbol that's isWeakDefCanBeHidden or one that's // privateExtern -- neither makes it into the dynamic symbol table. So just // promote isWeakDefCanBeHidden to isPrivateExtern here. if (isWeakDefCanBeHidden) isPrivateExtern = true; return symtab->addDefined( name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); } assert(!isWeakDefCanBeHidden && "weak_def_can_be_hidden on already-hidden symbol?"); return make<Defined>( name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, /*isExternal=*/false, /*isPrivateExtern=*/false, sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); } // Absolute symbols are defined symbols that do not have an associated // InputSection. They cannot be weak. template <class NList> static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, StringRef name) { if (sym.n_type & (N_EXT | N_PEXT)) { assert((sym.n_type & N_EXT) && "invalid input"); return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); } return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, sym.n_desc & N_ARM_THUMB_DEF, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); } template <class NList> macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, StringRef name) { uint8_t type = sym.n_type & N_TYPE; switch (type) { case N_UNDF: return sym.n_value == 0 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) : symtab->addCommon(name, this, sym.n_value, 1 << GET_COMM_ALIGN(sym.n_desc), sym.n_type & N_PEXT); case N_ABS: return createAbsolute(sym, this, name); case N_PBUD: case N_INDR: error("TODO: support symbols of type " + std::to_string(type)); return nullptr; case N_SECT: llvm_unreachable( "N_SECT symbols should not be passed to parseNonSectionSymbol"); default: llvm_unreachable("invalid symbol type"); } } template <class LP> void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, ArrayRef<typename LP::nlist> nList, const char *strtab, bool subsectionsViaSymbols) { using NList = typename LP::nlist; // Groups indices of the symbols by the sections that contain them. std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); symbols.resize(nList.size()); for (uint32_t i = 0; i < nList.size(); ++i) { const NList &sym = nList[i]; StringRef name = strtab + sym.n_strx; if ((sym.n_type & N_TYPE) == N_SECT) { SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; // parseSections() may have chosen not to parse this section. if (subsecMap.empty()) continue; symbolsBySection[sym.n_sect - 1].push_back(i); } else { symbols[i] = parseNonSectionSymbol(sym, name); } } // Calculate symbol sizes and create subsections by splitting the sections // along symbol boundaries. for (size_t i = 0; i < subsections.size(); ++i) { SubsectionMap &subsecMap = subsections[i]; if (subsecMap.empty()) continue; std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { return nList[lhs].n_value < nList[rhs].n_value; }); uint64_t sectionAddr = sectionHeaders[i].addr; uint32_t sectionAlign = 1u << sectionHeaders[i].align; // We populate subsecMap by repeatedly splitting the last (highest address) // subsection. SubsectionEntry subsecEntry = subsecMap.back(); for (size_t j = 0; j < symbolIndices.size(); ++j) { uint32_t symIndex = symbolIndices[j]; const NList &sym = nList[symIndex]; StringRef name = strtab + sym.n_strx; InputSection *isec = subsecEntry.isec; uint64_t subsecAddr = sectionAddr + subsecEntry.offset; uint64_t symbolOffset = sym.n_value - subsecAddr; uint64_t symbolSize = j + 1 < symbolIndices.size() ? nList[symbolIndices[j + 1]].n_value - sym.n_value : isec->data.size() - symbolOffset; // There are 3 cases where we do not need to create a new subsection: // 1. If the input file does not use subsections-via-symbols. // 2. Multiple symbols at the same address only induce one subsection. // (The symbolOffset == 0 check covers both this case as well as // the first loop iteration.) // 3. Alternative entry points do not induce new subsections. if (!subsectionsViaSymbols || symbolOffset == 0 || sym.n_desc & N_ALT_ENTRY) { symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, symbolSize); continue; } auto *nextIsec = make<InputSection>(*isec); nextIsec->data = isec->data.slice(symbolOffset); nextIsec->numRefs = 0; nextIsec->wasCoalesced = false; isec->data = isec->data.slice(0, symbolOffset); // By construction, the symbol will be at offset zero in the new // subsection. symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); // TODO: ld64 appears to preserve the original alignment as well as each // subsection's offset from the last aligned address. We should consider // emulating that behavior. nextIsec->align = MinAlign(sectionAlign, sym.n_value); subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); subsecEntry = subsecMap.back(); } } } OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, StringRef sectName) : InputFile(OpaqueKind, mb) { InputSection *isec = make<InputSection>(); isec->file = this; isec->name = sectName.take_front(16); isec->segname = segName.take_front(16); const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); isec->data = {buf, mb.getBufferSize()}; isec->live = true; subsections.push_back({{0, isec}}); } ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) : InputFile(ObjKind, mb), modTime(modTime) { this->archiveName = std::string(archiveName); if (target->wordSize == 8) parse<LP64>(); else parse<ILP32>(); } template <class LP> void ObjFile::parse() { using Header = typename LP::mach_header; using SegmentCommand = typename LP::segment_command; using Section = typename LP::section; using NList = typename LP::nlist; auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); if (arch != config->arch()) { error(toString(this) + " has architecture " + getArchitectureName(arch) + " which is incompatible with target architecture " + getArchitectureName(config->arch())); return; } if (!checkCompatibility(this)) return; if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { auto *c = reinterpret_cast<const linker_option_command *>(cmd); StringRef data{reinterpret_cast<const char *>(c + 1), c->cmdsize - sizeof(linker_option_command)}; parseLCLinkerOption(this, c->count, data); } ArrayRef<Section> sectionHeaders; if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { auto *c = reinterpret_cast<const SegmentCommand *>(cmd); sectionHeaders = ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; parseSections(sectionHeaders); } // TODO: Error on missing LC_SYMTAB? if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { auto *c = reinterpret_cast<const symtab_command *>(cmd); ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); } // The relocations may refer to the symbols, so we parse them after we have // parsed all the symbols. for (size_t i = 0, n = subsections.size(); i < n; ++i) if (!subsections[i].empty()) parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); parseDebugInfo(); } void ObjFile::parseDebugInfo() { std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); if (!dObj) return; auto *ctx = make<DWARFContext>( std::move(dObj), "", [&](Error err) { warn(toString(this) + ": " + toString(std::move(err))); }, [&](Error warning) { warn(toString(this) + ": " + toString(std::move(warning))); }); // TODO: Since object files can contain a lot of DWARF info, we should verify // that we are parsing just the info we need const DWARFContext::compile_unit_range &units = ctx->compile_units(); // FIXME: There can be more than one compile unit per object file. See // PR48637. auto it = units.begin(); compileUnit = it->get(); } // The path can point to either a dylib or a .tbd file. static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { Optional<MemoryBufferRef> mbref = readFile(path); if (!mbref) { error("could not read dylib file at " + path); return nullptr; } return loadDylib(*mbref, umbrella); } // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with // the first document storing child pointers to the rest of them. When we are // processing a given TBD file, we store that top-level document in // currentTopLevelTapi. When processing re-exports, we search its children for // potentially matching documents in the same TBD file. Note that the children // themselves don't point to further documents, i.e. this is a two-level tree. // // Re-exports can either refer to on-disk files, or to documents within .tbd // files. static DylibFile *findDylib(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { if (path::is_absolute(path, path::Style::posix)) for (StringRef root : config->systemLibraryRoots) if (Optional<std::string> dylibPath = resolveDylibPath((root + path).str())) return loadDylib(*dylibPath, umbrella); // TODO: Handle -dylib_file SmallString<128> newPath; if (config->outputType == MH_EXECUTE && path.consume_front("@executable_path/")) { // ld64 allows overriding this with the undocumented flag -executable_path. // lld doesn't currently implement that flag. path::append(newPath, sys::path::parent_path(config->outputFile), path); path = newPath; } else if (path.consume_front("@loader_path/")) { path::append(newPath, sys::path::parent_path(umbrella->getName()), path); path = newPath; } else if (path.startswith("@rpath/")) { for (StringRef rpath : umbrella->rpaths) { newPath.clear(); if (rpath.consume_front("@loader_path/")) path::append(newPath, sys::path::parent_path(umbrella->getName())); path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) return loadDylib(*dylibPath, umbrella); } } if (currentTopLevelTapi) { for (InterfaceFile &child : make_pointee_range(currentTopLevelTapi->documents())) { assert(child.documents().empty()); if (path == child.getInstallName()) { auto file = make<DylibFile>(child, umbrella); file->parseReexports(child); return file; } } } if (Optional<std::string> dylibPath = resolveDylibPath(path)) return loadDylib(*dylibPath, umbrella); return nullptr; } // If a re-exported dylib is public (lives in /usr/lib or // /System/Library/Frameworks), then it is considered implicitly linked: we // should bind to its symbols directly instead of via the re-exporting umbrella // library. static bool isImplicitlyLinked(StringRef path) { if (!config->implicitDylibs) return false; if (path::parent_path(path) == "/usr/lib") return true; // Match /System/Library/Frameworks/$FOO.framework/**/$FOO if (path.consume_front("/System/Library/Frameworks/")) { StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); return path::filename(path) == frameworkName; } return false; } static void loadReexport(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); if (!reexport) error("unable to locate re-export with install name " + path); else if (isImplicitlyLinked(path)) inputFiles.insert(reexport); } DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, bool isBundleLoader) : InputFile(DylibKind, mb), refState(RefState::Unreferenced), isBundleLoader(isBundleLoader) { assert(!isBundleLoader || !umbrella); if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); // Initialize installName. if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { auto *c = reinterpret_cast<const dylib_command *>(cmd); currentVersion = read32le(&c->dylib.current_version); compatibilityVersion = read32le(&c->dylib.compatibility_version); installName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); } else if (!isBundleLoader) { // macho_executable and macho_bundle don't have LC_ID_DYLIB, // so it's OK. error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); return; } if (config->printEachFile) message(toString(this)); deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; if (!checkCompatibility(this)) return; for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; rpaths.push_back(rpath); } // Initialize symbols. exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { auto *c = reinterpret_cast<const dyld_info_command *>(cmd); parseTrie(buf + c->export_off, c->export_size, [&](const Twine &name, uint64_t flags) { StringRef savedName = saver.save(name); if (handleLDSymbol(savedName)) return; bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; symbols.push_back(symtab->addDylib(savedName, exportingFile, isWeakDef, isTlv)); }); } else { error("LC_DYLD_INFO_ONLY not found in " + toString(this)); return; } } void DylibFile::parseLoadCommands(MemoryBufferRef mb) { auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + target->headerSize; for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast<const load_command *>(p); p += cmd->cmdsize; if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && cmd->cmd == LC_REEXPORT_DYLIB) { const auto *c = reinterpret_cast<const dylib_command *>(cmd); StringRef reexportPath = reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); loadReexport(reexportPath, exportingFile, nullptr); } // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? if (config->namespaceKind == NamespaceKind::flat && cmd->cmd == LC_LOAD_DYLIB) { const auto *c = reinterpret_cast<const dylib_command *>(cmd); StringRef dylibPath = reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); if (!dylib) error(Twine("unable to locate library '") + dylibPath + "' loaded from '" + toString(this) + "' for -flat_namespace"); } } } // Some versions of XCode ship with .tbd files that don't have the right // platform settings. static constexpr std::array<StringRef, 3> skipPlatformChecks{ "/usr/lib/system/libsystem_kernel.dylib", "/usr/lib/system/libsystem_platform.dylib", "/usr/lib/system/libsystem_pthread.dylib"}; DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, bool isBundleLoader) : InputFile(DylibKind, interface), refState(RefState::Unreferenced), isBundleLoader(isBundleLoader) { // FIXME: Add test for the missing TBD code path. if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; installName = saver.save(interface.getInstallName()); compatibilityVersion = interface.getCompatibilityVersion().rawValue(); currentVersion = interface.getCurrentVersion().rawValue(); if (config->printEachFile) message(toString(this)); if (!is_contained(skipPlatformChecks, installName) && !is_contained(interface.targets(), config->platformInfo.target)) { error(toString(this) + " is incompatible with " + std::string(config->platformInfo.target)); return; } exportingFile = isImplicitlyLinked(installName) ? this : umbrella; auto addSymbol = [&](const Twine &name) -> void { symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, /*isWeakDef=*/false, /*isTlv=*/false)); }; // TODO(compnerd) filter out symbols based on the target platform // TODO: handle weak defs, thread locals for (const auto *symbol : interface.symbols()) { if (!symbol->getArchitectures().has(config->arch())) continue; if (handleLDSymbol(symbol->getName())) continue; switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: addSymbol(symbol->getName()); break; case SymbolKind::ObjectiveCClass: // XXX ld64 only creates these symbols when -ObjC is passed in. We may // want to emulate that. addSymbol(objc::klass + symbol->getName()); addSymbol(objc::metaclass + symbol->getName()); break; case SymbolKind::ObjectiveCClassEHType: addSymbol(objc::ehtype + symbol->getName()); break; case SymbolKind::ObjectiveCInstanceVariable: addSymbol(objc::ivar + symbol->getName()); break; } } } void DylibFile::parseReexports(const InterfaceFile &interface) { const InterfaceFile *topLevel = interface.getParent() == nullptr ? &interface : interface.getParent(); for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { InterfaceFile::const_target_range targets = intfRef.targets(); if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || is_contained(targets, config->platformInfo.target)) loadReexport(intfRef.getInstallName(), exportingFile, topLevel); } } // $ld$ symbols modify the properties/behavior of the library (e.g. its install // name, compatibility version or hide/add symbols) for specific target // versions. bool DylibFile::handleLDSymbol(StringRef originalName) { if (!originalName.startswith("$ld$")) return false; StringRef action; StringRef name; std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); if (action == "previous") handleLDPreviousSymbol(name, originalName); else if (action == "install_name") handleLDInstallNameSymbol(name, originalName); return true; } void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ previous $ <installname> $ <compatversion> $ // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ StringRef installName; StringRef compatVersion; StringRef platformStr; StringRef startVersion; StringRef endVersion; StringRef symbolName; StringRef rest; std::tie(installName, name) = name.split('$'); std::tie(compatVersion, name) = name.split('$'); std::tie(platformStr, name) = name.split('$'); std::tie(startVersion, name) = name.split('$'); std::tie(endVersion, name) = name.split('$'); std::tie(symbolName, rest) = name.split('$'); // TODO: ld64 contains some logic for non-empty symbolName as well. if (!symbolName.empty()) return; unsigned platform; if (platformStr.getAsInteger(10, platform) || platform != static_cast<unsigned>(config->platform())) return; VersionTuple start; if (start.tryParse(startVersion)) { warn("failed to parse start version, symbol '" + originalName + "' ignored"); return; } VersionTuple end; if (end.tryParse(endVersion)) { warn("failed to parse end version, symbol '" + originalName + "' ignored"); return; } if (config->platformInfo.minimum < start || config->platformInfo.minimum >= end) return; this->installName = saver.save(installName); if (!compatVersion.empty()) { VersionTuple cVersion; if (cVersion.tryParse(compatVersion)) { warn("failed to parse compatibility version, symbol '" + originalName + "' ignored"); return; } compatibilityVersion = encodeVersion(cVersion); } } void DylibFile::handleLDInstallNameSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ install_name $ os<version> $ install_name StringRef condition, installName; std::tie(condition, installName) = name.split('$'); VersionTuple version; if (!condition.consume_front("os") || version.tryParse(condition)) warn("failed to parse os version, symbol '" + originalName + "' ignored"); else if (version == config->platformInfo.minimum) this->installName = saver.save(installName); } ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { for (const object::Archive::Symbol &sym : file->symbols()) symtab->addLazy(sym.getName(), this, sym); } void ArchiveFile::fetch(const object::Archive::Symbol &sym) { object::Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member for symbol " + toMachOString(sym)); if (!seen.insert(c.getChildOffset()).second) return; MemoryBufferRef mb = CHECK(c.getMemoryBufferRef(), toString(this) + ": could not get the buffer for the member defining symbol " + toMachOString(sym)); if (tar && c.getParent()->isThin()) tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); uint32_t modTime = toTimeT( CHECK(c.getLastModified(), toString(this) + ": could not get the modification time " "for the member defining symbol " + toMachOString(sym))); // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> // and become invalid after that call. Copy it to the stack so we can refer // to it later. const object::Archive::Symbol symCopy = sym; if (Optional<InputFile *> file = loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { inputFiles.insert(*file); // ld64 doesn't demangle sym here even with -demangle. // Match that: intentionally don't call toMachOString(). printArchiveMemberLoad(symCopy.getName(), *file); } } static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, BitcodeFile &file) { StringRef name = saver.save(objSym.getName()); // TODO: support weak references if (objSym.isUndefined()) return symtab->addUndefined(name, &file, /*isWeakRef=*/false); assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); // TODO: Write a test demonstrating why computing isPrivateExtern before // LTO compilation is important. bool isPrivateExtern = false; switch (objSym.getVisibility()) { case GlobalValue::HiddenVisibility: isPrivateExtern = true; break; case GlobalValue::ProtectedVisibility: error(name + " has protected visibility, which is not supported by Mach-O"); break; case GlobalValue::DefaultVisibility: break; } return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, /*size=*/0, objSym.isWeak(), isPrivateExtern, /*isThumb=*/false, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); } BitcodeFile::BitcodeFile(MemoryBufferRef mbref) : InputFile(BitcodeKind, mbref) { obj = check(lto::InputFile::create(mbref)); // Convert LTO Symbols to LLD Symbols in order to perform resolution. The // "winning" symbol will then be marked as Prevailing at LTO compilation // time. for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(objSym, *this)); } template void ObjFile::parse<LP64>();