Mercurial > hg > CbC > CbC_llvm
view lld/MachO/InputFiles.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains functions to parse Mach-O object files. In this comment, // we describe the Mach-O file structure and how we parse it. // // Mach-O is not very different from ELF or COFF. The notion of symbols, // sections and relocations exists in Mach-O as it does in ELF and COFF. // // Perhaps the notion that is new to those who know ELF/COFF is "subsections". // In ELF/COFF, sections are an atomic unit of data copied from input files to // output files. When we merge or garbage-collect sections, we treat each // section as an atomic unit. In Mach-O, that's not the case. Sections can // consist of multiple subsections, and subsections are a unit of merging and // garbage-collecting. Therefore, Mach-O's subsections are more similar to // ELF/COFF's sections than Mach-O's sections are. // // A section can have multiple symbols. A symbol that does not have the // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by // definition, a symbol is always present at the beginning of each subsection. A // symbol with N_ALT_ENTRY attribute does not start a new subsection and can // point to a middle of a subsection. // // The notion of subsections also affects how relocations are represented in // Mach-O. All references within a section need to be explicitly represented as // relocations if they refer to different subsections, because we obviously need // to fix up addresses if subsections are laid out in an output file differently // than they were in object files. To represent that, Mach-O relocations can // refer to an unnamed location via its address. Scattered relocations (those // with the R_SCATTERED bit set) always refer to unnamed locations. // Non-scattered relocations refer to an unnamed location if r_extern is not set // and r_symbolnum is zero. // // Without the above differences, I think you can use your knowledge about ELF // and COFF for Mach-O. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "Driver.h" #include "Dwarf.h" #include "EhFrame.h" #include "ExportTrie.h" #include "InputSection.h" #include "MachOStructs.h" #include "ObjC.h" #include "OutputSection.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/DWARF.h" #include "lld/Common/Reproduce.h" #include "llvm/ADT/iterator.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/Endian.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/TextAPI/Architecture.h" #include "llvm/TextAPI/InterfaceFile.h" #include <optional> #include <type_traits> using namespace llvm; using namespace llvm::MachO; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::macho; // Returns "<internal>", "foo.a(bar.o)", or "baz.o". std::string lld::toString(const InputFile *f) { if (!f) return "<internal>"; // Multiple dylibs can be defined in one .tbd file. if (const auto *dylibFile = dyn_cast<DylibFile>(f)) if (f->getName().ends_with(".tbd")) return (f->getName() + "(" + dylibFile->installName + ")").str(); if (f->archiveName.empty()) return std::string(f->getName()); return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); } std::string lld::toString(const Section &sec) { return (toString(sec.file) + ":(" + sec.name + ")").str(); } SetVector<InputFile *> macho::inputFiles; std::unique_ptr<TarWriter> macho::tar; int InputFile::idCount = 0; static VersionTuple decodeVersion(uint32_t version) { unsigned major = version >> 16; unsigned minor = (version >> 8) & 0xffu; unsigned subMinor = version & 0xffu; return VersionTuple(major, minor, subMinor); } static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) return {}; const char *hdr = input->mb.getBufferStart(); // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. std::vector<PlatformInfo> platformInfos; for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { PlatformInfo info; info.target.Platform = static_cast<PlatformType>(cmd->platform); info.target.MinDeployment = decodeVersion(cmd->minos); platformInfos.emplace_back(std::move(info)); } for (auto *cmd : findCommands<version_min_command>( hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { PlatformInfo info; switch (cmd->cmd) { case LC_VERSION_MIN_MACOSX: info.target.Platform = PLATFORM_MACOS; break; case LC_VERSION_MIN_IPHONEOS: info.target.Platform = PLATFORM_IOS; break; case LC_VERSION_MIN_TVOS: info.target.Platform = PLATFORM_TVOS; break; case LC_VERSION_MIN_WATCHOS: info.target.Platform = PLATFORM_WATCHOS; break; } info.target.MinDeployment = decodeVersion(cmd->version); platformInfos.emplace_back(std::move(info)); } return platformInfos; } static bool checkCompatibility(const InputFile *input) { std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); if (platformInfos.empty()) return true; auto it = find_if(platformInfos, [&](const PlatformInfo &info) { return removeSimulator(info.target.Platform) == removeSimulator(config->platform()); }); if (it == platformInfos.end()) { std::string platformNames; raw_string_ostream os(platformNames); interleave( platformInfos, os, [&](const PlatformInfo &info) { os << getPlatformName(info.target.Platform); }, "/"); error(toString(input) + " has platform " + platformNames + Twine(", which is different from target platform ") + getPlatformName(config->platform())); return false; } if (it->target.MinDeployment > config->platformInfo.target.MinDeployment) warn(toString(input) + " has version " + it->target.MinDeployment.getAsString() + ", which is newer than target minimum of " + config->platformInfo.target.MinDeployment.getAsString()); return true; } template <class Header> static bool compatWithTargetArch(const InputFile *file, const Header *hdr) { uint32_t cpuType; std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch()); if (hdr->cputype != cpuType) { Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); auto msg = config->errorForArchMismatch ? static_cast<void (*)(const Twine &)>(error) : warn; msg(toString(file) + " has architecture " + getArchitectureName(arch) + " which is incompatible with target architecture " + getArchitectureName(config->arch())); return false; } return checkCompatibility(file); } // This cache mostly exists to store system libraries (and .tbds) as they're // loaded, rather than the input archives, which are already cached at a higher // level, and other files like the filelist that are only read once. // Theoretically this caching could be more efficient by hoisting it, but that // would require altering many callers to track the state. DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; // Open a given file path and return it as a memory-mapped file. std::optional<MemoryBufferRef> macho::readFile(StringRef path) { CachedHashStringRef key(path); auto entry = cachedReads.find(key); if (entry != cachedReads.end()) return entry->second; ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); if (std::error_code ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return std::nullopt; } std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership // If this is a regular non-fat file, return it. const char *buf = mbref.getBufferStart(); const auto *hdr = reinterpret_cast<const fat_header *>(buf); if (mbref.getBufferSize() < sizeof(uint32_t) || read32be(&hdr->magic) != FAT_MAGIC) { if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return cachedReads[key] = mbref; } llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); // Object files and archive files may be fat files, which contain multiple // real files for different CPU ISAs. Here, we search for a file that matches // with the current link target and returns it as a MemoryBufferRef. const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) { return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype)); }; std::vector<StringRef> archs; for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { if (reinterpret_cast<const char *>(arch + i + 1) > buf + mbref.getBufferSize()) { error(path + ": fat_arch struct extends beyond end of file"); return std::nullopt; } uint32_t cpuType = read32be(&arch[i].cputype); uint32_t cpuSubtype = read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK; // FIXME: LD64 has a more complex fallback logic here. // Consider implementing that as well? if (cpuType != static_cast<uint32_t>(target->cpuType) || cpuSubtype != target->cpuSubtype) { archs.emplace_back(getArchName(cpuType, cpuSubtype)); continue; } uint32_t offset = read32be(&arch[i].offset); uint32_t size = read32be(&arch[i].size); if (offset + size > mbref.getBufferSize()) error(path + ": slice extends beyond end of file"); if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); } auto targetArchName = getArchName(target->cpuType, target->cpuSubtype); warn(path + ": ignoring file because it is universal (" + join(archs, ",") + ") but does not contain the " + targetArchName + " architecture"); return std::nullopt; } InputFile::InputFile(Kind kind, const InterfaceFile &interface) : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} // Some sections comprise of fixed-size records, so instead of splitting them at // symbol boundaries, we split them based on size. Records are distinct from // literals in that they may contain references to other sections, instead of // being leaf nodes in the InputSection graph. // // Note that "record" is a term I came up with. In contrast, "literal" is a term // used by the Mach-O format. static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) { if (name == section_names::compactUnwind) { if (segname == segment_names::ld) return target->wordSize == 8 ? 32 : 20; } if (!config->dedupStrings) return {}; if (name == section_names::cfString && segname == segment_names::data) return target->wordSize == 8 ? 32 : 16; if (config->icfLevel == ICFLevel::none) return {}; if (name == section_names::objcClassRefs && segname == segment_names::data) return target->wordSize; if (name == section_names::objcSelrefs && segname == segment_names::data) return target->wordSize; return {}; } static Error parseCallGraph(ArrayRef<uint8_t> data, std::vector<CallGraphEntry> &callGraph) { TimeTraceScope timeScope("Parsing call graph section"); BinaryStreamReader reader(data, support::little); while (!reader.empty()) { uint32_t fromIndex, toIndex; uint64_t count; if (Error err = reader.readInteger(fromIndex)) return err; if (Error err = reader.readInteger(toIndex)) return err; if (Error err = reader.readInteger(count)) return err; callGraph.emplace_back(fromIndex, toIndex, count); } return Error::success(); } // Parse the sequence of sections within a single LC_SEGMENT(_64). // Split each section into subsections. template <class SectionHeader> void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { sections.reserve(sectionHeaders.size()); auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); for (const SectionHeader &sec : sectionHeaders) { StringRef name = StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); StringRef segname = StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); if (sec.align >= 32) { error("alignment " + std::to_string(sec.align) + " of section " + name + " is too large"); continue; } Section §ion = *sections.back(); uint32_t align = 1 << sec.align; ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, static_cast<size_t>(sec.size)}; auto splitRecords = [&](size_t recordSize) -> void { if (data.empty()) return; Subsections &subsections = section.subsections; subsections.reserve(data.size() / recordSize); for (uint64_t off = 0; off < data.size(); off += recordSize) { auto *isec = make<ConcatInputSection>( section, data.slice(off, std::min(data.size(), recordSize)), align); subsections.push_back({off, isec}); } section.doneSplitting = true; }; if (sectionType(sec.flags) == S_CSTRING_LITERALS) { if (sec.nreloc) fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + " contains relocations, which is unsupported"); bool dedupLiterals = name == section_names::objcMethname || config->dedupStrings; InputSection *isec = make<CStringInputSection>(section, data, align, dedupLiterals); // FIXME: parallelize this? cast<CStringInputSection>(isec)->splitIntoPieces(); section.subsections.push_back({0, isec}); } else if (isWordLiteralSection(sec.flags)) { if (sec.nreloc) fatal(toString(this) + ": " + sec.segname + "," + sec.sectname + " contains relocations, which is unsupported"); InputSection *isec = make<WordLiteralInputSection>(section, data, align); section.subsections.push_back({0, isec}); } else if (auto recordSize = getRecordSize(segname, name)) { splitRecords(*recordSize); } else if (name == section_names::ehFrame && segname == segment_names::text) { splitEhFrames(data, *sections.back()); } else if (segname == segment_names::llvm) { if (config->callGraphProfileSort && name == section_names::cgProfile) checkError(parseCallGraph(data, callGraph)); // ld64 does not appear to emit contents from sections within the __LLVM // segment. Symbols within those sections point to bitcode metadata // instead of actual symbols. Global symbols within those sections could // have the same name without causing duplicate symbol errors. To avoid // spurious duplicate symbol errors, we do not parse these sections. // TODO: Evaluate whether the bitcode metadata is needed. } else if (name == section_names::objCImageInfo && segname == segment_names::data) { objCImageInfo = data; } else { if (name == section_names::addrSig) addrSigSection = sections.back(); auto *isec = make<ConcatInputSection>(section, data, align); if (isDebugSection(isec->getFlags()) && isec->getSegName() == segment_names::dwarf) { // Instead of emitting DWARF sections, we emit STABS symbols to the // object files that contain them. We filter them out early to avoid // parsing their relocations unnecessarily. debugSections.push_back(isec); } else { section.subsections.push_back({0, isec}); } } } } void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { EhReader reader(this, data, /*dataOff=*/0); size_t off = 0; while (off < reader.size()) { uint64_t frameOff = off; uint64_t length = reader.readLength(&off); if (length == 0) break; uint64_t fullLength = length + (off - frameOff); off += length; // We hard-code an alignment of 1 here because we don't actually want our // EH frames to be aligned to the section alignment. EH frame decoders don't // expect this alignment. Moreover, each EH frame must start where the // previous one ends, and where it ends is indicated by the length field. // Unless we update the length field (troublesome), we should keep the // alignment to 1. // Note that we still want to preserve the alignment of the overall section, // just not of the individual EH frames. ehFrameSection.subsections.push_back( {frameOff, make<ConcatInputSection>(ehFrameSection, data.slice(frameOff, fullLength), /*align=*/1)}); } ehFrameSection.doneSplitting = true; } template <class T> static Section *findContainingSection(const std::vector<Section *> §ions, T *offset) { static_assert(std::is_same<uint64_t, T>::value || std::is_same<uint32_t, T>::value, "unexpected type for offset"); auto it = std::prev(llvm::upper_bound( sections, *offset, [](uint64_t value, const Section *sec) { return value < sec->addr; })); *offset -= (*it)->addr; return *it; } // Find the subsection corresponding to the greatest section offset that is <= // that of the given offset. // // offset: an offset relative to the start of the original InputSection (before // any subsection splitting has occurred). It will be updated to represent the // same location as an offset relative to the start of the containing // subsection. template <class T> static InputSection *findContainingSubsection(const Section §ion, T *offset) { static_assert(std::is_same<uint64_t, T>::value || std::is_same<uint32_t, T>::value, "unexpected type for offset"); auto it = std::prev(llvm::upper_bound( section.subsections, *offset, [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); *offset -= it->offset; return it->isec; } // Find a symbol at offset `off` within `isec`. static Defined *findSymbolAtOffset(const ConcatInputSection *isec, uint64_t off) { auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { return d->value < off; }); // The offset should point at the exact address of a symbol (with no addend.) if (it == isec->symbols.end() || (*it)->value != off) { assert(isec->wasCoalesced); return nullptr; } return *it; } template <class SectionHeader> static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, relocation_info rel) { const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); bool valid = true; auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { valid = false; return (relocAttrs.name + " relocation " + diagnostic + " at offset " + std::to_string(rel.r_address) + " of " + sec.segname + "," + sec.sectname + " in " + toString(file)) .str(); }; if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) error(message("must be extern")); if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + "be PC-relative")); if (isThreadLocalVariables(sec.flags) && !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) error(message("not allowed in thread-local section, must be UNSIGNED")); if (rel.r_length < 2 || rel.r_length > 3 || !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; error(message("has width " + std::to_string(1 << rel.r_length) + " bytes, but must be " + widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + " bytes")); } return valid; } template <class SectionHeader> void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, const SectionHeader &sec, Section §ion) { auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); ArrayRef<relocation_info> relInfos( reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); Subsections &subsections = section.subsections; auto subsecIt = subsections.rbegin(); for (size_t i = 0; i < relInfos.size(); i++) { // Paired relocations serve as Mach-O's method for attaching a // supplemental datum to a primary relocation record. ELF does not // need them because the *_RELOC_RELA records contain the extra // addend field, vs. *_RELOC_REL which omit the addend. // // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, // and the paired *_RELOC_UNSIGNED record holds the minuend. The // datum for each is a symbolic address. The result is the offset // between two addresses. // // The ARM64_RELOC_ADDEND record holds the addend, and the paired // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the // base symbolic address. // // Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into // the instruction stream. On X86, a relocatable address field always // occupies an entire contiguous sequence of byte(s), so there is no need to // merge opcode bits with address bits. Therefore, it's easy and convenient // to store addends in the instruction-stream bytes that would otherwise // contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with // address bits so that bitwise arithmetic is necessary to extract and // insert them. Storing addends in the instruction stream is possible, but // inconvenient and more costly at link time. relocation_info relInfo = relInfos[i]; bool isSubtrahend = target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); int64_t pairedAddend = 0; if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); relInfo = relInfos[++i]; } assert(i < relInfos.size()); if (!validateRelocationInfo(this, sec, relInfo)) continue; if (relInfo.r_address & R_SCATTERED) fatal("TODO: Scattered relocations not supported"); int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); assert(!(embeddedAddend && pairedAddend)); int64_t totalAddend = pairedAddend + embeddedAddend; Reloc r; r.type = relInfo.r_type; r.pcrel = relInfo.r_pcrel; r.length = relInfo.r_length; r.offset = relInfo.r_address; if (relInfo.r_extern) { r.referent = symbols[relInfo.r_symbolnum]; r.addend = isSubtrahend ? 0 : totalAddend; } else { assert(!isSubtrahend); const SectionHeader &referentSecHead = sectionHeaders[relInfo.r_symbolnum - 1]; uint64_t referentOffset; if (relInfo.r_pcrel) { // The implicit addend for pcrel section relocations is the pcrel offset // in terms of the addresses in the input file. Here we adjust it so // that it describes the offset from the start of the referent section. // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't // have pcrel section relocations. We may want to factor this out into // the arch-specific .cpp file. assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - referentSecHead.addr; } else { // The addend for a non-pcrel relocation is its absolute address. referentOffset = totalAddend - referentSecHead.addr; } r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], &referentOffset); r.addend = referentOffset; } // Find the subsection that this relocation belongs to. // Though not required by the Mach-O format, clang and gcc seem to emit // relocations in order, so let's take advantage of it. However, ld64 emits // unsorted relocations (in `-r` mode), so we have a fallback for that // uncommon case. InputSection *subsec; while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) ++subsecIt; if (subsecIt == subsections.rend() || subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { subsec = findContainingSubsection(section, &r.offset); // Now that we know the relocs are unsorted, avoid trying the 'fast path' // for the other relocations. subsecIt = subsections.rend(); } else { subsec = subsecIt->isec; r.offset -= subsecIt->offset; } subsec->relocs.push_back(r); if (isSubtrahend) { relocation_info minuendInfo = relInfos[++i]; // SUBTRACTOR relocations should always be followed by an UNSIGNED one // attached to the same address. assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && relInfo.r_address == minuendInfo.r_address); Reloc p; p.type = minuendInfo.r_type; if (minuendInfo.r_extern) { p.referent = symbols[minuendInfo.r_symbolnum]; p.addend = totalAddend; } else { uint64_t referentOffset = totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; p.referent = findContainingSubsection( *sections[minuendInfo.r_symbolnum - 1], &referentOffset); p.addend = referentOffset; } subsec->relocs.push_back(p); } } } template <class NList> static macho::Symbol *createDefined(const NList &sym, StringRef name, InputSection *isec, uint64_t value, uint64_t size, bool forceHidden) { // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): // N_EXT: Global symbols. These go in the symbol table during the link, // and also in the export table of the output so that the dynamic // linker sees them. // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the // symbol table during the link so that duplicates are // either reported (for non-weak symbols) or merged // (for weak symbols), but they do not go in the export // table of the output. // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits // object files) may produce them. LLD does not yet support -r. // These are translation-unit scoped, identical to the `0` case. // 0: Translation-unit scoped. These are not in the symbol table during // link, and not in the export table of the output either. bool isWeakDefCanBeHidden = (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); if (sym.n_type & N_EXT) { // -load_hidden makes us treat global symbols as linkage unit scoped. // Duplicates are reported but the symbol does not go in the export trie. bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; // lld's behavior for merging symbols is slightly different from ld64: // ld64 picks the winning symbol based on several criteria (see // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld // just merges metadata and keeps the contents of the first symbol // with that name (see SymbolTable::addDefined). For: // * inline function F in a TU built with -fvisibility-inlines-hidden // * and inline function F in another TU built without that flag // ld64 will pick the one from the file built without // -fvisibility-inlines-hidden. // lld will instead pick the one listed first on the link command line and // give it visibility as if the function was built without // -fvisibility-inlines-hidden. // If both functions have the same contents, this will have the same // behavior. If not, it won't, but the input had an ODR violation in // that case. // // Similarly, merging a symbol // that's isPrivateExtern and not isWeakDefCanBeHidden with one // that's not isPrivateExtern but isWeakDefCanBeHidden technically // should produce one // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters // with ld64's semantics, because it means the non-private-extern // definition will continue to take priority if more private extern // definitions are encountered. With lld's semantics there's no observable // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one // that's privateExtern -- neither makes it into the dynamic symbol table, // unless the autohide symbol is explicitly exported. // But if a symbol is both privateExtern and autohide then it can't // be exported. // So we nullify the autohide flag when privateExtern is present // and promote the symbol to privateExtern when it is not already. if (isWeakDefCanBeHidden && isPrivateExtern) isWeakDefCanBeHidden = false; else if (isWeakDefCanBeHidden) isPrivateExtern = true; return symtab->addDefined( name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden); } bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec); return make<Defined>( name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); } // Absolute symbols are defined symbols that do not have an associated // InputSection. They cannot be weak. template <class NList> static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, StringRef name, bool forceHidden) { assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported"); if (sym.n_type & N_EXT) { bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, isPrivateExtern, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, /*isWeakDefCanBeHidden=*/false); } return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); } template <class NList> macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, const char *strtab) { StringRef name = StringRef(strtab + sym.n_strx); uint8_t type = sym.n_type & N_TYPE; bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden; switch (type) { case N_UNDF: return sym.n_value == 0 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) : symtab->addCommon(name, this, sym.n_value, 1 << GET_COMM_ALIGN(sym.n_desc), isPrivateExtern); case N_ABS: return createAbsolute(sym, this, name, forceHidden); case N_INDR: { // Not much point in making local aliases -- relocs in the current file can // just refer to the actual symbol itself. ld64 ignores these symbols too. if (!(sym.n_type & N_EXT)) return nullptr; StringRef aliasedName = StringRef(strtab + sym.n_value); // isPrivateExtern is the only symbol flag that has an impact on the final // aliased symbol. auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern); aliases.push_back(alias); return alias; } case N_PBUD: error("TODO: support symbols of type N_PBUD"); return nullptr; case N_SECT: llvm_unreachable( "N_SECT symbols should not be passed to parseNonSectionSymbol"); default: llvm_unreachable("invalid symbol type"); } } template <class NList> static bool isUndef(const NList &sym) { return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; } template <class LP> void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, ArrayRef<typename LP::nlist> nList, const char *strtab, bool subsectionsViaSymbols) { using NList = typename LP::nlist; // Groups indices of the symbols by the sections that contain them. std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); symbols.resize(nList.size()); SmallVector<unsigned, 32> undefineds; for (uint32_t i = 0; i < nList.size(); ++i) { const NList &sym = nList[i]; // Ignore debug symbols for now. // FIXME: may need special handling. if (sym.n_type & N_STAB) continue; if ((sym.n_type & N_TYPE) == N_SECT) { Subsections &subsections = sections[sym.n_sect - 1]->subsections; // parseSections() may have chosen not to parse this section. if (subsections.empty()) continue; symbolsBySection[sym.n_sect - 1].push_back(i); } else if (isUndef(sym)) { undefineds.push_back(i); } else { symbols[i] = parseNonSectionSymbol(sym, strtab); } } for (size_t i = 0; i < sections.size(); ++i) { Subsections &subsections = sections[i]->subsections; if (subsections.empty()) continue; std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; uint64_t sectionAddr = sectionHeaders[i].addr; uint32_t sectionAlign = 1u << sectionHeaders[i].align; // Some sections have already been split into subsections during // parseSections(), so we simply need to match Symbols to the corresponding // subsection here. if (sections[i]->doneSplitting) { for (size_t j = 0; j < symbolIndices.size(); ++j) { const uint32_t symIndex = symbolIndices[j]; const NList &sym = nList[symIndex]; StringRef name = strtab + sym.n_strx; uint64_t symbolOffset = sym.n_value - sectionAddr; InputSection *isec = findContainingSubsection(*sections[i], &symbolOffset); if (symbolOffset != 0) { error(toString(*sections[i]) + ": symbol " + name + " at misaligned offset"); continue; } symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize(), forceHidden); } continue; } sections[i]->doneSplitting = true; auto getSymName = [strtab](const NList& sym) -> StringRef { return StringRef(strtab + sym.n_strx); }; // Calculate symbol sizes and create subsections by splitting the sections // along symbol boundaries. // We populate subsections by repeatedly splitting the last (highest // address) subsection. llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { // Put extern weak symbols after other symbols at the same address so // that weak symbol coalescing works correctly. See // SymbolTable::addDefined() for details. if (nList[lhs].n_value == nList[rhs].n_value && nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT) return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF); return nList[lhs].n_value < nList[rhs].n_value; }); for (size_t j = 0; j < symbolIndices.size(); ++j) { const uint32_t symIndex = symbolIndices[j]; const NList &sym = nList[symIndex]; StringRef name = getSymName(sym); Subsection &subsec = subsections.back(); InputSection *isec = subsec.isec; uint64_t subsecAddr = sectionAddr + subsec.offset; size_t symbolOffset = sym.n_value - subsecAddr; uint64_t symbolSize = j + 1 < symbolIndices.size() ? nList[symbolIndices[j + 1]].n_value - sym.n_value : isec->data.size() - symbolOffset; // There are 4 cases where we do not need to create a new subsection: // 1. If the input file does not use subsections-via-symbols. // 2. Multiple symbols at the same address only induce one subsection. // (The symbolOffset == 0 check covers both this case as well as // the first loop iteration.) // 3. Alternative entry points do not induce new subsections. // 4. If we have a literal section (e.g. __cstring and __literal4). if (!subsectionsViaSymbols || symbolOffset == 0 || sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { isec->hasAltEntry = symbolOffset != 0; symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, symbolSize, forceHidden); continue; } auto *concatIsec = cast<ConcatInputSection>(isec); auto *nextIsec = make<ConcatInputSection>(*concatIsec); nextIsec->wasCoalesced = false; if (isZeroFill(isec->getFlags())) { // Zero-fill sections have NULL data.data() non-zero data.size() nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; isec->data = {nullptr, symbolOffset}; } else { nextIsec->data = isec->data.slice(symbolOffset); isec->data = isec->data.slice(0, symbolOffset); } // By construction, the symbol will be at offset zero in the new // subsection. symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, symbolSize, forceHidden); // TODO: ld64 appears to preserve the original alignment as well as each // subsection's offset from the last aligned address. We should consider // emulating that behavior. nextIsec->align = MinAlign(sectionAlign, sym.n_value); subsections.push_back({sym.n_value - sectionAddr, nextIsec}); } } // Undefined symbols can trigger recursive fetch from Archives due to // LazySymbols. Process defined symbols first so that the relative order // between a defined symbol and an undefined symbol does not change the // symbol resolution behavior. In addition, a set of interconnected symbols // will all be resolved to the same file, instead of being resolved to // different files. for (unsigned i : undefineds) symbols[i] = parseNonSectionSymbol(nList[i], strtab); } OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, StringRef sectName) : InputFile(OpaqueKind, mb) { const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), sectName.take_front(16), /*flags=*/0, /*addr=*/0)); Section §ion = *sections.back(); ConcatInputSection *isec = make<ConcatInputSection>(section, data); isec->live = true; section.subsections.push_back({0, isec}); } ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, bool lazy, bool forceHidden, bool compatArch) : InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden) { this->archiveName = std::string(archiveName); this->compatArch = compatArch; if (lazy) { if (target->wordSize == 8) parseLazy<LP64>(); else parseLazy<ILP32>(); } else { if (target->wordSize == 8) parse<LP64>(); else parse<ILP32>(); } } template <class LP> void ObjFile::parse() { using Header = typename LP::mach_header; using SegmentCommand = typename LP::segment_command; using SectionHeader = typename LP::section; using NList = typename LP::nlist; auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); // If we've already checked the arch, then don't need to check again. if (!compatArch) return; if (!(compatArch = compatWithTargetArch(this, hdr))) return; for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { StringRef data{reinterpret_cast<const char *>(cmd + 1), cmd->cmdsize - sizeof(linker_option_command)}; parseLCLinkerOption(this, cmd->count, data); } ArrayRef<SectionHeader> sectionHeaders; if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { auto *c = reinterpret_cast<const SegmentCommand *>(cmd); sectionHeaders = ArrayRef<SectionHeader>{ reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; parseSections(sectionHeaders); } // TODO: Error on missing LC_SYMTAB? if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { auto *c = reinterpret_cast<const symtab_command *>(cmd); ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); } // The relocations may refer to the symbols, so we parse them after we have // parsed all the symbols. for (size_t i = 0, n = sections.size(); i < n; ++i) if (!sections[i]->subsections.empty()) parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); parseDebugInfo(); Section *ehFrameSection = nullptr; Section *compactUnwindSection = nullptr; for (Section *sec : sections) { Section **s = StringSwitch<Section **>(sec->name) .Case(section_names::compactUnwind, &compactUnwindSection) .Case(section_names::ehFrame, &ehFrameSection) .Default(nullptr); if (s) *s = sec; } if (compactUnwindSection) registerCompactUnwind(*compactUnwindSection); if (ehFrameSection) registerEhFrames(*ehFrameSection); } template <class LP> void ObjFile::parseLazy() { using Header = typename LP::mach_header; using NList = typename LP::nlist; auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); if (!compatArch) return; if (!(compatArch = compatWithTargetArch(this, hdr))) return; const load_command *cmd = findCommand(hdr, LC_SYMTAB); if (!cmd) return; auto *c = reinterpret_cast<const symtab_command *>(cmd); ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; symbols.resize(nList.size()); for (const auto &[i, sym] : llvm::enumerate(nList)) { if ((sym.n_type & N_EXT) && !isUndef(sym)) { // TODO: Bound checking StringRef name = strtab + sym.n_strx; symbols[i] = symtab->addLazyObject(name, *this); if (!lazy) break; } } } void ObjFile::parseDebugInfo() { std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); if (!dObj) return; // We do not re-use the context from getDwarf() here as that function // constructs an expensive DWARFCache object. auto *ctx = make<DWARFContext>( std::move(dObj), "", [&](Error err) { warn(toString(this) + ": " + toString(std::move(err))); }, [&](Error warning) { warn(toString(this) + ": " + toString(std::move(warning))); }); // TODO: Since object files can contain a lot of DWARF info, we should verify // that we are parsing just the info we need const DWARFContext::compile_unit_range &units = ctx->compile_units(); // FIXME: There can be more than one compile unit per object file. See // PR48637. auto it = units.begin(); compileUnit = it != units.end() ? it->get() : nullptr; } ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); if (!cmd) return {}; const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), c->datasize / sizeof(data_in_code_entry)}; } ArrayRef<uint8_t> ObjFile::getOptimizationHints() const { const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); if (auto *cmd = findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT)) return {buf + cmd->dataoff, cmd->datasize}; return {}; } // Create pointers from symbols to their associated compact unwind entries. void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { for (const Subsection &subsection : compactUnwindSection.subsections) { ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed // their addends in its data. Thus if ICF operated naively and compared the // entire contents of each CUE, entries with identical unwind info but e.g. // belonging to different functions would never be considered equivalent. To // work around this problem, we remove some parts of the data containing the // embedded addends. In particular, we remove the function address and LSDA // pointers. Since these locations are at the start and end of the entry, // we can do this using a simple, efficient slice rather than performing a // copy. We are not losing any information here because the embedded // addends have already been parsed in the corresponding Reloc structs. // // Removing these pointers would not be safe if they were pointers to // absolute symbols. In that case, there would be no corresponding // relocation. However, (AFAIK) MC cannot emit references to absolute // symbols for either the function address or the LSDA. However, it *can* do // so for the personality pointer, so we are not slicing that field away. // // Note that we do not adjust the offsets of the corresponding relocations; // instead, we rely on `relocateCompactUnwind()` to correctly handle these // truncated input sections. isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); // llvm-mc omits CU entries for functions that need DWARF encoding, but // `ld -r` doesn't. We can ignore them because we will re-synthesize these // CU entries from the DWARF info during the output phase. if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) == target->modeDwarfEncoding) continue; ConcatInputSection *referentIsec; for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { Reloc &r = *it; // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. if (r.offset != 0) { ++it; continue; } uint64_t add = r.addend; if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { // Check whether the symbol defined in this file is the prevailing one. // Skip if it is e.g. a weak def that didn't prevail. if (sym->getFile() != this) { ++it; continue; } add += sym->value; referentIsec = cast<ConcatInputSection>(sym->isec); } else { referentIsec = cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); } // Unwind info lives in __DATA, and finalization of __TEXT will occur // before finalization of __DATA. Moreover, the finalization of unwind // info depends on the exact addresses that it references. So it is safe // for compact unwind to reference addresses in __TEXT, but not addresses // in any other segment. if (referentIsec->getSegName() != segment_names::text) error(isec->getLocation(r.offset) + " references section " + referentIsec->getName() + " which is not in segment __TEXT"); // The functionAddress relocations are typically section relocations. // However, unwind info operates on a per-symbol basis, so we search for // the function symbol here. Defined *d = findSymbolAtOffset(referentIsec, add); if (!d) { ++it; continue; } d->unwindEntry = isec; // Now that the symbol points to the unwind entry, we can remove the reloc // that points from the unwind entry back to the symbol. // // First, the symbol keeps the unwind entry alive (and not vice versa), so // this keeps dead-stripping simple. // // Moreover, it reduces the work that ICF needs to do to figure out if // functions with unwind info are foldable. // // However, this does make it possible for ICF to fold CUEs that point to // distinct functions (if the CUEs are otherwise identical). // UnwindInfoSection takes care of this by re-duplicating the CUEs so that // each one can hold a distinct functionAddress value. // // Given that clang emits relocations in reverse order of address, this // relocation should be at the end of the vector for most of our input // object files, so this erase() is typically an O(1) operation. it = isec->relocs.erase(it); } } } struct CIE { macho::Symbol *personalitySymbol = nullptr; bool fdesHaveAug = false; uint8_t lsdaPtrSize = 0; // 0 => no LSDA uint8_t funcPtrSize = 0; }; static uint8_t pointerEncodingToSize(uint8_t enc) { switch (enc & 0xf) { case dwarf::DW_EH_PE_absptr: return target->wordSize; case dwarf::DW_EH_PE_sdata4: return 4; case dwarf::DW_EH_PE_sdata8: // ld64 doesn't actually support sdata8, but this seems simple enough... return 8; default: return 0; }; } static CIE parseCIE(const InputSection *isec, const EhReader &reader, size_t off) { // Handling the full generality of possible DWARF encodings would be a major // pain. We instead take advantage of our knowledge of how llvm-mc encodes // DWARF and handle just that. constexpr uint8_t expectedPersonalityEnc = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; CIE cie; uint8_t version = reader.readByte(&off); if (version != 1 && version != 3) fatal("Expected CIE version of 1 or 3, got " + Twine(version)); StringRef aug = reader.readString(&off); reader.skipLeb128(&off); // skip code alignment reader.skipLeb128(&off); // skip data alignment reader.skipLeb128(&off); // skip return address register reader.skipLeb128(&off); // skip aug data length uint64_t personalityAddrOff = 0; for (char c : aug) { switch (c) { case 'z': cie.fdesHaveAug = true; break; case 'P': { uint8_t personalityEnc = reader.readByte(&off); if (personalityEnc != expectedPersonalityEnc) reader.failOn(off, "unexpected personality encoding 0x" + Twine::utohexstr(personalityEnc)); personalityAddrOff = off; off += 4; break; } case 'L': { uint8_t lsdaEnc = reader.readByte(&off); cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc); if (cie.lsdaPtrSize == 0) reader.failOn(off, "unexpected LSDA encoding 0x" + Twine::utohexstr(lsdaEnc)); break; } case 'R': { uint8_t pointerEnc = reader.readByte(&off); cie.funcPtrSize = pointerEncodingToSize(pointerEnc); if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel)) reader.failOn(off, "unexpected pointer encoding 0x" + Twine::utohexstr(pointerEnc)); break; } default: break; } } if (personalityAddrOff != 0) { const auto *personalityReloc = isec->getRelocAt(personalityAddrOff); if (!personalityReloc) reader.failOn(off, "Failed to locate relocation for personality symbol"); cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>(); } return cie; } // EH frame target addresses may be encoded as pcrel offsets. However, instead // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. // This function recovers the target address from the subtractors, essentially // performing the inverse operation of EhRelocator. // // Concretely, we expect our relocations to write the value of `PC - // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that // points to a symbol plus an addend. // // It is important that the minuend relocation point to a symbol within the // same section as the fixup value, since sections may get moved around. // // For example, for arm64, llvm-mc emits relocations for the target function // address like so: // // ltmp: // <CIE start> // ... // <CIE end> // ... multiple FDEs ... // <FDE start> // <target function address - (ltmp + pcrel offset)> // ... // // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` // will move to an earlier address, and `ltmp + pcrel offset` will no longer // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. // // If `Invert` is set, then we instead expect `target_addr - PC` to be written // to `PC`. template <bool Invert = false> Defined * targetSymFromCanonicalSubtractor(const InputSection *isec, std::vector<macho::Reloc>::iterator relocIt) { macho::Reloc &subtrahend = *relocIt; macho::Reloc &minuend = *std::next(relocIt); assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero // addend. auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); Defined *target = cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); if (!pcSym) { auto *targetIsec = cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); target = findSymbolAtOffset(targetIsec, minuend.addend); } if (Invert) std::swap(pcSym, target); if (pcSym->isec == isec) { if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) fatal("invalid FDE relocation in __eh_frame"); } else { // Ensure the pcReloc points to a symbol within the current EH frame. // HACK: we should really verify that the original relocation's semantics // are preserved. In particular, we should have // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't // have an easy way to access the offsets from this point in the code; some // refactoring is needed for that. macho::Reloc &pcReloc = Invert ? minuend : subtrahend; pcReloc.referent = isec->symbols[0]; assert(isec->symbols[0]->value == 0); minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); } return target; } Defined *findSymbolAtAddress(const std::vector<Section *> §ions, uint64_t addr) { Section *sec = findContainingSection(sections, &addr); auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); return findSymbolAtOffset(isec, addr); } // For symbols that don't have compact unwind info, associate them with the more // general-purpose (and verbose) DWARF unwind info found in __eh_frame. // // This requires us to parse the contents of __eh_frame. See EhFrame.h for a // description of its format. // // While parsing, we also look for what MC calls "abs-ified" relocations -- they // are relocations which are implicitly encoded as offsets in the section data. // We convert them into explicit Reloc structs so that the EH frames can be // handled just like a regular ConcatInputSection later in our output phase. // // We also need to handle the case where our input object file has explicit // relocations. This is the case when e.g. it's the output of `ld -r`. We only // look for the "abs-ified" relocation if an explicit relocation is absent. void ObjFile::registerEhFrames(Section &ehFrameSection) { DenseMap<const InputSection *, CIE> cieMap; for (const Subsection &subsec : ehFrameSection.subsections) { auto *isec = cast<ConcatInputSection>(subsec.isec); uint64_t isecOff = subsec.offset; // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure // that all EH frames have an associated symbol so that we can generate // subtractor relocs that reference them. if (isec->symbols.size() == 0) make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0, isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, /*includeInSymtab=*/false, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); else if (isec->symbols[0]->value != 0) fatal("found symbol at unexpected offset in __eh_frame"); EhReader reader(this, isec->data, subsec.offset); size_t dataOff = 0; // Offset from the start of the EH frame. reader.skipValidLength(&dataOff); // readLength() already validated this. // cieOffOff is the offset from the start of the EH frame to the cieOff // value, which is itself an offset from the current PC to a CIE. const size_t cieOffOff = dataOff; EhRelocator ehRelocator(isec); auto cieOffRelocIt = llvm::find_if( isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); InputSection *cieIsec = nullptr; if (cieOffRelocIt != isec->relocs.end()) { // We already have an explicit relocation for the CIE offset. cieIsec = targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) ->isec; dataOff += sizeof(uint32_t); } else { // If we haven't found a relocation, then the CIE offset is most likely // embedded in the section data (AKA an "abs-ified" reloc.). Parse that // and generate a Reloc struct. uint32_t cieMinuend = reader.readU32(&dataOff); if (cieMinuend == 0) { cieIsec = isec; } else { uint32_t cieOff = isecOff + dataOff - cieMinuend; cieIsec = findContainingSubsection(ehFrameSection, &cieOff); if (cieIsec == nullptr) fatal("failed to find CIE"); } if (cieIsec != isec) ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], /*length=*/2); } if (cieIsec == isec) { cieMap[cieIsec] = parseCIE(isec, reader, dataOff); continue; } assert(cieMap.count(cieIsec)); const CIE &cie = cieMap[cieIsec]; // Offset of the function address within the EH frame. const size_t funcAddrOff = dataOff; uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) + ehFrameSection.addr + isecOff + funcAddrOff; uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize); size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. std::optional<uint64_t> lsdaAddrOpt; if (cie.fdesHaveAug) { reader.skipLeb128(&dataOff); lsdaAddrOff = dataOff; if (cie.lsdaPtrSize != 0) { uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize); if (lsdaOff != 0) // FIXME possible to test this? lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; } } auto funcAddrRelocIt = isec->relocs.end(); auto lsdaAddrRelocIt = isec->relocs.end(); for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { if (it->offset == funcAddrOff) funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc else if (lsdaAddrOpt && it->offset == lsdaAddrOff) lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc } Defined *funcSym; if (funcAddrRelocIt != isec->relocs.end()) { funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); // Canonicalize the symbol. If there are multiple symbols at the same // address, we want both `registerEhFrame` and `registerCompactUnwind` // to register the unwind entry under same symbol. // This is not particularly efficient, but we should run into this case // infrequently (only when handling the output of `ld -r`). if (funcSym->isec) funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), funcSym->value); } else { funcSym = findSymbolAtAddress(sections, funcAddr); ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); } // The symbol has been coalesced, or already has a compact unwind entry. if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { // We must prune unused FDEs for correctness, so we cannot rely on // -dead_strip being enabled. isec->live = false; continue; } InputSection *lsdaIsec = nullptr; if (lsdaAddrRelocIt != isec->relocs.end()) { lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; } else if (lsdaAddrOpt) { uint64_t lsdaAddr = *lsdaAddrOpt; Section *sec = findContainingSection(sections, &lsdaAddr); lsdaIsec = cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); } fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; funcSym->unwindEntry = isec; ehRelocator.commit(); } // __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs // are normally required to be kept alive if they reference a live symbol. // However, we've explicitly created a dependency from a symbol to its FDE, so // dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only // serve to incorrectly prevent us from dead-stripping duplicate FDEs for a // live symbol (e.g. if there were multiple weak copies). Remove this flag to // let dead-stripping proceed correctly. ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT; } std::string ObjFile::sourceFile() const { SmallString<261> dir(compileUnit->getCompilationDir()); StringRef sep = sys::path::get_separator(); // We don't use `path::append` here because we want an empty `dir` to result // in an absolute path. `append` would give us a relative path for that case. if (!dir.endswith(sep)) dir += sep; return (dir + compileUnit->getUnitDIE().getShortName()).str(); } lld::DWARFCache *ObjFile::getDwarf() { llvm::call_once(initDwarf, [this]() { auto dwObj = DwarfObject::create(this); if (!dwObj) return; dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( std::move(dwObj), "", [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, [&](Error warning) { warn(getName() + ": " + toString(std::move(warning))); })); }); return dwarfCache.get(); } // The path can point to either a dylib or a .tbd file. static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { std::optional<MemoryBufferRef> mbref = readFile(path); if (!mbref) { error("could not read dylib file at " + path); return nullptr; } return loadDylib(*mbref, umbrella); } // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with // the first document storing child pointers to the rest of them. When we are // processing a given TBD file, we store that top-level document in // currentTopLevelTapi. When processing re-exports, we search its children for // potentially matching documents in the same TBD file. Note that the children // themselves don't point to further documents, i.e. this is a two-level tree. // // Re-exports can either refer to on-disk files, or to documents within .tbd // files. static DylibFile *findDylib(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { // Search order: // 1. Install name basename in -F / -L directories. { StringRef stem = path::stem(path); SmallString<128> frameworkName; path::append(frameworkName, path::Style::posix, stem + ".framework", stem); bool isFramework = path.ends_with(frameworkName); if (isFramework) { for (StringRef dir : config->frameworkSearchPaths) { SmallString<128> candidate = dir; path::append(candidate, frameworkName); if (std::optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) return loadDylib(*dylibPath, umbrella); } } else if (std::optional<StringRef> dylibPath = findPathCombination( stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"})) return loadDylib(*dylibPath, umbrella); } // 2. As absolute path. if (path::is_absolute(path, path::Style::posix)) for (StringRef root : config->systemLibraryRoots) if (std::optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) return loadDylib(*dylibPath, umbrella); // 3. As relative path. // TODO: Handle -dylib_file // Replace @executable_path, @loader_path, @rpath prefixes in install name. SmallString<128> newPath; if (config->outputType == MH_EXECUTE && path.consume_front("@executable_path/")) { // ld64 allows overriding this with the undocumented flag -executable_path. // lld doesn't currently implement that flag. // FIXME: Consider using finalOutput instead of outputFile. path::append(newPath, path::parent_path(config->outputFile), path); path = newPath; } else if (path.consume_front("@loader_path/")) { fs::real_path(umbrella->getName(), newPath); path::remove_filename(newPath); path::append(newPath, path); path = newPath; } else if (path.starts_with("@rpath/")) { for (StringRef rpath : umbrella->rpaths) { newPath.clear(); if (rpath.consume_front("@loader_path/")) { fs::real_path(umbrella->getName(), newPath); path::remove_filename(newPath); } path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) return loadDylib(*dylibPath, umbrella); } } // FIXME: Should this be further up? if (currentTopLevelTapi) { for (InterfaceFile &child : make_pointee_range(currentTopLevelTapi->documents())) { assert(child.documents().empty()); if (path == child.getInstallName()) { auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, /*explicitlyLinked=*/false); file->parseReexports(child); return file; } } } if (std::optional<StringRef> dylibPath = resolveDylibPath(path)) return loadDylib(*dylibPath, umbrella); return nullptr; } // If a re-exported dylib is public (lives in /usr/lib or // /System/Library/Frameworks), then it is considered implicitly linked: we // should bind to its symbols directly instead of via the re-exporting umbrella // library. static bool isImplicitlyLinked(StringRef path) { if (!config->implicitDylibs) return false; if (path::parent_path(path) == "/usr/lib") return true; // Match /System/Library/Frameworks/$FOO.framework/**/$FOO if (path.consume_front("/System/Library/Frameworks/")) { StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); return path::filename(path) == frameworkName; } return false; } void DylibFile::loadReexport(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); if (!reexport) error(toString(this) + ": unable to locate re-export with install name " + path); } DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, bool isBundleLoader, bool explicitlyLinked) : InputFile(DylibKind, mb), refState(RefState::Unreferenced), explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { assert(!isBundleLoader || !umbrella); if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); // Initialize installName. if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { auto *c = reinterpret_cast<const dylib_command *>(cmd); currentVersion = read32le(&c->dylib.current_version); compatibilityVersion = read32le(&c->dylib.compatibility_version); installName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); } else if (!isBundleLoader) { // macho_executable and macho_bundle don't have LC_ID_DYLIB, // so it's OK. error(toString(this) + ": dylib missing LC_ID_DYLIB load command"); return; } if (config->printEachFile) message(toString(this)); inputFiles.insert(this); deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; if (!checkCompatibility(this)) return; checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; rpaths.push_back(rpath); } // Initialize symbols. exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); const auto *exportsTrie = findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); if (dyldInfo && exportsTrie) { // It's unclear what should happen in this case. Maybe we should only error // out if the two load commands refer to different data? error(toString(this) + ": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); return; } if (dyldInfo) { parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); } else if (exportsTrie) { parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); } else { error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + toString(this)); } } void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { struct TrieEntry { StringRef name; uint64_t flags; }; auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); std::vector<TrieEntry> entries; // Find all the $ld$* symbols to process first. parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { StringRef savedName = saver().save(name); if (handleLDSymbol(savedName)) return; entries.push_back({savedName, flags}); }); // Process the "normal" symbols. for (TrieEntry &entry : entries) { if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) continue; bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; symbols.push_back( symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); } } void DylibFile::parseLoadCommands(MemoryBufferRef mb) { auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + target->headerSize; for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast<const load_command *>(p); p += cmd->cmdsize; if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && cmd->cmd == LC_REEXPORT_DYLIB) { const auto *c = reinterpret_cast<const dylib_command *>(cmd); StringRef reexportPath = reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); loadReexport(reexportPath, exportingFile, nullptr); } // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? if (config->namespaceKind == NamespaceKind::flat && cmd->cmd == LC_LOAD_DYLIB) { const auto *c = reinterpret_cast<const dylib_command *>(cmd); StringRef dylibPath = reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); if (!dylib) error(Twine("unable to locate library '") + dylibPath + "' loaded from '" + toString(this) + "' for -flat_namespace"); } } } // Some versions of Xcode ship with .tbd files that don't have the right // platform settings. constexpr std::array<StringRef, 3> skipPlatformChecks{ "/usr/lib/system/libsystem_kernel.dylib", "/usr/lib/system/libsystem_platform.dylib", "/usr/lib/system/libsystem_pthread.dylib"}; static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, bool explicitlyLinked) { // Catalyst outputs can link against implicitly linked macOS-only libraries. if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) return false; return is_contained(interface.targets(), MachO::Target(config->arch(), PLATFORM_MACOS)); } static bool isArchABICompatible(ArchitectureSet archSet, Architecture targetArch) { uint32_t cpuType; uint32_t targetCpuType; std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch); return llvm::any_of(archSet, [&](const auto &p) { std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p); return cpuType == targetCpuType; }); } static bool isTargetPlatformArchCompatible( InterfaceFile::const_target_range interfaceTargets, Target target) { if (is_contained(interfaceTargets, target)) return true; if (config->forceExactCpuSubtypeMatch) return false; ArchitectureSet archSet; for (const auto &p : interfaceTargets) if (p.Platform == target.Platform) archSet.set(p.Arch); if (archSet.empty()) return false; return isArchABICompatible(archSet, target.Arch); } DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, bool isBundleLoader, bool explicitlyLinked) : InputFile(DylibKind, interface), refState(RefState::Unreferenced), explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { // FIXME: Add test for the missing TBD code path. if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; installName = saver().save(interface.getInstallName()); compatibilityVersion = interface.getCompatibilityVersion().rawValue(); currentVersion = interface.getCurrentVersion().rawValue(); if (config->printEachFile) message(toString(this)); inputFiles.insert(this); if (!is_contained(skipPlatformChecks, installName) && !isTargetPlatformArchCompatible(interface.targets(), config->platformInfo.target) && !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { error(toString(this) + " is incompatible with " + std::string(config->platformInfo.target)); return; } checkAppExtensionSafety(interface.isApplicationExtensionSafe()); exportingFile = isImplicitlyLinked(installName) ? this : umbrella; auto addSymbol = [&](const llvm::MachO::Symbol &symbol, const Twine &name) -> void { StringRef savedName = saver().save(name); if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) return; symbols.push_back(symtab->addDylib(savedName, exportingFile, symbol.isWeakDefined(), symbol.isThreadLocalValue())); }; std::vector<const llvm::MachO::Symbol *> normalSymbols; normalSymbols.reserve(interface.symbolsCount()); for (const auto *symbol : interface.symbols()) { if (!isArchABICompatible(symbol->getArchitectures(), config->arch())) continue; if (handleLDSymbol(symbol->getName())) continue; switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: case SymbolKind::ObjectiveCClass: case SymbolKind::ObjectiveCClassEHType: case SymbolKind::ObjectiveCInstanceVariable: normalSymbols.push_back(symbol); } } // TODO(compnerd) filter out symbols based on the target platform for (const auto *symbol : normalSymbols) { switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: addSymbol(*symbol, symbol->getName()); break; case SymbolKind::ObjectiveCClass: // XXX ld64 only creates these symbols when -ObjC is passed in. We may // want to emulate that. addSymbol(*symbol, objc::klass + symbol->getName()); addSymbol(*symbol, objc::metaclass + symbol->getName()); break; case SymbolKind::ObjectiveCClassEHType: addSymbol(*symbol, objc::ehtype + symbol->getName()); break; case SymbolKind::ObjectiveCInstanceVariable: addSymbol(*symbol, objc::ivar + symbol->getName()); break; } } } DylibFile::DylibFile(DylibFile *umbrella) : InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced), explicitlyLinked(false), isBundleLoader(false) { if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; } void DylibFile::parseReexports(const InterfaceFile &interface) { const InterfaceFile *topLevel = interface.getParent() == nullptr ? &interface : interface.getParent(); for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { InterfaceFile::const_target_range targets = intfRef.targets(); if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || isTargetPlatformArchCompatible(targets, config->platformInfo.target)) loadReexport(intfRef.getInstallName(), exportingFile, topLevel); } } bool DylibFile::isExplicitlyLinked() const { if (!explicitlyLinked) return false; // If this dylib was explicitly linked, but at least one of the symbols // of the synthetic dylibs it created via $ld$previous symbols is // referenced, then that synthetic dylib fulfils the explicit linkedness // and we can deadstrip this dylib if it's unreferenced. for (const auto *dylib : extraDylibs) if (dylib->isReferenced()) return false; return true; } DylibFile *DylibFile::getSyntheticDylib(StringRef installName, uint32_t currentVersion, uint32_t compatVersion) { for (DylibFile *dylib : extraDylibs) if (dylib->installName == installName) { // FIXME: Check what to do if different $ld$previous symbols // request the same dylib, but with different versions. return dylib; } auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella); dylib->installName = saver().save(installName); dylib->currentVersion = currentVersion; dylib->compatibilityVersion = compatVersion; extraDylibs.push_back(dylib); return dylib; } // $ld$ symbols modify the properties/behavior of the library (e.g. its install // name, compatibility version or hide/add symbols) for specific target // versions. bool DylibFile::handleLDSymbol(StringRef originalName) { if (!originalName.starts_with("$ld$")) return false; StringRef action; StringRef name; std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); if (action == "previous") handleLDPreviousSymbol(name, originalName); else if (action == "install_name") handleLDInstallNameSymbol(name, originalName); else if (action == "hide") handleLDHideSymbol(name, originalName); return true; } void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ previous $ <installname> $ <compatversion> $ // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ StringRef installName; StringRef compatVersion; StringRef platformStr; StringRef startVersion; StringRef endVersion; StringRef symbolName; StringRef rest; std::tie(installName, name) = name.split('$'); std::tie(compatVersion, name) = name.split('$'); std::tie(platformStr, name) = name.split('$'); std::tie(startVersion, name) = name.split('$'); std::tie(endVersion, name) = name.split('$'); std::tie(symbolName, rest) = name.rsplit('$'); // FIXME: Does this do the right thing for zippered files? unsigned platform; if (platformStr.getAsInteger(10, platform) || platform != static_cast<unsigned>(config->platform())) return; VersionTuple start; if (start.tryParse(startVersion)) { warn(toString(this) + ": failed to parse start version, symbol '" + originalName + "' ignored"); return; } VersionTuple end; if (end.tryParse(endVersion)) { warn(toString(this) + ": failed to parse end version, symbol '" + originalName + "' ignored"); return; } if (config->platformInfo.target.MinDeployment < start || config->platformInfo.target.MinDeployment >= end) return; // Initialized to compatibilityVersion for the symbolName branch below. uint32_t newCompatibilityVersion = compatibilityVersion; uint32_t newCurrentVersionForSymbol = currentVersion; if (!compatVersion.empty()) { VersionTuple cVersion; if (cVersion.tryParse(compatVersion)) { warn(toString(this) + ": failed to parse compatibility version, symbol '" + originalName + "' ignored"); return; } newCompatibilityVersion = encodeVersion(cVersion); newCurrentVersionForSymbol = newCompatibilityVersion; } if (!symbolName.empty()) { // A $ld$previous$ symbol with symbol name adds a symbol with that name to // a dylib with given name and version. auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol, newCompatibilityVersion); // The tbd file usually contains the $ld$previous symbol for an old version, // and then the symbol itself later, for newer deployment targets, like so: // symbols: [ // '$ld$previous$/Another$$1$3.0$14.0$_zzz$', // _zzz, // ] // Since the symbols are sorted, adding them to the symtab in the given // order means the $ld$previous version of _zzz will prevail, as desired. dylib->symbols.push_back(symtab->addDylib( saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false)); return; } // A $ld$previous$ symbol without symbol name modifies the dylib it's in. this->installName = saver().save(installName); this->compatibilityVersion = newCompatibilityVersion; } void DylibFile::handleLDInstallNameSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ install_name $ os<version> $ install_name StringRef condition, installName; std::tie(condition, installName) = name.split('$'); VersionTuple version; if (!condition.consume_front("os") || version.tryParse(condition)) warn(toString(this) + ": failed to parse os version, symbol '" + originalName + "' ignored"); else if (version == config->platformInfo.target.MinDeployment) this->installName = saver().save(installName); } void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { StringRef symbolName; bool shouldHide = true; if (name.starts_with("os")) { // If it's hidden based on versions. name = name.drop_front(2); StringRef minVersion; std::tie(minVersion, symbolName) = name.split('$'); VersionTuple versionTup; if (versionTup.tryParse(minVersion)) { warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName + "` ignored."); return; } shouldHide = versionTup == config->platformInfo.target.MinDeployment; } else { symbolName = name; } if (shouldHide) exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); } void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { if (config->applicationExtension && !dylibIsAppExtensionSafe) warn("using '-application_extension' with unsafe dylib: " + toString(this)); } ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden) : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)), forceHidden(forceHidden) {} void ArchiveFile::addLazySymbols() { // Avoid calling getMemoryBufferRef() on zero-symbol archive // since that crashes. if (file->isEmpty() || file->getNumberOfSymbols() == 0) return; Error err = Error::success(); auto child = file->child_begin(err); // Ignore the I/O error here - will be reported later. if (!err) { Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef(); if (!mbOrErr) { llvm::consumeError(mbOrErr.takeError()); } else { if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) { if (target->wordSize == 8) compatArch = compatWithTargetArch( this, reinterpret_cast<const LP64::mach_header *>( mbOrErr->getBufferStart())); else compatArch = compatWithTargetArch( this, reinterpret_cast<const ILP32::mach_header *>( mbOrErr->getBufferStart())); if (!compatArch) return; } } } for (const object::Archive::Symbol &sym : file->symbols()) symtab->addLazyArchive(sym.getName(), this, sym); } static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, uint64_t offsetInArchive, bool forceHidden, bool compatArch) { if (config->zeroModTime) modTime = 0; switch (identify_magic(mb.getBuffer())) { case file_magic::macho_object: return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden, compatArch); case file_magic::bitcode: return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false, forceHidden, compatArch); default: return createStringError(inconvertibleErrorCode(), mb.getBufferIdentifier() + " has unhandled file type"); } } Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { if (!seen.insert(c.getChildOffset()).second) return Error::success(); Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); if (!mb) return mb.takeError(); // Thin archives refer to .o files, so --reproduce needs the .o files too. if (tar && c.getParent()->isThin()) tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); if (!modTime) return modTime.takeError(); Expected<InputFile *> file = loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(), forceHidden, compatArch); if (!file) return file.takeError(); inputFiles.insert(*file); printArchiveMemberLoad(reason, *file); return Error::success(); } void ArchiveFile::fetch(const object::Archive::Symbol &sym) { object::Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member defining symbol " + toMachOString(sym)); // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> // and become invalid after that call. Copy it to the stack so we can refer // to it later. const object::Archive::Symbol symCopy = sym; // ld64 doesn't demangle sym here even with -demangle. // Match that: intentionally don't call toMachOString(). if (Error e = fetch(c, symCopy.getName())) error(toString(this) + ": could not get the member defining symbol " + toMachOString(symCopy) + ": " + toString(std::move(e))); } static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, BitcodeFile &file) { StringRef name = saver().save(objSym.getName()); if (objSym.isUndefined()) return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); // TODO: Write a test demonstrating why computing isPrivateExtern before // LTO compilation is important. bool isPrivateExtern = false; switch (objSym.getVisibility()) { case GlobalValue::HiddenVisibility: isPrivateExtern = true; break; case GlobalValue::ProtectedVisibility: error(name + " has protected visibility, which is not supported by Mach-O"); break; case GlobalValue::DefaultVisibility: break; } isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() || file.forceHidden; if (objSym.isCommon()) return symtab->addCommon(name, &file, objSym.getCommonSize(), objSym.getCommonAlignment(), isPrivateExtern); return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, /*size=*/0, objSym.isWeak(), isPrivateExtern, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); } BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive, bool lazy, bool forceHidden, bool compatArch) : InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) { this->archiveName = std::string(archiveName); this->compatArch = compatArch; std::string path = mb.getBufferIdentifier().str(); if (config->thinLTOIndexOnly) path = replaceThinLTOSuffix(mb.getBufferIdentifier()); // If the parent archive already determines that the arch is not compat with // target, then just return. if (!compatArch) return; // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two members with the same name are provided, this causes a // collision and ThinLTO can't proceed. // So, we append the archive name to disambiguate two members with the same // name from multiple different archives, and offset within the archive to // disambiguate two members of the same name from a single archive. MemoryBufferRef mbref(mb.getBuffer(), saver().save(archiveName.empty() ? path : archiveName + "(" + sys::path::filename(path) + ")" + utostr(offsetInArchive))); obj = check(lto::InputFile::create(mbref)); if (lazy) parseLazy(); else parse(); } void BitcodeFile::parse() { // Convert LTO Symbols to LLD Symbols in order to perform resolution. The // "winning" symbol will then be marked as Prevailing at LTO compilation // time. symbols.clear(); for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(objSym, *this)); } void BitcodeFile::parseLazy() { symbols.resize(obj->symbols().size()); for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) { if (!objSym.isUndefined()) { symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this); if (!lazy) break; } } } std::string macho::replaceThinLTOSuffix(StringRef path) { auto [suffix, repl] = config->thinLTOObjectSuffixReplace; if (path.consume_back(suffix)) return (path + repl).str(); return std::string(path); } void macho::extract(InputFile &file, StringRef reason) { if (!file.lazy) return; file.lazy = false; printArchiveMemberLoad(reason, &file); if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { bitcode->parse(); } else { auto &f = cast<ObjFile>(file); if (target->wordSize == 8) f.parse<LP64>(); else f.parse<ILP32>(); } } template void ObjFile::parse<LP64>();