Mercurial > hg > CbC > CbC_llvm
view clang/lib/CodeGen/CGOpenCLRuntime.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===----- CGOpenCLRuntime.cpp - Interface to OpenCL Runtimes -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides an abstract class for OpenCL code generation. Concrete // subclasses of this implement code generation for specific OpenCL // runtime libraries. // //===----------------------------------------------------------------------===// #include "CGOpenCLRuntime.h" #include "CodeGenFunction.h" #include "TargetInfo.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalValue.h" #include <assert.h> using namespace clang; using namespace CodeGen; CGOpenCLRuntime::~CGOpenCLRuntime() {} void CGOpenCLRuntime::EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF, const VarDecl &D) { return CGF.EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); } llvm::Type *CGOpenCLRuntime::convertOpenCLSpecificType(const Type *T) { assert(T->isOpenCLSpecificType() && "Not an OpenCL specific type!"); // Check if the target has a specific translation for this type first. if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T)) return TransTy; switch (cast<BuiltinType>(T)->getKind()) { default: llvm_unreachable("Unexpected opencl builtin type!"); return nullptr; #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: \ return getPointerType(T, "opencl." #ImgType "_" #Suffix "_t"); #include "clang/Basic/OpenCLImageTypes.def" case BuiltinType::OCLSampler: return getSamplerType(T); case BuiltinType::OCLEvent: return getPointerType(T, "opencl.event_t"); case BuiltinType::OCLClkEvent: return getPointerType(T, "opencl.clk_event_t"); case BuiltinType::OCLQueue: return getPointerType(T, "opencl.queue_t"); case BuiltinType::OCLReserveID: return getPointerType(T, "opencl.reserve_id_t"); #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ case BuiltinType::Id: \ return getPointerType(T, "opencl." #ExtType); #include "clang/Basic/OpenCLExtensionTypes.def" } } llvm::PointerType *CGOpenCLRuntime::getPointerType(const Type *T, StringRef Name) { auto I = CachedTys.find(Name); if (I != CachedTys.end()) return I->second; llvm::LLVMContext &Ctx = CGM.getLLVMContext(); uint32_t AddrSpc = CGM.getContext().getTargetAddressSpace( CGM.getContext().getOpenCLTypeAddrSpace(T)); auto *PTy = llvm::PointerType::get(llvm::StructType::create(Ctx, Name), AddrSpc); CachedTys[Name] = PTy; return PTy; } llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T) { if (llvm::Type *PipeTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T)) return PipeTy; if (T->isReadOnly()) return getPipeType(T, "opencl.pipe_ro_t", PipeROTy); else return getPipeType(T, "opencl.pipe_wo_t", PipeWOTy); } llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T, StringRef Name, llvm::Type *&PipeTy) { if (!PipeTy) PipeTy = llvm::PointerType::get(llvm::StructType::create( CGM.getLLVMContext(), Name), CGM.getContext().getTargetAddressSpace( CGM.getContext().getOpenCLTypeAddrSpace(T))); return PipeTy; } llvm::Type *CGOpenCLRuntime::getSamplerType(const Type *T) { if (SamplerTy) return SamplerTy; if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType( CGM, CGM.getContext().OCLSamplerTy.getTypePtr())) SamplerTy = TransTy; else SamplerTy = llvm::PointerType::get( llvm::StructType::create(CGM.getLLVMContext(), "opencl.sampler_t"), CGM.getContext().getTargetAddressSpace( CGM.getContext().getOpenCLTypeAddrSpace(T))); return SamplerTy; } llvm::Value *CGOpenCLRuntime::getPipeElemSize(const Expr *PipeArg) { const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>(); // The type of the last (implicit) argument to be passed. llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext()); unsigned TypeSize = CGM.getContext() .getTypeSizeInChars(PipeTy->getElementType()) .getQuantity(); return llvm::ConstantInt::get(Int32Ty, TypeSize, false); } llvm::Value *CGOpenCLRuntime::getPipeElemAlign(const Expr *PipeArg) { const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>(); // The type of the last (implicit) argument to be passed. llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext()); unsigned TypeSize = CGM.getContext() .getTypeAlignInChars(PipeTy->getElementType()) .getQuantity(); return llvm::ConstantInt::get(Int32Ty, TypeSize, false); } llvm::PointerType *CGOpenCLRuntime::getGenericVoidPointerType() { assert(CGM.getLangOpts().OpenCL); return llvm::PointerType::get( CGM.getLLVMContext(), CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); } // Get the block literal from an expression derived from the block expression. // OpenCL v2.0 s6.12.5: // Block variable declarations are implicitly qualified with const. Therefore // all block variables must be initialized at declaration time and may not be // reassigned. static const BlockExpr *getBlockExpr(const Expr *E) { const Expr *Prev = nullptr; // to make sure we do not stuck in infinite loop. while(!isa<BlockExpr>(E) && E != Prev) { Prev = E; E = E->IgnoreCasts(); if (auto DR = dyn_cast<DeclRefExpr>(E)) { E = cast<VarDecl>(DR->getDecl())->getInit(); } } return cast<BlockExpr>(E); } /// Record emitted llvm invoke function and llvm block literal for the /// corresponding block expression. void CGOpenCLRuntime::recordBlockInfo(const BlockExpr *E, llvm::Function *InvokeF, llvm::Value *Block, llvm::Type *BlockTy) { assert(!EnqueuedBlockMap.contains(E) && "Block expression emitted twice"); assert(isa<llvm::Function>(InvokeF) && "Invalid invoke function"); assert(Block->getType()->isPointerTy() && "Invalid block literal type"); EnqueuedBlockMap[E].InvokeFunc = InvokeF; EnqueuedBlockMap[E].BlockArg = Block; EnqueuedBlockMap[E].BlockTy = BlockTy; EnqueuedBlockMap[E].KernelHandle = nullptr; } llvm::Function *CGOpenCLRuntime::getInvokeFunction(const Expr *E) { return EnqueuedBlockMap[getBlockExpr(E)].InvokeFunc; } CGOpenCLRuntime::EnqueuedBlockInfo CGOpenCLRuntime::emitOpenCLEnqueuedBlock(CodeGenFunction &CGF, const Expr *E) { CGF.EmitScalarExpr(E); // The block literal may be assigned to a const variable. Chasing down // to get the block literal. const BlockExpr *Block = getBlockExpr(E); assert(EnqueuedBlockMap.contains(Block) && "Block expression not emitted"); // Do not emit the block wrapper again if it has been emitted. if (EnqueuedBlockMap[Block].KernelHandle) { return EnqueuedBlockMap[Block]; } auto *F = CGF.getTargetHooks().createEnqueuedBlockKernel( CGF, EnqueuedBlockMap[Block].InvokeFunc, EnqueuedBlockMap[Block].BlockTy); // The common part of the post-processing of the kernel goes here. EnqueuedBlockMap[Block].KernelHandle = F; return EnqueuedBlockMap[Block]; }