121
|
1 //===- Object.cpp -----------------------------------------------*- C++ -*-===//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 #include "Object.h"
|
|
10 #include "llvm-objcopy.h"
|
|
11
|
|
12 using namespace llvm;
|
|
13 using namespace object;
|
|
14 using namespace ELF;
|
|
15
|
|
16 template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
|
|
17 typedef typename ELFT::Ehdr Elf_Ehdr;
|
|
18 typedef typename ELFT::Phdr Elf_Phdr;
|
|
19
|
|
20 uint8_t *Buf = Out.getBufferStart();
|
|
21 Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
|
|
22 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
|
|
23 Phdr.p_type = Type;
|
|
24 Phdr.p_flags = Flags;
|
|
25 Phdr.p_offset = Offset;
|
|
26 Phdr.p_vaddr = VAddr;
|
|
27 Phdr.p_paddr = PAddr;
|
|
28 Phdr.p_filesz = FileSize;
|
|
29 Phdr.p_memsz = MemSize;
|
|
30 Phdr.p_align = Align;
|
|
31 }
|
|
32
|
|
33 void Segment::writeSegment(FileOutputBuffer &Out) const {
|
|
34 uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
35 // We want to maintain segments' interstitial data and contents exactly.
|
|
36 // This lets us just copy segments directly.
|
|
37 std::copy(std::begin(Contents), std::end(Contents), Buf);
|
|
38 }
|
|
39
|
|
40 void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
|
|
41 void SectionBase::initialize(SectionTableRef SecTable) {}
|
|
42 void SectionBase::finalize() {}
|
|
43
|
|
44 template <class ELFT>
|
|
45 void SectionBase::writeHeader(FileOutputBuffer &Out) const {
|
|
46 uint8_t *Buf = Out.getBufferStart();
|
|
47 Buf += HeaderOffset;
|
|
48 typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
|
|
49 Shdr.sh_name = NameIndex;
|
|
50 Shdr.sh_type = Type;
|
|
51 Shdr.sh_flags = Flags;
|
|
52 Shdr.sh_addr = Addr;
|
|
53 Shdr.sh_offset = Offset;
|
|
54 Shdr.sh_size = Size;
|
|
55 Shdr.sh_link = Link;
|
|
56 Shdr.sh_info = Info;
|
|
57 Shdr.sh_addralign = Align;
|
|
58 Shdr.sh_entsize = EntrySize;
|
|
59 }
|
|
60
|
|
61 void Section::writeSection(FileOutputBuffer &Out) const {
|
|
62 if (Type == SHT_NOBITS)
|
|
63 return;
|
|
64 uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
65 std::copy(std::begin(Contents), std::end(Contents), Buf);
|
|
66 }
|
|
67
|
|
68 void StringTableSection::addString(StringRef Name) {
|
|
69 StrTabBuilder.add(Name);
|
|
70 Size = StrTabBuilder.getSize();
|
|
71 }
|
|
72
|
|
73 uint32_t StringTableSection::findIndex(StringRef Name) const {
|
|
74 return StrTabBuilder.getOffset(Name);
|
|
75 }
|
|
76
|
|
77 void StringTableSection::finalize() { StrTabBuilder.finalize(); }
|
|
78
|
|
79 void StringTableSection::writeSection(FileOutputBuffer &Out) const {
|
|
80 StrTabBuilder.write(Out.getBufferStart() + Offset);
|
|
81 }
|
|
82
|
|
83 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
|
|
84 switch (Index) {
|
|
85 case SHN_ABS:
|
|
86 case SHN_COMMON:
|
|
87 return true;
|
|
88 }
|
|
89 if (Machine == EM_HEXAGON) {
|
|
90 switch (Index) {
|
|
91 case SHN_HEXAGON_SCOMMON:
|
|
92 case SHN_HEXAGON_SCOMMON_2:
|
|
93 case SHN_HEXAGON_SCOMMON_4:
|
|
94 case SHN_HEXAGON_SCOMMON_8:
|
|
95 return true;
|
|
96 }
|
|
97 }
|
|
98 return false;
|
|
99 }
|
|
100
|
|
101 uint16_t Symbol::getShndx() const {
|
|
102 if (DefinedIn != nullptr) {
|
|
103 return DefinedIn->Index;
|
|
104 }
|
|
105 switch (ShndxType) {
|
|
106 // This means that we don't have a defined section but we do need to
|
|
107 // output a legitimate section index.
|
|
108 case SYMBOL_SIMPLE_INDEX:
|
|
109 return SHN_UNDEF;
|
|
110 case SYMBOL_ABS:
|
|
111 case SYMBOL_COMMON:
|
|
112 case SYMBOL_HEXAGON_SCOMMON:
|
|
113 case SYMBOL_HEXAGON_SCOMMON_2:
|
|
114 case SYMBOL_HEXAGON_SCOMMON_4:
|
|
115 case SYMBOL_HEXAGON_SCOMMON_8:
|
|
116 return static_cast<uint16_t>(ShndxType);
|
|
117 }
|
|
118 llvm_unreachable("Symbol with invalid ShndxType encountered");
|
|
119 }
|
|
120
|
|
121 void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
|
|
122 SectionBase *DefinedIn, uint64_t Value,
|
|
123 uint16_t Shndx, uint64_t Sz) {
|
|
124 Symbol Sym;
|
|
125 Sym.Name = Name;
|
|
126 Sym.Binding = Bind;
|
|
127 Sym.Type = Type;
|
|
128 Sym.DefinedIn = DefinedIn;
|
|
129 if (DefinedIn == nullptr) {
|
|
130 if (Shndx >= SHN_LORESERVE)
|
|
131 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
|
|
132 else
|
|
133 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
|
|
134 }
|
|
135 Sym.Value = Value;
|
|
136 Sym.Size = Sz;
|
|
137 Sym.Index = Symbols.size();
|
|
138 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
|
|
139 Size += this->EntrySize;
|
|
140 }
|
|
141
|
|
142 void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
|
|
143 if (SymbolNames == Sec) {
|
|
144 error("String table " + SymbolNames->Name +
|
|
145 " cannot be removed because it is referenced by the symbol table " +
|
|
146 this->Name);
|
|
147 }
|
|
148 auto Iter =
|
|
149 std::remove_if(std::begin(Symbols), std::end(Symbols),
|
|
150 [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
|
|
151 Size -= (std::end(Symbols) - Iter) * this->EntrySize;
|
|
152 Symbols.erase(Iter, std::end(Symbols));
|
|
153 }
|
|
154
|
|
155 void SymbolTableSection::initialize(SectionTableRef SecTable) {
|
|
156 Size = 0;
|
|
157 setStrTab(SecTable.getSectionOfType<StringTableSection>(
|
|
158 Link,
|
|
159 "Symbol table has link index of " + Twine(Link) +
|
|
160 " which is not a valid index",
|
|
161 "Symbol table has link index of " + Twine(Link) +
|
|
162 " which is not a string table"));
|
|
163 }
|
|
164
|
|
165 void SymbolTableSection::finalize() {
|
|
166 // Make sure SymbolNames is finalized before getting name indexes.
|
|
167 SymbolNames->finalize();
|
|
168
|
|
169 uint32_t MaxLocalIndex = 0;
|
|
170 for (auto &Sym : Symbols) {
|
|
171 Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
|
|
172 if (Sym->Binding == STB_LOCAL)
|
|
173 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
|
|
174 }
|
|
175 // Now we need to set the Link and Info fields.
|
|
176 Link = SymbolNames->Index;
|
|
177 Info = MaxLocalIndex + 1;
|
|
178 }
|
|
179
|
|
180 void SymbolTableSection::addSymbolNames() {
|
|
181 // Add all of our strings to SymbolNames so that SymbolNames has the right
|
|
182 // size before layout is decided.
|
|
183 for (auto &Sym : Symbols)
|
|
184 SymbolNames->addString(Sym->Name);
|
|
185 }
|
|
186
|
|
187 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
|
|
188 if (Symbols.size() <= Index)
|
|
189 error("Invalid symbol index: " + Twine(Index));
|
|
190 return Symbols[Index].get();
|
|
191 }
|
|
192
|
|
193 template <class ELFT>
|
|
194 void SymbolTableSectionImpl<ELFT>::writeSection(
|
|
195 llvm::FileOutputBuffer &Out) const {
|
|
196 uint8_t *Buf = Out.getBufferStart();
|
|
197 Buf += Offset;
|
|
198 typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
|
|
199 // Loop though symbols setting each entry of the symbol table.
|
|
200 for (auto &Symbol : Symbols) {
|
|
201 Sym->st_name = Symbol->NameIndex;
|
|
202 Sym->st_value = Symbol->Value;
|
|
203 Sym->st_size = Symbol->Size;
|
|
204 Sym->setBinding(Symbol->Binding);
|
|
205 Sym->setType(Symbol->Type);
|
|
206 Sym->st_shndx = Symbol->getShndx();
|
|
207 ++Sym;
|
|
208 }
|
|
209 }
|
|
210
|
|
211 template <class SymTabType>
|
|
212 void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
|
|
213 const SectionBase *Sec) {
|
|
214 if (Symbols == Sec) {
|
|
215 error("Symbol table " + Symbols->Name + " cannot be removed because it is "
|
|
216 "referenced by the relocation "
|
|
217 "section " +
|
|
218 this->Name);
|
|
219 }
|
|
220 }
|
|
221
|
|
222 template <class SymTabType>
|
|
223 void RelocSectionWithSymtabBase<SymTabType>::initialize(
|
|
224 SectionTableRef SecTable) {
|
|
225 setSymTab(SecTable.getSectionOfType<SymTabType>(
|
|
226 Link,
|
|
227 "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
|
|
228 "Link field value " + Twine(Link) + " in section " + Name +
|
|
229 " is not a symbol table"));
|
|
230
|
|
231 if (Info != SHN_UNDEF)
|
|
232 setSection(SecTable.getSection(Info,
|
|
233 "Info field value " + Twine(Info) +
|
|
234 " in section " + Name + " is invalid"));
|
|
235 else
|
|
236 setSection(nullptr);
|
|
237 }
|
|
238
|
|
239 template <class SymTabType>
|
|
240 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
|
|
241 this->Link = Symbols->Index;
|
|
242 if (SecToApplyRel != nullptr)
|
|
243 this->Info = SecToApplyRel->Index;
|
|
244 }
|
|
245
|
|
246 template <class ELFT>
|
|
247 void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
|
|
248
|
|
249 template <class ELFT>
|
|
250 void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
|
|
251 Rela.r_addend = Addend;
|
|
252 }
|
|
253
|
|
254 template <class ELFT>
|
|
255 template <class T>
|
|
256 void RelocationSection<ELFT>::writeRel(T *Buf) const {
|
|
257 for (const auto &Reloc : Relocations) {
|
|
258 Buf->r_offset = Reloc.Offset;
|
|
259 setAddend(*Buf, Reloc.Addend);
|
|
260 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
|
|
261 ++Buf;
|
|
262 }
|
|
263 }
|
|
264
|
|
265 template <class ELFT>
|
|
266 void RelocationSection<ELFT>::writeSection(llvm::FileOutputBuffer &Out) const {
|
|
267 uint8_t *Buf = Out.getBufferStart() + Offset;
|
|
268 if (Type == SHT_REL)
|
|
269 writeRel(reinterpret_cast<Elf_Rel *>(Buf));
|
|
270 else
|
|
271 writeRel(reinterpret_cast<Elf_Rela *>(Buf));
|
|
272 }
|
|
273
|
|
274 void DynamicRelocationSection::writeSection(llvm::FileOutputBuffer &Out) const {
|
|
275 std::copy(std::begin(Contents), std::end(Contents),
|
|
276 Out.getBufferStart() + Offset);
|
|
277 }
|
|
278
|
|
279 void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
|
|
280 if (StrTab == Sec) {
|
|
281 error("String table " + StrTab->Name + " cannot be removed because it is "
|
|
282 "referenced by the section " +
|
|
283 this->Name);
|
|
284 }
|
|
285 }
|
|
286
|
|
287 bool SectionWithStrTab::classof(const SectionBase *S) {
|
|
288 return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
|
|
289 }
|
|
290
|
|
291 void SectionWithStrTab::initialize(SectionTableRef SecTable) {
|
|
292 auto StrTab = SecTable.getSection(Link,
|
|
293 "Link field value " + Twine(Link) +
|
|
294 " in section " + Name + " is invalid");
|
|
295 if (StrTab->Type != SHT_STRTAB) {
|
|
296 error("Link field value " + Twine(Link) + " in section " + Name +
|
|
297 " is not a string table");
|
|
298 }
|
|
299 setStrTab(StrTab);
|
|
300 }
|
|
301
|
|
302 void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
|
|
303
|
|
304 // Returns true IFF a section is wholly inside the range of a segment
|
|
305 static bool sectionWithinSegment(const SectionBase &Section,
|
|
306 const Segment &Segment) {
|
|
307 // If a section is empty it should be treated like it has a size of 1. This is
|
|
308 // to clarify the case when an empty section lies on a boundary between two
|
|
309 // segments and ensures that the section "belongs" to the second segment and
|
|
310 // not the first.
|
|
311 uint64_t SecSize = Section.Size ? Section.Size : 1;
|
|
312 return Segment.Offset <= Section.OriginalOffset &&
|
|
313 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
|
|
314 }
|
|
315
|
|
316 // Returns true IFF a segment's original offset is inside of another segment's
|
|
317 // range.
|
|
318 static bool segmentOverlapsSegment(const Segment &Child,
|
|
319 const Segment &Parent) {
|
|
320
|
|
321 return Parent.OriginalOffset <= Child.OriginalOffset &&
|
|
322 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
|
|
323 }
|
|
324
|
|
325 template <class ELFT>
|
|
326 void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
|
|
327 uint32_t Index = 0;
|
|
328 for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
|
|
329 ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
|
|
330 (size_t)Phdr.p_filesz};
|
|
331 Segments.emplace_back(llvm::make_unique<Segment>(Data));
|
|
332 Segment &Seg = *Segments.back();
|
|
333 Seg.Type = Phdr.p_type;
|
|
334 Seg.Flags = Phdr.p_flags;
|
|
335 Seg.OriginalOffset = Phdr.p_offset;
|
|
336 Seg.Offset = Phdr.p_offset;
|
|
337 Seg.VAddr = Phdr.p_vaddr;
|
|
338 Seg.PAddr = Phdr.p_paddr;
|
|
339 Seg.FileSize = Phdr.p_filesz;
|
|
340 Seg.MemSize = Phdr.p_memsz;
|
|
341 Seg.Align = Phdr.p_align;
|
|
342 Seg.Index = Index++;
|
|
343 for (auto &Section : Sections) {
|
|
344 if (sectionWithinSegment(*Section, Seg)) {
|
|
345 Seg.addSection(&*Section);
|
|
346 if (!Section->ParentSegment ||
|
|
347 Section->ParentSegment->Offset > Seg.Offset) {
|
|
348 Section->ParentSegment = &Seg;
|
|
349 }
|
|
350 }
|
|
351 }
|
|
352 }
|
|
353 // Now we do an O(n^2) loop through the segments in order to match up
|
|
354 // segments.
|
|
355 for (auto &Child : Segments) {
|
|
356 for (auto &Parent : Segments) {
|
|
357 // Every segment will overlap with itself but we don't want a segment to
|
|
358 // be it's own parent so we avoid that situation.
|
|
359 if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
|
|
360 // We want a canonical "most parental" segment but this requires
|
|
361 // inspecting the ParentSegment.
|
|
362 if (Child->ParentSegment != nullptr) {
|
|
363 if (Child->ParentSegment->OriginalOffset > Parent->OriginalOffset) {
|
|
364 Child->ParentSegment = Parent.get();
|
|
365 } else if (Child->ParentSegment->Index > Parent->Index) {
|
|
366 // They must have equal OriginalOffsets so we need to disambiguate.
|
|
367 // To decide which is the parent we'll choose the one with the
|
|
368 // higher index.
|
|
369 Child->ParentSegment = Parent.get();
|
|
370 }
|
|
371 } else {
|
|
372 Child->ParentSegment = Parent.get();
|
|
373 }
|
|
374 }
|
|
375 }
|
|
376 }
|
|
377 }
|
|
378
|
|
379 template <class ELFT>
|
|
380 void Object<ELFT>::initSymbolTable(const llvm::object::ELFFile<ELFT> &ElfFile,
|
|
381 SymbolTableSection *SymTab,
|
|
382 SectionTableRef SecTable) {
|
|
383
|
|
384 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
|
|
385 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
|
|
386
|
|
387 for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
|
|
388 SectionBase *DefSection = nullptr;
|
|
389 StringRef Name = unwrapOrError(Sym.getName(StrTabData));
|
|
390
|
|
391 if (Sym.st_shndx >= SHN_LORESERVE) {
|
|
392 if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
|
|
393 error(
|
|
394 "Symbol '" + Name +
|
|
395 "' has unsupported value greater than or equal to SHN_LORESERVE: " +
|
|
396 Twine(Sym.st_shndx));
|
|
397 }
|
|
398 } else if (Sym.st_shndx != SHN_UNDEF) {
|
|
399 DefSection = SecTable.getSection(
|
|
400 Sym.st_shndx,
|
|
401 "Symbol '" + Name + "' is defined in invalid section with index " +
|
|
402 Twine(Sym.st_shndx));
|
|
403 }
|
|
404
|
|
405 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
|
|
406 Sym.getValue(), Sym.st_shndx, Sym.st_size);
|
|
407 }
|
|
408 }
|
|
409
|
|
410 template <class ELFT>
|
|
411 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
|
|
412
|
|
413 template <class ELFT>
|
|
414 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
|
|
415 ToSet = Rela.r_addend;
|
|
416 }
|
|
417
|
|
418 template <class ELFT, class T>
|
|
419 void initRelocations(RelocationSection<ELFT> *Relocs,
|
|
420 SymbolTableSection *SymbolTable, T RelRange) {
|
|
421 for (const auto &Rel : RelRange) {
|
|
422 Relocation ToAdd;
|
|
423 ToAdd.Offset = Rel.r_offset;
|
|
424 getAddend(ToAdd.Addend, Rel);
|
|
425 ToAdd.Type = Rel.getType(false);
|
|
426 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
|
|
427 Relocs->addRelocation(ToAdd);
|
|
428 }
|
|
429 }
|
|
430
|
|
431 SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
|
|
432 if (Index == SHN_UNDEF || Index > Sections.size())
|
|
433 error(ErrMsg);
|
|
434 return Sections[Index - 1].get();
|
|
435 }
|
|
436
|
|
437 template <class T>
|
|
438 T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
|
|
439 Twine TypeErrMsg) {
|
|
440 if (T *Sec = llvm::dyn_cast<T>(getSection(Index, IndexErrMsg)))
|
|
441 return Sec;
|
|
442 error(TypeErrMsg);
|
|
443 }
|
|
444
|
|
445 template <class ELFT>
|
|
446 std::unique_ptr<SectionBase>
|
|
447 Object<ELFT>::makeSection(const llvm::object::ELFFile<ELFT> &ElfFile,
|
|
448 const Elf_Shdr &Shdr) {
|
|
449 ArrayRef<uint8_t> Data;
|
|
450 switch (Shdr.sh_type) {
|
|
451 case SHT_REL:
|
|
452 case SHT_RELA:
|
|
453 if (Shdr.sh_flags & SHF_ALLOC) {
|
|
454 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
455 return llvm::make_unique<DynamicRelocationSection>(Data);
|
|
456 }
|
|
457 return llvm::make_unique<RelocationSection<ELFT>>();
|
|
458 case SHT_STRTAB:
|
|
459 // If a string table is allocated we don't want to mess with it. That would
|
|
460 // mean altering the memory image. There are no special link types or
|
|
461 // anything so we can just use a Section.
|
|
462 if (Shdr.sh_flags & SHF_ALLOC) {
|
|
463 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
464 return llvm::make_unique<Section>(Data);
|
|
465 }
|
|
466 return llvm::make_unique<StringTableSection>();
|
|
467 case SHT_HASH:
|
|
468 case SHT_GNU_HASH:
|
|
469 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
|
|
470 // Because of this we don't need to mess with the hash tables either.
|
|
471 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
472 return llvm::make_unique<Section>(Data);
|
|
473 case SHT_DYNSYM:
|
|
474 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
475 return llvm::make_unique<DynamicSymbolTableSection>(Data);
|
|
476 case SHT_DYNAMIC:
|
|
477 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
478 return llvm::make_unique<DynamicSection>(Data);
|
|
479 case SHT_SYMTAB: {
|
|
480 auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
|
|
481 SymbolTable = SymTab.get();
|
|
482 return std::move(SymTab);
|
|
483 }
|
|
484 case SHT_NOBITS:
|
|
485 return llvm::make_unique<Section>(Data);
|
|
486 default:
|
|
487 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
|
|
488 return llvm::make_unique<Section>(Data);
|
|
489 }
|
|
490 }
|
|
491
|
|
492 template <class ELFT>
|
|
493 SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
|
|
494 uint32_t Index = 0;
|
|
495 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
|
|
496 if (Index == 0) {
|
|
497 ++Index;
|
|
498 continue;
|
|
499 }
|
|
500 SecPtr Sec = makeSection(ElfFile, Shdr);
|
|
501 Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
|
|
502 Sec->Type = Shdr.sh_type;
|
|
503 Sec->Flags = Shdr.sh_flags;
|
|
504 Sec->Addr = Shdr.sh_addr;
|
|
505 Sec->Offset = Shdr.sh_offset;
|
|
506 Sec->OriginalOffset = Shdr.sh_offset;
|
|
507 Sec->Size = Shdr.sh_size;
|
|
508 Sec->Link = Shdr.sh_link;
|
|
509 Sec->Info = Shdr.sh_info;
|
|
510 Sec->Align = Shdr.sh_addralign;
|
|
511 Sec->EntrySize = Shdr.sh_entsize;
|
|
512 Sec->Index = Index++;
|
|
513 Sections.push_back(std::move(Sec));
|
|
514 }
|
|
515
|
|
516 SectionTableRef SecTable(Sections);
|
|
517
|
|
518 // Now that all of the sections have been added we can fill out some extra
|
|
519 // details about symbol tables. We need the symbol table filled out before
|
|
520 // any relocations.
|
|
521 if (SymbolTable) {
|
|
522 SymbolTable->initialize(SecTable);
|
|
523 initSymbolTable(ElfFile, SymbolTable, SecTable);
|
|
524 }
|
|
525
|
|
526 // Now that all sections and symbols have been added we can add
|
|
527 // relocations that reference symbols and set the link and info fields for
|
|
528 // relocation sections.
|
|
529 for (auto &Section : Sections) {
|
|
530 if (Section.get() == SymbolTable)
|
|
531 continue;
|
|
532 Section->initialize(SecTable);
|
|
533 if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
|
|
534 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
|
|
535 if (RelSec->Type == SHT_REL)
|
|
536 initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
|
|
537 else
|
|
538 initRelocations(RelSec, SymbolTable,
|
|
539 unwrapOrError(ElfFile.relas(Shdr)));
|
|
540 }
|
|
541 }
|
|
542
|
|
543 return SecTable;
|
|
544 }
|
|
545
|
|
546 template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
|
|
547 const auto &ElfFile = *Obj.getELFFile();
|
|
548 const auto &Ehdr = *ElfFile.getHeader();
|
|
549
|
|
550 std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
|
|
551 Type = Ehdr.e_type;
|
|
552 Machine = Ehdr.e_machine;
|
|
553 Version = Ehdr.e_version;
|
|
554 Entry = Ehdr.e_entry;
|
|
555 Flags = Ehdr.e_flags;
|
|
556
|
|
557 SectionTableRef SecTable = readSectionHeaders(ElfFile);
|
|
558 readProgramHeaders(ElfFile);
|
|
559
|
|
560 SectionNames = SecTable.getSectionOfType<StringTableSection>(
|
|
561 Ehdr.e_shstrndx,
|
|
562 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
|
|
563 " is invalid",
|
|
564 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
|
|
565 " is not a string table");
|
|
566 }
|
|
567
|
|
568 template <class ELFT>
|
|
569 void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
|
|
570 uint8_t *Buf = Out.getBufferStart();
|
|
571 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
|
|
572 std::copy(Ident, Ident + 16, Ehdr.e_ident);
|
|
573 Ehdr.e_type = Type;
|
|
574 Ehdr.e_machine = Machine;
|
|
575 Ehdr.e_version = Version;
|
|
576 Ehdr.e_entry = Entry;
|
|
577 Ehdr.e_phoff = sizeof(Elf_Ehdr);
|
|
578 Ehdr.e_flags = Flags;
|
|
579 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
|
|
580 Ehdr.e_phentsize = sizeof(Elf_Phdr);
|
|
581 Ehdr.e_phnum = Segments.size();
|
|
582 Ehdr.e_shentsize = sizeof(Elf_Shdr);
|
|
583 if (WriteSectionHeaders) {
|
|
584 Ehdr.e_shoff = SHOffset;
|
|
585 Ehdr.e_shnum = Sections.size() + 1;
|
|
586 Ehdr.e_shstrndx = SectionNames->Index;
|
|
587 } else {
|
|
588 Ehdr.e_shoff = 0;
|
|
589 Ehdr.e_shnum = 0;
|
|
590 Ehdr.e_shstrndx = 0;
|
|
591 }
|
|
592 }
|
|
593
|
|
594 template <class ELFT>
|
|
595 void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
|
|
596 for (auto &Phdr : Segments)
|
|
597 Phdr->template writeHeader<ELFT>(Out);
|
|
598 }
|
|
599
|
|
600 template <class ELFT>
|
|
601 void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
|
|
602 uint8_t *Buf = Out.getBufferStart() + SHOffset;
|
|
603 // This reference serves to write the dummy section header at the begining
|
|
604 // of the file. It is not used for anything else
|
|
605 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
|
|
606 Shdr.sh_name = 0;
|
|
607 Shdr.sh_type = SHT_NULL;
|
|
608 Shdr.sh_flags = 0;
|
|
609 Shdr.sh_addr = 0;
|
|
610 Shdr.sh_offset = 0;
|
|
611 Shdr.sh_size = 0;
|
|
612 Shdr.sh_link = 0;
|
|
613 Shdr.sh_info = 0;
|
|
614 Shdr.sh_addralign = 0;
|
|
615 Shdr.sh_entsize = 0;
|
|
616
|
|
617 for (auto &Section : Sections)
|
|
618 Section->template writeHeader<ELFT>(Out);
|
|
619 }
|
|
620
|
|
621 template <class ELFT>
|
|
622 void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
|
|
623 for (auto &Section : Sections)
|
|
624 Section->writeSection(Out);
|
|
625 }
|
|
626
|
|
627 template <class ELFT>
|
|
628 void Object<ELFT>::removeSections(
|
|
629 std::function<bool(const SectionBase &)> ToRemove) {
|
|
630
|
|
631 auto Iter = std::stable_partition(
|
|
632 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
|
|
633 if (ToRemove(*Sec))
|
|
634 return false;
|
|
635 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
|
|
636 if (auto ToRelSec = RelSec->getSection())
|
|
637 return !ToRemove(*ToRelSec);
|
|
638 }
|
|
639 return true;
|
|
640 });
|
|
641 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
|
|
642 SymbolTable = nullptr;
|
|
643 if (ToRemove(*SectionNames)) {
|
|
644 if (WriteSectionHeaders)
|
|
645 error("Cannot remove " + SectionNames->Name +
|
|
646 " because it is the section header string table.");
|
|
647 SectionNames = nullptr;
|
|
648 }
|
|
649 // Now make sure there are no remaining references to the sections that will
|
|
650 // be removed. Sometimes it is impossible to remove a reference so we emit
|
|
651 // an error here instead.
|
|
652 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
|
|
653 for (auto &Segment : Segments)
|
|
654 Segment->removeSection(RemoveSec.get());
|
|
655 for (auto &KeepSec : make_range(std::begin(Sections), Iter))
|
|
656 KeepSec->removeSectionReferences(RemoveSec.get());
|
|
657 }
|
|
658 // Now finally get rid of them all togethor.
|
|
659 Sections.erase(Iter, std::end(Sections));
|
|
660 }
|
|
661
|
|
662 template <class ELFT> void ELFObject<ELFT>::sortSections() {
|
|
663 // Put all sections in offset order. Maintain the ordering as closely as
|
|
664 // possible while meeting that demand however.
|
|
665 auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
|
|
666 return A->OriginalOffset < B->OriginalOffset;
|
|
667 };
|
|
668 std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
|
|
669 CompareSections);
|
|
670 }
|
|
671
|
|
672 template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
|
|
673 // We need a temporary list of segments that has a special order to it
|
|
674 // so that we know that anytime ->ParentSegment is set that segment has
|
|
675 // already had it's offset properly set.
|
|
676 std::vector<Segment *> OrderedSegments;
|
|
677 for (auto &Segment : this->Segments)
|
|
678 OrderedSegments.push_back(Segment.get());
|
|
679 auto CompareSegments = [](const Segment *A, const Segment *B) {
|
|
680 // Any segment without a parent segment should come before a segment
|
|
681 // that has a parent segment.
|
|
682 if (A->OriginalOffset < B->OriginalOffset)
|
|
683 return true;
|
|
684 if (A->OriginalOffset > B->OriginalOffset)
|
|
685 return false;
|
|
686 return A->Index < B->Index;
|
|
687 };
|
|
688 std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
|
|
689 CompareSegments);
|
|
690 // The size of ELF + program headers will not change so it is ok to assume
|
|
691 // that the first offset of the first segment is a good place to start
|
|
692 // outputting sections. This covers both the standard case and the PT_PHDR
|
|
693 // case.
|
|
694 uint64_t Offset;
|
|
695 if (!OrderedSegments.empty()) {
|
|
696 Offset = OrderedSegments[0]->Offset;
|
|
697 } else {
|
|
698 Offset = sizeof(Elf_Ehdr);
|
|
699 }
|
|
700 // The only way a segment should move is if a section was between two
|
|
701 // segments and that section was removed. If that section isn't in a segment
|
|
702 // then it's acceptable, but not ideal, to simply move it to after the
|
|
703 // segments. So we can simply layout segments one after the other accounting
|
|
704 // for alignment.
|
|
705 for (auto &Segment : OrderedSegments) {
|
|
706 // We assume that segments have been ordered by OriginalOffset and Index
|
|
707 // such that a parent segment will always come before a child segment in
|
|
708 // OrderedSegments. This means that the Offset of the ParentSegment should
|
|
709 // already be set and we can set our offset relative to it.
|
|
710 if (Segment->ParentSegment != nullptr) {
|
|
711 auto Parent = Segment->ParentSegment;
|
|
712 Segment->Offset =
|
|
713 Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
|
|
714 } else {
|
|
715 Offset = alignTo(Offset, Segment->Align == 0 ? 1 : Segment->Align);
|
|
716 Segment->Offset = Offset;
|
|
717 }
|
|
718 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
|
|
719 }
|
|
720 // Now the offset of every segment has been set we can assign the offsets
|
|
721 // of each section. For sections that are covered by a segment we should use
|
|
722 // the segment's original offset and the section's original offset to compute
|
|
723 // the offset from the start of the segment. Using the offset from the start
|
|
724 // of the segment we can assign a new offset to the section. For sections not
|
|
725 // covered by segments we can just bump Offset to the next valid location.
|
|
726 uint32_t Index = 1;
|
|
727 for (auto &Section : this->Sections) {
|
|
728 Section->Index = Index++;
|
|
729 if (Section->ParentSegment != nullptr) {
|
|
730 auto Segment = Section->ParentSegment;
|
|
731 Section->Offset =
|
|
732 Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
|
|
733 } else {
|
|
734 Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
|
|
735 Section->Offset = Offset;
|
|
736 if (Section->Type != SHT_NOBITS)
|
|
737 Offset += Section->Size;
|
|
738 }
|
|
739 }
|
|
740
|
|
741 if (this->WriteSectionHeaders) {
|
|
742 Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
|
|
743 }
|
|
744 this->SHOffset = Offset;
|
|
745 }
|
|
746
|
|
747 template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
|
|
748 // We already have the section header offset so we can calculate the total
|
|
749 // size by just adding up the size of each section header.
|
|
750 auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
|
|
751 return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
|
|
752 NullSectionSize;
|
|
753 }
|
|
754
|
|
755 template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
|
|
756 this->writeHeader(Out);
|
|
757 this->writeProgramHeaders(Out);
|
|
758 this->writeSectionData(Out);
|
|
759 if (this->WriteSectionHeaders)
|
|
760 this->writeSectionHeaders(Out);
|
|
761 }
|
|
762
|
|
763 template <class ELFT> void ELFObject<ELFT>::finalize() {
|
|
764 // Make sure we add the names of all the sections.
|
|
765 if (this->SectionNames != nullptr)
|
|
766 for (const auto &Section : this->Sections) {
|
|
767 this->SectionNames->addString(Section->Name);
|
|
768 }
|
|
769 // Make sure we add the names of all the symbols.
|
|
770 if (this->SymbolTable != nullptr)
|
|
771 this->SymbolTable->addSymbolNames();
|
|
772
|
|
773 sortSections();
|
|
774 assignOffsets();
|
|
775
|
|
776 // Finalize SectionNames first so that we can assign name indexes.
|
|
777 if (this->SectionNames != nullptr)
|
|
778 this->SectionNames->finalize();
|
|
779 // Finally now that all offsets and indexes have been set we can finalize any
|
|
780 // remaining issues.
|
|
781 uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
|
|
782 for (auto &Section : this->Sections) {
|
|
783 Section->HeaderOffset = Offset;
|
|
784 Offset += sizeof(Elf_Shdr);
|
|
785 if (this->WriteSectionHeaders)
|
|
786 Section->NameIndex = this->SectionNames->findIndex(Section->Name);
|
|
787 Section->finalize();
|
|
788 }
|
|
789 }
|
|
790
|
|
791 template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
|
|
792 return TotalSize;
|
|
793 }
|
|
794
|
|
795 template <class ELFT>
|
|
796 void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
|
|
797 for (auto &Segment : this->Segments) {
|
|
798 // GNU objcopy does not output segments that do not cover a section. Such
|
|
799 // segments can sometimes be produced by LLD due to how LLD handles PT_PHDR.
|
|
800 if (Segment->Type == llvm::ELF::PT_LOAD &&
|
|
801 Segment->firstSection() != nullptr) {
|
|
802 Segment->writeSegment(Out);
|
|
803 }
|
|
804 }
|
|
805 }
|
|
806
|
|
807 template <class ELFT> void BinaryObject<ELFT>::finalize() {
|
|
808
|
|
809 // Put all segments in offset order.
|
|
810 auto CompareSegments = [](const SegPtr &A, const SegPtr &B) {
|
|
811 return A->Offset < B->Offset;
|
|
812 };
|
|
813 std::sort(std::begin(this->Segments), std::end(this->Segments),
|
|
814 CompareSegments);
|
|
815
|
|
816 uint64_t Offset = 0;
|
|
817 for (auto &Segment : this->Segments) {
|
|
818 if (Segment->Type == llvm::ELF::PT_LOAD &&
|
|
819 Segment->firstSection() != nullptr) {
|
|
820 Offset = alignTo(Offset, Segment->Align);
|
|
821 Segment->Offset = Offset;
|
|
822 Offset += Segment->FileSize;
|
|
823 }
|
|
824 }
|
|
825 TotalSize = Offset;
|
|
826 }
|
|
827
|
|
828 template class Object<ELF64LE>;
|
|
829 template class Object<ELF64BE>;
|
|
830 template class Object<ELF32LE>;
|
|
831 template class Object<ELF32BE>;
|
|
832
|
|
833 template class ELFObject<ELF64LE>;
|
|
834 template class ELFObject<ELF64BE>;
|
|
835 template class ELFObject<ELF32LE>;
|
|
836 template class ELFObject<ELF32BE>;
|
|
837
|
|
838 template class BinaryObject<ELF64LE>;
|
|
839 template class BinaryObject<ELF64BE>;
|
|
840 template class BinaryObject<ELF32LE>;
|
|
841 template class BinaryObject<ELF32BE>;
|