Mercurial > hg > CbC > CbC_llvm
view tools/llvm-objcopy/Object.cpp @ 122:36195a0db682
merging ( incomplete )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Nov 2017 20:32:31 +0900 |
parents | 803732b1fca8 |
children | 3a76565eade5 |
line wrap: on
line source
//===- Object.cpp -----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Object.h" #include "llvm-objcopy.h" using namespace llvm; using namespace object; using namespace ELF; template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const { typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; uint8_t *Buf = Out.getBufferStart(); Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr); Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf); Phdr.p_type = Type; Phdr.p_flags = Flags; Phdr.p_offset = Offset; Phdr.p_vaddr = VAddr; Phdr.p_paddr = PAddr; Phdr.p_filesz = FileSize; Phdr.p_memsz = MemSize; Phdr.p_align = Align; } void Segment::writeSegment(FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart() + Offset; // We want to maintain segments' interstitial data and contents exactly. // This lets us just copy segments directly. std::copy(std::begin(Contents), std::end(Contents), Buf); } void SectionBase::removeSectionReferences(const SectionBase *Sec) {} void SectionBase::initialize(SectionTableRef SecTable) {} void SectionBase::finalize() {} template <class ELFT> void SectionBase::writeHeader(FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart(); Buf += HeaderOffset; typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf); Shdr.sh_name = NameIndex; Shdr.sh_type = Type; Shdr.sh_flags = Flags; Shdr.sh_addr = Addr; Shdr.sh_offset = Offset; Shdr.sh_size = Size; Shdr.sh_link = Link; Shdr.sh_info = Info; Shdr.sh_addralign = Align; Shdr.sh_entsize = EntrySize; } void Section::writeSection(FileOutputBuffer &Out) const { if (Type == SHT_NOBITS) return; uint8_t *Buf = Out.getBufferStart() + Offset; std::copy(std::begin(Contents), std::end(Contents), Buf); } void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); Size = StrTabBuilder.getSize(); } uint32_t StringTableSection::findIndex(StringRef Name) const { return StrTabBuilder.getOffset(Name); } void StringTableSection::finalize() { StrTabBuilder.finalize(); } void StringTableSection::writeSection(FileOutputBuffer &Out) const { StrTabBuilder.write(Out.getBufferStart() + Offset); } static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { switch (Index) { case SHN_ABS: case SHN_COMMON: return true; } if (Machine == EM_HEXAGON) { switch (Index) { case SHN_HEXAGON_SCOMMON: case SHN_HEXAGON_SCOMMON_2: case SHN_HEXAGON_SCOMMON_4: case SHN_HEXAGON_SCOMMON_8: return true; } } return false; } uint16_t Symbol::getShndx() const { if (DefinedIn != nullptr) { return DefinedIn->Index; } switch (ShndxType) { // This means that we don't have a defined section but we do need to // output a legitimate section index. case SYMBOL_SIMPLE_INDEX: return SHN_UNDEF; case SYMBOL_ABS: case SYMBOL_COMMON: case SYMBOL_HEXAGON_SCOMMON: case SYMBOL_HEXAGON_SCOMMON_2: case SYMBOL_HEXAGON_SCOMMON_4: case SYMBOL_HEXAGON_SCOMMON_8: return static_cast<uint16_t>(ShndxType); } llvm_unreachable("Symbol with invalid ShndxType encountered"); } void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn, uint64_t Value, uint16_t Shndx, uint64_t Sz) { Symbol Sym; Sym.Name = Name; Sym.Binding = Bind; Sym.Type = Type; Sym.DefinedIn = DefinedIn; if (DefinedIn == nullptr) { if (Shndx >= SHN_LORESERVE) Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); else Sym.ShndxType = SYMBOL_SIMPLE_INDEX; } Sym.Value = Value; Sym.Size = Sz; Sym.Index = Symbols.size(); Symbols.emplace_back(llvm::make_unique<Symbol>(Sym)); Size += this->EntrySize; } void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { if (SymbolNames == Sec) { error("String table " + SymbolNames->Name + " cannot be removed because it is referenced by the symbol table " + this->Name); } auto Iter = std::remove_if(std::begin(Symbols), std::end(Symbols), [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; }); Size -= (std::end(Symbols) - Iter) * this->EntrySize; Symbols.erase(Iter, std::end(Symbols)); } void SymbolTableSection::initialize(SectionTableRef SecTable) { Size = 0; setStrTab(SecTable.getSectionOfType<StringTableSection>( Link, "Symbol table has link index of " + Twine(Link) + " which is not a valid index", "Symbol table has link index of " + Twine(Link) + " which is not a string table")); } void SymbolTableSection::finalize() { // Make sure SymbolNames is finalized before getting name indexes. SymbolNames->finalize(); uint32_t MaxLocalIndex = 0; for (auto &Sym : Symbols) { Sym->NameIndex = SymbolNames->findIndex(Sym->Name); if (Sym->Binding == STB_LOCAL) MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); } // Now we need to set the Link and Info fields. Link = SymbolNames->Index; Info = MaxLocalIndex + 1; } void SymbolTableSection::addSymbolNames() { // Add all of our strings to SymbolNames so that SymbolNames has the right // size before layout is decided. for (auto &Sym : Symbols) SymbolNames->addString(Sym->Name); } const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { if (Symbols.size() <= Index) error("Invalid symbol index: " + Twine(Index)); return Symbols[Index].get(); } template <class ELFT> void SymbolTableSectionImpl<ELFT>::writeSection( llvm::FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart(); Buf += Offset; typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf); // Loop though symbols setting each entry of the symbol table. for (auto &Symbol : Symbols) { Sym->st_name = Symbol->NameIndex; Sym->st_value = Symbol->Value; Sym->st_size = Symbol->Size; Sym->setBinding(Symbol->Binding); Sym->setType(Symbol->Type); Sym->st_shndx = Symbol->getShndx(); ++Sym; } } template <class SymTabType> void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences( const SectionBase *Sec) { if (Symbols == Sec) { error("Symbol table " + Symbols->Name + " cannot be removed because it is " "referenced by the relocation " "section " + this->Name); } } template <class SymTabType> void RelocSectionWithSymtabBase<SymTabType>::initialize( SectionTableRef SecTable) { setSymTab(SecTable.getSectionOfType<SymTabType>( Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid", "Link field value " + Twine(Link) + " in section " + Name + " is not a symbol table")); if (Info != SHN_UNDEF) setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) + " in section " + Name + " is invalid")); else setSection(nullptr); } template <class SymTabType> void RelocSectionWithSymtabBase<SymTabType>::finalize() { this->Link = Symbols->Index; if (SecToApplyRel != nullptr) this->Info = SecToApplyRel->Index; } template <class ELFT> void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {} template <class ELFT> void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { Rela.r_addend = Addend; } template <class ELFT> template <class T> void RelocationSection<ELFT>::writeRel(T *Buf) const { for (const auto &Reloc : Relocations) { Buf->r_offset = Reloc.Offset; setAddend(*Buf, Reloc.Addend); Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); ++Buf; } } template <class ELFT> void RelocationSection<ELFT>::writeSection(llvm::FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart() + Offset; if (Type == SHT_REL) writeRel(reinterpret_cast<Elf_Rel *>(Buf)); else writeRel(reinterpret_cast<Elf_Rela *>(Buf)); } void DynamicRelocationSection::writeSection(llvm::FileOutputBuffer &Out) const { std::copy(std::begin(Contents), std::end(Contents), Out.getBufferStart() + Offset); } void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) { if (StrTab == Sec) { error("String table " + StrTab->Name + " cannot be removed because it is " "referenced by the section " + this->Name); } } bool SectionWithStrTab::classof(const SectionBase *S) { return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S); } void SectionWithStrTab::initialize(SectionTableRef SecTable) { auto StrTab = SecTable.getSection(Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid"); if (StrTab->Type != SHT_STRTAB) { error("Link field value " + Twine(Link) + " in section " + Name + " is not a string table"); } setStrTab(StrTab); } void SectionWithStrTab::finalize() { this->Link = StrTab->Index; } // Returns true IFF a section is wholly inside the range of a segment static bool sectionWithinSegment(const SectionBase &Section, const Segment &Segment) { // If a section is empty it should be treated like it has a size of 1. This is // to clarify the case when an empty section lies on a boundary between two // segments and ensures that the section "belongs" to the second segment and // not the first. uint64_t SecSize = Section.Size ? Section.Size : 1; return Segment.Offset <= Section.OriginalOffset && Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; } // Returns true IFF a segment's original offset is inside of another segment's // range. static bool segmentOverlapsSegment(const Segment &Child, const Segment &Parent) { return Parent.OriginalOffset <= Child.OriginalOffset && Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; } template <class ELFT> void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) { uint32_t Index = 0; for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset, (size_t)Phdr.p_filesz}; Segments.emplace_back(llvm::make_unique<Segment>(Data)); Segment &Seg = *Segments.back(); Seg.Type = Phdr.p_type; Seg.Flags = Phdr.p_flags; Seg.OriginalOffset = Phdr.p_offset; Seg.Offset = Phdr.p_offset; Seg.VAddr = Phdr.p_vaddr; Seg.PAddr = Phdr.p_paddr; Seg.FileSize = Phdr.p_filesz; Seg.MemSize = Phdr.p_memsz; Seg.Align = Phdr.p_align; Seg.Index = Index++; for (auto &Section : Sections) { if (sectionWithinSegment(*Section, Seg)) { Seg.addSection(&*Section); if (!Section->ParentSegment || Section->ParentSegment->Offset > Seg.Offset) { Section->ParentSegment = &Seg; } } } } // Now we do an O(n^2) loop through the segments in order to match up // segments. for (auto &Child : Segments) { for (auto &Parent : Segments) { // Every segment will overlap with itself but we don't want a segment to // be it's own parent so we avoid that situation. if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) { // We want a canonical "most parental" segment but this requires // inspecting the ParentSegment. if (Child->ParentSegment != nullptr) { if (Child->ParentSegment->OriginalOffset > Parent->OriginalOffset) { Child->ParentSegment = Parent.get(); } else if (Child->ParentSegment->Index > Parent->Index) { // They must have equal OriginalOffsets so we need to disambiguate. // To decide which is the parent we'll choose the one with the // higher index. Child->ParentSegment = Parent.get(); } } else { Child->ParentSegment = Parent.get(); } } } } } template <class ELFT> void Object<ELFT>::initSymbolTable(const llvm::object::ELFFile<ELFT> &ElfFile, SymbolTableSection *SymTab, SectionTableRef SecTable) { const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) { SectionBase *DefSection = nullptr; StringRef Name = unwrapOrError(Sym.getName(StrTabData)); if (Sym.st_shndx >= SHN_LORESERVE) { if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) { error( "Symbol '" + Name + "' has unsupported value greater than or equal to SHN_LORESERVE: " + Twine(Sym.st_shndx)); } } else if (Sym.st_shndx != SHN_UNDEF) { DefSection = SecTable.getSection( Sym.st_shndx, "Symbol '" + Name + "' is defined in invalid section with index " + Twine(Sym.st_shndx)); } SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, Sym.getValue(), Sym.st_shndx, Sym.st_size); } } template <class ELFT> static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {} template <class ELFT> static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { ToSet = Rela.r_addend; } template <class ELFT, class T> void initRelocations(RelocationSection<ELFT> *Relocs, SymbolTableSection *SymbolTable, T RelRange) { for (const auto &Rel : RelRange) { Relocation ToAdd; ToAdd.Offset = Rel.r_offset; getAddend(ToAdd.Addend, Rel); ToAdd.Type = Rel.getType(false); ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); Relocs->addRelocation(ToAdd); } } SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) { if (Index == SHN_UNDEF || Index > Sections.size()) error(ErrMsg); return Sections[Index - 1].get(); } template <class T> T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg, Twine TypeErrMsg) { if (T *Sec = llvm::dyn_cast<T>(getSection(Index, IndexErrMsg))) return Sec; error(TypeErrMsg); } template <class ELFT> std::unique_ptr<SectionBase> Object<ELFT>::makeSection(const llvm::object::ELFFile<ELFT> &ElfFile, const Elf_Shdr &Shdr) { ArrayRef<uint8_t> Data; switch (Shdr.sh_type) { case SHT_REL: case SHT_RELA: if (Shdr.sh_flags & SHF_ALLOC) { Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<DynamicRelocationSection>(Data); } return llvm::make_unique<RelocationSection<ELFT>>(); case SHT_STRTAB: // If a string table is allocated we don't want to mess with it. That would // mean altering the memory image. There are no special link types or // anything so we can just use a Section. if (Shdr.sh_flags & SHF_ALLOC) { Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<Section>(Data); } return llvm::make_unique<StringTableSection>(); case SHT_HASH: case SHT_GNU_HASH: // Hash tables should refer to SHT_DYNSYM which we're not going to change. // Because of this we don't need to mess with the hash tables either. Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<Section>(Data); case SHT_DYNSYM: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<DynamicSymbolTableSection>(Data); case SHT_DYNAMIC: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<DynamicSection>(Data); case SHT_SYMTAB: { auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>(); SymbolTable = SymTab.get(); return std::move(SymTab); } case SHT_NOBITS: return llvm::make_unique<Section>(Data); default: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return llvm::make_unique<Section>(Data); } } template <class ELFT> SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) { uint32_t Index = 0; for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { if (Index == 0) { ++Index; continue; } SecPtr Sec = makeSection(ElfFile, Shdr); Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); Sec->Type = Shdr.sh_type; Sec->Flags = Shdr.sh_flags; Sec->Addr = Shdr.sh_addr; Sec->Offset = Shdr.sh_offset; Sec->OriginalOffset = Shdr.sh_offset; Sec->Size = Shdr.sh_size; Sec->Link = Shdr.sh_link; Sec->Info = Shdr.sh_info; Sec->Align = Shdr.sh_addralign; Sec->EntrySize = Shdr.sh_entsize; Sec->Index = Index++; Sections.push_back(std::move(Sec)); } SectionTableRef SecTable(Sections); // Now that all of the sections have been added we can fill out some extra // details about symbol tables. We need the symbol table filled out before // any relocations. if (SymbolTable) { SymbolTable->initialize(SecTable); initSymbolTable(ElfFile, SymbolTable, SecTable); } // Now that all sections and symbols have been added we can add // relocations that reference symbols and set the link and info fields for // relocation sections. for (auto &Section : Sections) { if (Section.get() == SymbolTable) continue; Section->initialize(SecTable); if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) { auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; if (RelSec->Type == SHT_REL) initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr))); else initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.relas(Shdr))); } } return SecTable; } template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) { const auto &ElfFile = *Obj.getELFFile(); const auto &Ehdr = *ElfFile.getHeader(); std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident); Type = Ehdr.e_type; Machine = Ehdr.e_machine; Version = Ehdr.e_version; Entry = Ehdr.e_entry; Flags = Ehdr.e_flags; SectionTableRef SecTable = readSectionHeaders(ElfFile); readProgramHeaders(ElfFile); SectionNames = SecTable.getSectionOfType<StringTableSection>( Ehdr.e_shstrndx, "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + " is invalid", "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + " is not a string table"); } template <class ELFT> void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart(); Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf); std::copy(Ident, Ident + 16, Ehdr.e_ident); Ehdr.e_type = Type; Ehdr.e_machine = Machine; Ehdr.e_version = Version; Ehdr.e_entry = Entry; Ehdr.e_phoff = sizeof(Elf_Ehdr); Ehdr.e_flags = Flags; Ehdr.e_ehsize = sizeof(Elf_Ehdr); Ehdr.e_phentsize = sizeof(Elf_Phdr); Ehdr.e_phnum = Segments.size(); Ehdr.e_shentsize = sizeof(Elf_Shdr); if (WriteSectionHeaders) { Ehdr.e_shoff = SHOffset; Ehdr.e_shnum = Sections.size() + 1; Ehdr.e_shstrndx = SectionNames->Index; } else { Ehdr.e_shoff = 0; Ehdr.e_shnum = 0; Ehdr.e_shstrndx = 0; } } template <class ELFT> void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const { for (auto &Phdr : Segments) Phdr->template writeHeader<ELFT>(Out); } template <class ELFT> void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const { uint8_t *Buf = Out.getBufferStart() + SHOffset; // This reference serves to write the dummy section header at the begining // of the file. It is not used for anything else Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf); Shdr.sh_name = 0; Shdr.sh_type = SHT_NULL; Shdr.sh_flags = 0; Shdr.sh_addr = 0; Shdr.sh_offset = 0; Shdr.sh_size = 0; Shdr.sh_link = 0; Shdr.sh_info = 0; Shdr.sh_addralign = 0; Shdr.sh_entsize = 0; for (auto &Section : Sections) Section->template writeHeader<ELFT>(Out); } template <class ELFT> void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const { for (auto &Section : Sections) Section->writeSection(Out); } template <class ELFT> void Object<ELFT>::removeSections( std::function<bool(const SectionBase &)> ToRemove) { auto Iter = std::stable_partition( std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { if (ToRemove(*Sec)) return false; if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { if (auto ToRelSec = RelSec->getSection()) return !ToRemove(*ToRelSec); } return true; }); if (SymbolTable != nullptr && ToRemove(*SymbolTable)) SymbolTable = nullptr; if (ToRemove(*SectionNames)) { if (WriteSectionHeaders) error("Cannot remove " + SectionNames->Name + " because it is the section header string table."); SectionNames = nullptr; } // Now make sure there are no remaining references to the sections that will // be removed. Sometimes it is impossible to remove a reference so we emit // an error here instead. for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { for (auto &Segment : Segments) Segment->removeSection(RemoveSec.get()); for (auto &KeepSec : make_range(std::begin(Sections), Iter)) KeepSec->removeSectionReferences(RemoveSec.get()); } // Now finally get rid of them all togethor. Sections.erase(Iter, std::end(Sections)); } template <class ELFT> void ELFObject<ELFT>::sortSections() { // Put all sections in offset order. Maintain the ordering as closely as // possible while meeting that demand however. auto CompareSections = [](const SecPtr &A, const SecPtr &B) { return A->OriginalOffset < B->OriginalOffset; }; std::stable_sort(std::begin(this->Sections), std::end(this->Sections), CompareSections); } template <class ELFT> void ELFObject<ELFT>::assignOffsets() { // We need a temporary list of segments that has a special order to it // so that we know that anytime ->ParentSegment is set that segment has // already had it's offset properly set. std::vector<Segment *> OrderedSegments; for (auto &Segment : this->Segments) OrderedSegments.push_back(Segment.get()); auto CompareSegments = [](const Segment *A, const Segment *B) { // Any segment without a parent segment should come before a segment // that has a parent segment. if (A->OriginalOffset < B->OriginalOffset) return true; if (A->OriginalOffset > B->OriginalOffset) return false; return A->Index < B->Index; }; std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), CompareSegments); // The size of ELF + program headers will not change so it is ok to assume // that the first offset of the first segment is a good place to start // outputting sections. This covers both the standard case and the PT_PHDR // case. uint64_t Offset; if (!OrderedSegments.empty()) { Offset = OrderedSegments[0]->Offset; } else { Offset = sizeof(Elf_Ehdr); } // The only way a segment should move is if a section was between two // segments and that section was removed. If that section isn't in a segment // then it's acceptable, but not ideal, to simply move it to after the // segments. So we can simply layout segments one after the other accounting // for alignment. for (auto &Segment : OrderedSegments) { // We assume that segments have been ordered by OriginalOffset and Index // such that a parent segment will always come before a child segment in // OrderedSegments. This means that the Offset of the ParentSegment should // already be set and we can set our offset relative to it. if (Segment->ParentSegment != nullptr) { auto Parent = Segment->ParentSegment; Segment->Offset = Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; } else { Offset = alignTo(Offset, Segment->Align == 0 ? 1 : Segment->Align); Segment->Offset = Offset; } Offset = std::max(Offset, Segment->Offset + Segment->FileSize); } // Now the offset of every segment has been set we can assign the offsets // of each section. For sections that are covered by a segment we should use // the segment's original offset and the section's original offset to compute // the offset from the start of the segment. Using the offset from the start // of the segment we can assign a new offset to the section. For sections not // covered by segments we can just bump Offset to the next valid location. uint32_t Index = 1; for (auto &Section : this->Sections) { Section->Index = Index++; if (Section->ParentSegment != nullptr) { auto Segment = Section->ParentSegment; Section->Offset = Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset); } else { Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align); Section->Offset = Offset; if (Section->Type != SHT_NOBITS) Offset += Section->Size; } } if (this->WriteSectionHeaders) { Offset = alignTo(Offset, sizeof(typename ELFT::Addr)); } this->SHOffset = Offset; } template <class ELFT> size_t ELFObject<ELFT>::totalSize() const { // We already have the section header offset so we can calculate the total // size by just adding up the size of each section header. auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) + NullSectionSize; } template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const { this->writeHeader(Out); this->writeProgramHeaders(Out); this->writeSectionData(Out); if (this->WriteSectionHeaders) this->writeSectionHeaders(Out); } template <class ELFT> void ELFObject<ELFT>::finalize() { // Make sure we add the names of all the sections. if (this->SectionNames != nullptr) for (const auto &Section : this->Sections) { this->SectionNames->addString(Section->Name); } // Make sure we add the names of all the symbols. if (this->SymbolTable != nullptr) this->SymbolTable->addSymbolNames(); sortSections(); assignOffsets(); // Finalize SectionNames first so that we can assign name indexes. if (this->SectionNames != nullptr) this->SectionNames->finalize(); // Finally now that all offsets and indexes have been set we can finalize any // remaining issues. uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr); for (auto &Section : this->Sections) { Section->HeaderOffset = Offset; Offset += sizeof(Elf_Shdr); if (this->WriteSectionHeaders) Section->NameIndex = this->SectionNames->findIndex(Section->Name); Section->finalize(); } } template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const { return TotalSize; } template <class ELFT> void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const { for (auto &Segment : this->Segments) { // GNU objcopy does not output segments that do not cover a section. Such // segments can sometimes be produced by LLD due to how LLD handles PT_PHDR. if (Segment->Type == llvm::ELF::PT_LOAD && Segment->firstSection() != nullptr) { Segment->writeSegment(Out); } } } template <class ELFT> void BinaryObject<ELFT>::finalize() { // Put all segments in offset order. auto CompareSegments = [](const SegPtr &A, const SegPtr &B) { return A->Offset < B->Offset; }; std::sort(std::begin(this->Segments), std::end(this->Segments), CompareSegments); uint64_t Offset = 0; for (auto &Segment : this->Segments) { if (Segment->Type == llvm::ELF::PT_LOAD && Segment->firstSection() != nullptr) { Offset = alignTo(Offset, Segment->Align); Segment->Offset = Offset; Offset += Segment->FileSize; } } TotalSize = Offset; } template class Object<ELF64LE>; template class Object<ELF64BE>; template class Object<ELF32LE>; template class Object<ELF32BE>; template class ELFObject<ELF64LE>; template class ELFObject<ELF64BE>; template class ELFObject<ELF32LE>; template class ELFObject<ELF32BE>; template class BinaryObject<ELF64LE>; template class BinaryObject<ELF64BE>; template class BinaryObject<ELF32LE>; template class BinaryObject<ELF32BE>;