Mercurial > hg > CbC > CbC_llvm
view clang/lib/Driver/Driver.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Driver/Driver.h" #include "ToolChains/AIX.h" #include "ToolChains/AMDGPU.h" #include "ToolChains/AMDGPUOpenMP.h" #include "ToolChains/AVR.h" #include "ToolChains/Ananas.h" #include "ToolChains/Arch/RISCV.h" #include "ToolChains/BareMetal.h" #include "ToolChains/CSKYToolChain.h" #include "ToolChains/Clang.h" #include "ToolChains/CloudABI.h" #include "ToolChains/Contiki.h" #include "ToolChains/CrossWindows.h" #include "ToolChains/Cuda.h" #include "ToolChains/Darwin.h" #include "ToolChains/DragonFly.h" #include "ToolChains/FreeBSD.h" #include "ToolChains/Fuchsia.h" #include "ToolChains/Gnu.h" #include "ToolChains/HIPAMD.h" #include "ToolChains/HIPSPV.h" #include "ToolChains/HLSL.h" #include "ToolChains/Haiku.h" #include "ToolChains/Hexagon.h" #include "ToolChains/Hurd.h" #include "ToolChains/Lanai.h" #include "ToolChains/Linux.h" #include "ToolChains/MSP430.h" #include "ToolChains/MSVC.h" #include "ToolChains/MinGW.h" #include "ToolChains/Minix.h" #include "ToolChains/MipsLinux.h" #include "ToolChains/Myriad.h" #include "ToolChains/NaCl.h" #include "ToolChains/NetBSD.h" #include "ToolChains/OHOS.h" #include "ToolChains/OpenBSD.h" #include "ToolChains/PPCFreeBSD.h" #include "ToolChains/PPCLinux.h" #include "ToolChains/PS4CPU.h" #include "ToolChains/RISCVToolchain.h" #include "ToolChains/SPIRV.h" #include "ToolChains/Solaris.h" #include "ToolChains/TCE.h" #include "ToolChains/VEToolchain.h" #include "ToolChains/WebAssembly.h" #include "ToolChains/XCore.h" #include "ToolChains/ZOS.h" #include "clang/Basic/TargetID.h" #include "clang/Basic/Version.h" #include "clang/Config/config.h" #include "clang/Driver/Action.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/InputInfo.h" #include "clang/Driver/Job.h" #include "clang/Driver/Options.h" #include "clang/Driver/Phases.h" #include "clang/Driver/SanitizerArgs.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "clang/Driver/Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptSpecifier.h" #include "llvm/Option/OptTable.h" #include "llvm/Option/Option.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ExitCodes.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MD5.h" #include "llvm/Support/Path.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Host.h" #include <cstdlib> // ::getenv #include <map> #include <memory> #include <optional> #include <set> #include <utility> #if LLVM_ON_UNIX #include <unistd.h> // getpid #endif using namespace clang::driver; using namespace clang; using namespace llvm::opt; static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D, const ArgList &Args) { auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ); // Offload compilation flow does not support multiple targets for now. We // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too) // to support multiple tool chains first. switch (OffloadTargets.size()) { default: D.Diag(diag::err_drv_only_one_offload_target_supported); return std::nullopt; case 0: D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << ""; return std::nullopt; case 1: break; } return llvm::Triple(OffloadTargets[0]); } static std::optional<llvm::Triple> getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args, const llvm::Triple &HostTriple) { if (!Args.hasArg(options::OPT_offload_EQ)) { return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"); } auto TT = getOffloadTargetTriple(D, Args); if (TT && (TT->getArch() == llvm::Triple::spirv32 || TT->getArch() == llvm::Triple::spirv64)) { if (Args.hasArg(options::OPT_emit_llvm)) return TT; D.Diag(diag::err_drv_cuda_offload_only_emit_bc); return std::nullopt; } D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str(); return std::nullopt; } static std::optional<llvm::Triple> getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) { if (!Args.hasArg(options::OPT_offload_EQ)) { return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple. } auto TT = getOffloadTargetTriple(D, Args); if (!TT) return std::nullopt; if (TT->getArch() == llvm::Triple::amdgcn && TT->getVendor() == llvm::Triple::AMD && TT->getOS() == llvm::Triple::AMDHSA) return TT; if (TT->getArch() == llvm::Triple::spirv64) return TT; D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str(); return std::nullopt; } // static std::string Driver::GetResourcesPath(StringRef BinaryPath, StringRef CustomResourceDir) { // Since the resource directory is embedded in the module hash, it's important // that all places that need it call this function, so that they get the // exact same string ("a/../b/" and "b/" get different hashes, for example). // Dir is bin/ or lib/, depending on where BinaryPath is. std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath)); SmallString<128> P(Dir); if (CustomResourceDir != "") { llvm::sys::path::append(P, CustomResourceDir); } else { // On Windows, libclang.dll is in bin/. // On non-Windows, libclang.so/.dylib is in lib/. // With a static-library build of libclang, LibClangPath will contain the // path of the embedding binary, which for LLVM binaries will be in bin/. // ../lib gets us to lib/ in both cases. P = llvm::sys::path::parent_path(Dir); // This search path is also created in the COFF driver of lld, so any // changes here also needs to happen in lld/COFF/Driver.cpp llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang", CLANG_VERSION_MAJOR_STRING); } return std::string(P.str()); } Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, std::string Title, IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None), ModulesModeCXX20(false), LTOMode(LTOK_None), ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false), CCLogDiagnostics(false), CCGenDiagnostics(false), CCPrintProcessStats(false), CCPrintInternalStats(false), TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr), CheckInputsExist(true), ProbePrecompiled(true), SuppressMissingInputWarning(false) { // Provide a sane fallback if no VFS is specified. if (!this->VFS) this->VFS = llvm::vfs::getRealFileSystem(); Name = std::string(llvm::sys::path::filename(ClangExecutable)); Dir = std::string(llvm::sys::path::parent_path(ClangExecutable)); InstalledDir = Dir; // Provide a sensible default installed dir. if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) { // Prepend InstalledDir if SysRoot is relative SmallString<128> P(InstalledDir); llvm::sys::path::append(P, SysRoot); SysRoot = std::string(P); } #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; #endif #if defined(CLANG_CONFIG_FILE_USER_DIR) { SmallString<128> P; llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P); UserConfigDir = static_cast<std::string>(P); } #endif // Compute the path to the resource directory. ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); } void Driver::setDriverMode(StringRef Value) { static StringRef OptName = getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value) .Case("gcc", GCCMode) .Case("g++", GXXMode) .Case("cpp", CPPMode) .Case("cl", CLMode) .Case("flang", FlangMode) .Case("dxc", DXCMode) .Default(std::nullopt)) Mode = *M; else Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; } InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, bool IsClCompatMode, bool &ContainsError) { llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); ContainsError = false; unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsClCompatMode); // Make sure that Flang-only options don't pollute the Clang output // TODO: Make sure that Clang-only options don't pollute Flang output if (!IsFlangMode()) ExcludedFlagsBitmask |= options::FlangOnlyOption; unsigned MissingArgIndex, MissingArgCount; InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, IncludedFlagsBitmask, ExcludedFlagsBitmask); // Check for missing argument error. if (MissingArgCount) { Diag(diag::err_drv_missing_argument) << Args.getArgString(MissingArgIndex) << MissingArgCount; ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_missing_argument, SourceLocation()) > DiagnosticsEngine::Warning; } // Check for unsupported options. for (const Arg *A : Args) { if (A->getOption().hasFlag(options::Unsupported)) { Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args); ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt, SourceLocation()) > DiagnosticsEngine::Warning; continue; } // Warn about -mcpu= without an argument. if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); ContainsError |= Diags.getDiagnosticLevel( diag::warn_drv_empty_joined_argument, SourceLocation()) > DiagnosticsEngine::Warning; } } for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { unsigned DiagID; auto ArgString = A->getAsString(Args); std::string Nearest; if (getOpts().findNearest(ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { if (!IsCLMode() && getOpts().findExact(ArgString, Nearest, options::CC1Option)) { DiagID = diag::err_drv_unknown_argument_with_suggestion; Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest; } else { DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl : diag::err_drv_unknown_argument; Diags.Report(DiagID) << ArgString; } } else { DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion : diag::err_drv_unknown_argument_with_suggestion; Diags.Report(DiagID) << ArgString << Nearest; } ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > DiagnosticsEngine::Warning; } for (const Arg *A : Args.filtered(options::OPT_o)) { if (ArgStrings[A->getIndex()] == A->getSpelling()) continue; // Warn on joined arguments that are similar to a long argument. std::string ArgString = ArgStrings[A->getIndex()]; std::string Nearest; if (getOpts().findExact("-" + ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask)) Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument) << A->getAsString(Args) << Nearest; } return Args; } // Determine which compilation mode we are in. We look for options which // affect the phase, starting with the earliest phases, and record which // option we used to determine the final phase. phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, Arg **FinalPhaseArg) const { Arg *PhaseArg = nullptr; phases::ID FinalPhase; // -{E,EP,P,M,MM} only run the preprocessor. if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) || CCGenDiagnostics) { FinalPhase = phases::Preprocess; // --precompile only runs up to precompilation. // Options that cause the output of C++20 compiled module interfaces or // header units have the same effect. } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) || (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) || (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header, options::OPT_fmodule_header_EQ))) { FinalPhase = phases::Precompile; // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { FinalPhase = phases::Compile; // -S only runs up to the backend. } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { FinalPhase = phases::Backend; // -c compilation only runs up to the assembler. } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { FinalPhase = phases::Assemble; } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) { FinalPhase = phases::IfsMerge; // Otherwise do everything. } else FinalPhase = phases::Link; if (FinalPhaseArg) *FinalPhaseArg = PhaseArg; return FinalPhase; } static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, StringRef Value, bool Claim = true) { Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, Args.getBaseArgs().MakeIndex(Value), Value.data()); Args.AddSynthesizedArg(A); if (Claim) A->claim(); return A; } DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { const llvm::opt::OptTable &Opts = getOpts(); DerivedArgList *DAL = new DerivedArgList(Args); bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); bool IgnoreUnused = false; for (Arg *A : Args) { if (IgnoreUnused) A->claim(); if (A->getOption().matches(options::OPT_start_no_unused_arguments)) { IgnoreUnused = true; continue; } if (A->getOption().matches(options::OPT_end_no_unused_arguments)) { IgnoreUnused = false; continue; } // Unfortunately, we have to parse some forwarding options (-Xassembler, // -Xlinker, -Xpreprocessor) because we either integrate their functionality // (assembler and preprocessor), or bypass a previous driver ('collect2'). // Rewrite linker options, to replace --no-demangle with a custom internal // option. if ((A->getOption().matches(options::OPT_Wl_COMMA) || A->getOption().matches(options::OPT_Xlinker)) && A->containsValue("--no-demangle")) { // Add the rewritten no-demangle argument. DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); // Add the remaining values as Xlinker arguments. for (StringRef Val : A->getValues()) if (Val != "--no-demangle") DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); continue; } // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by // some build systems. We don't try to be complete here because we don't // care to encourage this usage model. if (A->getOption().matches(options::OPT_Wp_COMMA) && (A->getValue(0) == StringRef("-MD") || A->getValue(0) == StringRef("-MMD"))) { // Rewrite to -MD/-MMD along with -MF. if (A->getValue(0) == StringRef("-MD")) DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); else DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); if (A->getNumValues() == 2) DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); continue; } // Rewrite reserved library names. if (A->getOption().matches(options::OPT_l)) { StringRef Value = A->getValue(); // Rewrite unless -nostdlib is present. if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && Value == "stdc++") { DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); continue; } // Rewrite unconditionally. if (Value == "cc_kext") { DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); continue; } } // Pick up inputs via the -- option. if (A->getOption().matches(options::OPT__DASH_DASH)) { A->claim(); for (StringRef Val : A->getValues()) DAL->append(MakeInputArg(*DAL, Opts, Val, false)); continue; } DAL->append(A); } // Enforce -static if -miamcu is present. if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static)); // Add a default value of -mlinker-version=, if one was given and the user // didn't specify one. #if defined(HOST_LINK_VERSION) if (!Args.hasArg(options::OPT_mlinker_version_EQ) && strlen(HOST_LINK_VERSION) > 0) { DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), HOST_LINK_VERSION); DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); } #endif return DAL; } /// Compute target triple from args. /// /// This routine provides the logic to compute a target triple from various /// args passed to the driver and the default triple string. static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName = "") { // FIXME: Already done in Compilation *Driver::BuildCompilation if (const Arg *A = Args.getLastArg(options::OPT_target)) TargetTriple = A->getValue(); llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made // -gnu* only, and we can not change this, so we have to detect that case as // being the Hurd OS. if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu")) Target.setOSName("hurd"); // Handle Apple-specific options available here. if (Target.isOSBinFormatMachO()) { // If an explicit Darwin arch name is given, that trumps all. if (!DarwinArchName.empty()) { tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName, Args); return Target; } // Handle the Darwin '-arch' flag. if (Arg *A = Args.getLastArg(options::OPT_arch)) { StringRef ArchName = A->getValue(); tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args); } } // Handle pseudo-target flags '-mlittle-endian'/'-EL' and // '-mbig-endian'/'-EB'. if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian, options::OPT_mbig_endian)) { llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian) ? Target.getLittleEndianArchVariant() : Target.getBigEndianArchVariant(); if (T.getArch() != llvm::Triple::UnknownArch) { Target = std::move(T); Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian); } } // Skip further flag support on OSes which don't support '-m32' or '-m64'. if (Target.getArch() == llvm::Triple::tce || Target.getOS() == llvm::Triple::Minix) return Target; // On AIX, the env OBJECT_MODE may affect the resulting arch variant. if (Target.isOSAIX()) { if (std::optional<std::string> ObjectModeValue = llvm::sys::Process::GetEnv("OBJECT_MODE")) { StringRef ObjectMode = *ObjectModeValue; llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; if (ObjectMode.equals("64")) { AT = Target.get64BitArchVariant().getArch(); } else if (ObjectMode.equals("32")) { AT = Target.get32BitArchVariant().getArch(); } else { D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode; } if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) Target.setArch(AT); } } // The `-maix[32|64]` flags are only valid for AIX targets. if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64); A && !Target.isOSAIX()) D.Diag(diag::err_drv_unsupported_opt_for_target) << A->getAsString(Args) << Target.str(); // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, options::OPT_m32, options::OPT_m16, options::OPT_maix32, options::OPT_maix64); if (A) { llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; if (A->getOption().matches(options::OPT_m64) || A->getOption().matches(options::OPT_maix64)) { AT = Target.get64BitArchVariant().getArch(); if (Target.getEnvironment() == llvm::Triple::GNUX32) Target.setEnvironment(llvm::Triple::GNU); else if (Target.getEnvironment() == llvm::Triple::MuslX32) Target.setEnvironment(llvm::Triple::Musl); } else if (A->getOption().matches(options::OPT_mx32) && Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { AT = llvm::Triple::x86_64; if (Target.getEnvironment() == llvm::Triple::Musl) Target.setEnvironment(llvm::Triple::MuslX32); else Target.setEnvironment(llvm::Triple::GNUX32); } else if (A->getOption().matches(options::OPT_m32) || A->getOption().matches(options::OPT_maix32)) { AT = Target.get32BitArchVariant().getArch(); if (Target.getEnvironment() == llvm::Triple::GNUX32) Target.setEnvironment(llvm::Triple::GNU); else if (Target.getEnvironment() == llvm::Triple::MuslX32) Target.setEnvironment(llvm::Triple::Musl); } else if (A->getOption().matches(options::OPT_m16) && Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { AT = llvm::Triple::x86; Target.setEnvironment(llvm::Triple::CODE16); } if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) { Target.setArch(AT); if (Target.isWindowsGNUEnvironment()) toolchains::MinGW::fixTripleArch(D, Target, Args); } } // Handle -miamcu flag. if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" << Target.str(); if (A && !A->getOption().matches(options::OPT_m32)) D.Diag(diag::err_drv_argument_not_allowed_with) << "-miamcu" << A->getBaseArg().getAsString(Args); Target.setArch(llvm::Triple::x86); Target.setArchName("i586"); Target.setEnvironment(llvm::Triple::UnknownEnvironment); Target.setEnvironmentName(""); Target.setOS(llvm::Triple::ELFIAMCU); Target.setVendor(llvm::Triple::UnknownVendor); Target.setVendorName("intel"); } // If target is MIPS adjust the target triple // accordingly to provided ABI name. if (Target.isMIPS()) { if ((A = Args.getLastArg(options::OPT_mabi_EQ))) { StringRef ABIName = A->getValue(); if (ABIName == "32") { Target = Target.get32BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNUABI64 || Target.getEnvironment() == llvm::Triple::GNUABIN32) Target.setEnvironment(llvm::Triple::GNU); } else if (ABIName == "n32") { Target = Target.get64BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNU || Target.getEnvironment() == llvm::Triple::GNUABI64) Target.setEnvironment(llvm::Triple::GNUABIN32); } else if (ABIName == "64") { Target = Target.get64BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNU || Target.getEnvironment() == llvm::Triple::GNUABIN32) Target.setEnvironment(llvm::Triple::GNUABI64); } } } // If target is RISC-V adjust the target triple according to // provided architecture name if (Target.isRISCV()) { if (Args.hasArg(options::OPT_march_EQ) || Args.hasArg(options::OPT_mcpu_EQ)) { StringRef ArchName = tools::riscv::getRISCVArch(Args, Target); if (ArchName.starts_with_insensitive("rv32")) Target.setArch(llvm::Triple::riscv32); else if (ArchName.starts_with_insensitive("rv64")) Target.setArch(llvm::Triple::riscv64); } } return Target; } // Parse the LTO options and record the type of LTO compilation // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)? // option occurs last. static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args, OptSpecifier OptEq, OptSpecifier OptNeg) { if (!Args.hasFlag(OptEq, OptNeg, false)) return LTOK_None; const Arg *A = Args.getLastArg(OptEq); StringRef LTOName = A->getValue(); driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName) .Case("full", LTOK_Full) .Case("thin", LTOK_Thin) .Default(LTOK_Unknown); if (LTOMode == LTOK_Unknown) { D.Diag(diag::err_drv_unsupported_option_argument) << A->getSpelling() << A->getValue(); return LTOK_None; } return LTOMode; } // Parse the LTO options. void Driver::setLTOMode(const llvm::opt::ArgList &Args) { LTOMode = parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto); OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ, options::OPT_fno_offload_lto); // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on. if (Args.hasFlag(options::OPT_fopenmp_target_jit, options::OPT_fno_openmp_target_jit, false)) { if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ, options::OPT_fno_offload_lto)) if (OffloadLTOMode != LTOK_Full) Diag(diag::err_drv_incompatible_options) << A->getSpelling() << "-fopenmp-target-jit"; OffloadLTOMode = LTOK_Full; } } /// Compute the desired OpenMP runtime from the flags provided. Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); if (A) RuntimeName = A->getValue(); auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) .Case("libomp", OMPRT_OMP) .Case("libgomp", OMPRT_GOMP) .Case("libiomp5", OMPRT_IOMP5) .Default(OMPRT_Unknown); if (RT == OMPRT_Unknown) { if (A) Diag(diag::err_drv_unsupported_option_argument) << A->getSpelling() << A->getValue(); else // FIXME: We could use a nicer diagnostic here. Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; } return RT; } void Driver::CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs) { // // CUDA/HIP // // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA // or HIP type. However, mixed CUDA/HIP compilation is not supported. bool IsCuda = llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { return types::isCuda(I.first); }); bool IsHIP = llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { return types::isHIP(I.first); }) || C.getInputArgs().hasArg(options::OPT_hip_link); if (IsCuda && IsHIP) { Diag(clang::diag::err_drv_mix_cuda_hip); return; } if (IsCuda) { const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); const llvm::Triple &HostTriple = HostTC->getTriple(); auto OFK = Action::OFK_Cuda; auto CudaTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple); if (!CudaTriple) return; // Use the CUDA and host triples as the key into the ToolChains map, // because the device toolchain we create depends on both. auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()]; if (!CudaTC) { CudaTC = std::make_unique<toolchains::CudaToolChain>( *this, *CudaTriple, *HostTC, C.getInputArgs()); // Emit a warning if the detected CUDA version is too new. CudaInstallationDetector &CudaInstallation = static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation; if (CudaInstallation.isValid()) CudaInstallation.WarnIfUnsupportedVersion(); } C.addOffloadDeviceToolChain(CudaTC.get(), OFK); } else if (IsHIP) { if (auto *OMPTargetArg = C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { Diag(clang::diag::err_drv_unsupported_opt_for_language_mode) << OMPTargetArg->getSpelling() << "HIP"; return; } const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); auto OFK = Action::OFK_HIP; auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs()); if (!HIPTriple) return; auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple, *HostTC, OFK); assert(HIPTC && "Could not create offloading device tool chain."); C.addOffloadDeviceToolChain(HIPTC, OFK); } // // OpenMP // // We need to generate an OpenMP toolchain if the user specified targets with // the -fopenmp-targets option or used --offload-arch with OpenMP enabled. bool IsOpenMPOffloading = C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ, options::OPT_fno_openmp, false) && (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) || C.getInputArgs().hasArg(options::OPT_offload_arch_EQ)); if (IsOpenMPOffloading) { // We expect that -fopenmp-targets is always used in conjunction with the // option -fopenmp specifying a valid runtime with offloading support, i.e. // libomp or libiomp. OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs()); if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) { Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); return; } llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs; llvm::StringMap<StringRef> FoundNormalizedTriples; std::multiset<StringRef> OpenMPTriples; // If the user specified -fopenmp-targets= we create a toolchain for each // valid triple. Otherwise, if only --offload-arch= was specified we instead // attempt to derive the appropriate toolchains from the arguments. if (Arg *OpenMPTargets = C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { if (OpenMPTargets && !OpenMPTargets->getNumValues()) { Diag(clang::diag::warn_drv_empty_joined_argument) << OpenMPTargets->getAsString(C.getInputArgs()); return; } for (StringRef T : OpenMPTargets->getValues()) OpenMPTriples.insert(T); } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) && !IsHIP && !IsCuda) { const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs()); auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTC->getTriple()); // Attempt to deduce the offloading triple from the set of architectures. // We can only correctly deduce NVPTX / AMDGPU triples currently. We need // to temporarily create these toolchains so that we can access tools for // inferring architectures. llvm::DenseSet<StringRef> Archs; if (NVPTXTriple) { auto TempTC = std::make_unique<toolchains::CudaToolChain>( *this, *NVPTXTriple, *HostTC, C.getInputArgs()); for (StringRef Arch : getOffloadArchs( C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true)) Archs.insert(Arch); } if (AMDTriple) { auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>( *this, *AMDTriple, *HostTC, C.getInputArgs()); for (StringRef Arch : getOffloadArchs( C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true)) Archs.insert(Arch); } if (!AMDTriple && !NVPTXTriple) { for (StringRef Arch : getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true)) Archs.insert(Arch); } for (StringRef Arch : Archs) { if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch( getProcessorFromTargetID(*NVPTXTriple, Arch)))) { DerivedArchs[NVPTXTriple->getTriple()].insert(Arch); } else if (AMDTriple && IsAMDGpuArch(StringToCudaArch( getProcessorFromTargetID(*AMDTriple, Arch)))) { DerivedArchs[AMDTriple->getTriple()].insert(Arch); } else { Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch; return; } } // If the set is empty then we failed to find a native architecture. if (Archs.empty()) { Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << "native"; return; } for (const auto &TripleAndArchs : DerivedArchs) OpenMPTriples.insert(TripleAndArchs.first()); } for (StringRef Val : OpenMPTriples) { llvm::Triple TT(ToolChain::getOpenMPTriple(Val)); std::string NormalizedName = TT.normalize(); // Make sure we don't have a duplicate triple. auto Duplicate = FoundNormalizedTriples.find(NormalizedName); if (Duplicate != FoundNormalizedTriples.end()) { Diag(clang::diag::warn_drv_omp_offload_target_duplicate) << Val << Duplicate->second; continue; } // Store the current triple so that we can check for duplicates in the // following iterations. FoundNormalizedTriples[NormalizedName] = Val; // If the specified target is invalid, emit a diagnostic. if (TT.getArch() == llvm::Triple::UnknownArch) Diag(clang::diag::err_drv_invalid_omp_target) << Val; else { const ToolChain *TC; // Device toolchains have to be selected differently. They pair host // and device in their implementation. if (TT.isNVPTX() || TT.isAMDGCN()) { const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); assert(HostTC && "Host toolchain should be always defined."); auto &DeviceTC = ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; if (!DeviceTC) { if (TT.isNVPTX()) DeviceTC = std::make_unique<toolchains::CudaToolChain>( *this, TT, *HostTC, C.getInputArgs()); else if (TT.isAMDGCN()) DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>( *this, TT, *HostTC, C.getInputArgs()); else assert(DeviceTC && "Device toolchain not defined."); } TC = DeviceTC.get(); } else TC = &getToolChain(C.getInputArgs(), TT); C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); if (DerivedArchs.contains(TT.getTriple())) KnownArchs[TC] = DerivedArchs[TT.getTriple()]; } } } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) { Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); return; } // // TODO: Add support for other offloading programming models here. // } static void appendOneArg(InputArgList &Args, const Arg *Opt, const Arg *BaseArg) { // The args for config files or /clang: flags belong to different InputArgList // objects than Args. This copies an Arg from one of those other InputArgLists // to the ownership of Args. unsigned Index = Args.MakeIndex(Opt->getSpelling()); Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index), Index, BaseArg); Copy->getValues() = Opt->getValues(); if (Opt->isClaimed()) Copy->claim(); Copy->setOwnsValues(Opt->getOwnsValues()); Opt->setOwnsValues(false); Args.append(Copy); } bool Driver::readConfigFile(StringRef FileName, llvm::cl::ExpansionContext &ExpCtx) { // Try opening the given file. auto Status = getVFS().status(FileName); if (!Status) { Diag(diag::err_drv_cannot_open_config_file) << FileName << Status.getError().message(); return true; } if (Status->getType() != llvm::sys::fs::file_type::regular_file) { Diag(diag::err_drv_cannot_open_config_file) << FileName << "not a regular file"; return true; } // Try reading the given file. SmallVector<const char *, 32> NewCfgArgs; if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) { Diag(diag::err_drv_cannot_read_config_file) << FileName << toString(std::move(Err)); return true; } // Read options from config file. llvm::SmallString<128> CfgFileName(FileName); llvm::sys::path::native(CfgFileName); bool ContainErrors; std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>( ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); if (ContainErrors) return true; // Claim all arguments that come from a configuration file so that the driver // does not warn on any that is unused. for (Arg *A : *NewOptions) A->claim(); if (!CfgOptions) CfgOptions = std::move(NewOptions); else { // If this is a subsequent config file, append options to the previous one. for (auto *Opt : *NewOptions) { const Arg *BaseArg = &Opt->getBaseArg(); if (BaseArg == Opt) BaseArg = nullptr; appendOneArg(*CfgOptions, Opt, BaseArg); } } ConfigFiles.push_back(std::string(CfgFileName)); return false; } bool Driver::loadConfigFiles() { llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(), llvm::cl::tokenizeConfigFile); ExpCtx.setVFS(&getVFS()); // Process options that change search path for config files. if (CLOptions) { if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { SmallString<128> CfgDir; CfgDir.append( CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir)) SystemConfigDir.clear(); else SystemConfigDir = static_cast<std::string>(CfgDir); } if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { SmallString<128> CfgDir; llvm::sys::fs::expand_tilde( CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir); if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir)) UserConfigDir.clear(); else UserConfigDir = static_cast<std::string>(CfgDir); } } // Prepare list of directories where config file is searched for. StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir}; ExpCtx.setSearchDirs(CfgFileSearchDirs); // First try to load configuration from the default files, return on error. if (loadDefaultConfigFiles(ExpCtx)) return true; // Then load configuration files specified explicitly. SmallString<128> CfgFilePath; if (CLOptions) { for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) { // If argument contains directory separator, treat it as a path to // configuration file. if (llvm::sys::path::has_parent_path(CfgFileName)) { CfgFilePath.assign(CfgFileName); if (llvm::sys::path::is_relative(CfgFilePath)) { if (getVFS().makeAbsolute(CfgFilePath)) { Diag(diag::err_drv_cannot_open_config_file) << CfgFilePath << "cannot get absolute path"; return true; } } } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) { // Report an error that the config file could not be found. Diag(diag::err_drv_config_file_not_found) << CfgFileName; for (const StringRef &SearchDir : CfgFileSearchDirs) if (!SearchDir.empty()) Diag(diag::note_drv_config_file_searched_in) << SearchDir; return true; } // Try to read the config file, return on error. if (readConfigFile(CfgFilePath, ExpCtx)) return true; } } // No error occurred. return false; } bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) { // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty // value. if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) { if (*NoConfigEnv) return false; } if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config)) return false; std::string RealMode = getExecutableForDriverMode(Mode); std::string Triple; // If name prefix is present, no --target= override was passed via CLOptions // and the name prefix is not a valid triple, force it for backwards // compatibility. if (!ClangNameParts.TargetPrefix.empty() && computeTargetTriple(*this, "/invalid/", *CLOptions).str() == "/invalid/") { llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix}; if (PrefixTriple.getArch() == llvm::Triple::UnknownArch || PrefixTriple.isOSUnknown()) Triple = PrefixTriple.str(); } // Otherwise, use the real triple as used by the driver. if (Triple.empty()) { llvm::Triple RealTriple = computeTargetTriple(*this, TargetTriple, *CLOptions); Triple = RealTriple.str(); assert(!Triple.empty()); } // Search for config files in the following order: // 1. <triple>-<mode>.cfg using real driver mode // (e.g. i386-pc-linux-gnu-clang++.cfg). // 2. <triple>-<mode>.cfg using executable suffix // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++). // 3. <triple>.cfg + <mode>.cfg using real driver mode // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg). // 4. <triple>.cfg + <mode>.cfg using executable suffix // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++). // Try loading <triple>-<mode>.cfg, and return if we find a match. SmallString<128> CfgFilePath; std::string CfgFileName = Triple + '-' + RealMode + ".cfg"; if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) return readConfigFile(CfgFilePath, ExpCtx); bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() && ClangNameParts.ModeSuffix != RealMode; if (TryModeSuffix) { CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg"; if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) return readConfigFile(CfgFilePath, ExpCtx); } // Try loading <mode>.cfg, and return if loading failed. If a matching file // was not found, still proceed on to try <triple>.cfg. CfgFileName = RealMode + ".cfg"; if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) { if (readConfigFile(CfgFilePath, ExpCtx)) return true; } else if (TryModeSuffix) { CfgFileName = ClangNameParts.ModeSuffix + ".cfg"; if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) && readConfigFile(CfgFilePath, ExpCtx)) return true; } // Try loading <triple>.cfg and return if we find a match. CfgFileName = Triple + ".cfg"; if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) return readConfigFile(CfgFilePath, ExpCtx); // If we were unable to find a config file deduced from executable name, // that is not an error. return false; } Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { llvm::PrettyStackTraceString CrashInfo("Compilation construction"); // FIXME: Handle environment options which affect driver behavior, somewhere // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. // We look for the driver mode option early, because the mode can affect // how other options are parsed. auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1)); if (!DriverMode.empty()) setDriverMode(DriverMode); // FIXME: What are we going to do with -V and -b? // Arguments specified in command line. bool ContainsError; CLOptions = std::make_unique<InputArgList>( ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); // Try parsing configuration file. if (!ContainsError) ContainsError = loadConfigFiles(); bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); // All arguments, from both config file and command line. InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) : std::move(*CLOptions)); if (HasConfigFile) for (auto *Opt : *CLOptions) { if (Opt->getOption().matches(options::OPT_config)) continue; const Arg *BaseArg = &Opt->getBaseArg(); if (BaseArg == Opt) BaseArg = nullptr; appendOneArg(Args, Opt, BaseArg); } // In CL mode, look for any pass-through arguments if (IsCLMode() && !ContainsError) { SmallVector<const char *, 16> CLModePassThroughArgList; for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { A->claim(); CLModePassThroughArgList.push_back(A->getValue()); } if (!CLModePassThroughArgList.empty()) { // Parse any pass through args using default clang processing rather // than clang-cl processing. auto CLModePassThroughOptions = std::make_unique<InputArgList>( ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); if (!ContainsError) for (auto *Opt : *CLModePassThroughOptions) { appendOneArg(Args, Opt, nullptr); } } } // Check for working directory option before accessing any files if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) if (VFS->setCurrentWorkingDirectory(WD->getValue())) Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); // FIXME: This stuff needs to go into the Compilation, not the driver. bool CCCPrintPhases; // -canonical-prefixes, -no-canonical-prefixes are used very early in main. Args.ClaimAllArgs(options::OPT_canonical_prefixes); Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); // f(no-)integated-cc1 is also used very early in main. Args.ClaimAllArgs(options::OPT_fintegrated_cc1); Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); // Ignore -pipe. Args.ClaimAllArgs(options::OPT_pipe); // Extract -ccc args. // // FIXME: We need to figure out where this behavior should live. Most of it // should be outside in the client; the parts that aren't should have proper // options, either by introducing new ones or by overloading gcc ones like -V // or -b. CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) CCCGenericGCCName = A->getValue(); // Process -fproc-stat-report options. if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) { CCPrintProcessStats = true; CCPrintStatReportFilename = A->getValue(); } if (Args.hasArg(options::OPT_fproc_stat_report)) CCPrintProcessStats = true; // FIXME: TargetTriple is used by the target-prefixed calls to as/ld // and getToolChain is const. if (IsCLMode()) { // clang-cl targets MSVC-style Win32. llvm::Triple T(TargetTriple); T.setOS(llvm::Triple::Win32); T.setVendor(llvm::Triple::PC); T.setEnvironment(llvm::Triple::MSVC); T.setObjectFormat(llvm::Triple::COFF); if (Args.hasArg(options::OPT__SLASH_arm64EC)) T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec); TargetTriple = T.str(); } else if (IsDXCMode()) { // Build TargetTriple from target_profile option for clang-dxc. if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) { StringRef TargetProfile = A->getValue(); if (auto Triple = toolchains::HLSLToolChain::parseTargetProfile(TargetProfile)) TargetTriple = *Triple; else Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile; A->claim(); } else { Diag(diag::err_drv_dxc_missing_target_profile); } } if (const Arg *A = Args.getLastArg(options::OPT_target)) TargetTriple = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) Dir = InstalledDir = A->getValue(); for (const Arg *A : Args.filtered(options::OPT_B)) { A->claim(); PrefixDirs.push_back(A->getValue(0)); } if (std::optional<std::string> CompilerPathValue = llvm::sys::Process::GetEnv("COMPILER_PATH")) { StringRef CompilerPath = *CompilerPathValue; while (!CompilerPath.empty()) { std::pair<StringRef, StringRef> Split = CompilerPath.split(llvm::sys::EnvPathSeparator); PrefixDirs.push_back(std::string(Split.first)); CompilerPath = Split.second; } } if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) SysRoot = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) DyldPrefix = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) ResourceDir = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) .Case("cwd", SaveTempsCwd) .Case("obj", SaveTempsObj) .Default(SaveTempsCwd); } if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only, options::OPT_offload_device_only, options::OPT_offload_host_device)) { if (A->getOption().matches(options::OPT_offload_host_only)) Offload = OffloadHost; else if (A->getOption().matches(options::OPT_offload_device_only)) Offload = OffloadDevice; else Offload = OffloadHostDevice; } setLTOMode(Args); // Process -fembed-bitcode= flags. if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { StringRef Name = A->getValue(); unsigned Model = llvm::StringSwitch<unsigned>(Name) .Case("off", EmbedNone) .Case("all", EmbedBitcode) .Case("bitcode", EmbedBitcode) .Case("marker", EmbedMarker) .Default(~0U); if (Model == ~0U) { Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name; } else BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); } // Remove existing compilation database so that each job can append to it. if (Arg *A = Args.getLastArg(options::OPT_MJ)) llvm::sys::fs::remove(A->getValue()); // Setting up the jobs for some precompile cases depends on whether we are // treating them as PCH, implicit modules or C++20 ones. // TODO: inferring the mode like this seems fragile (it meets the objective // of not requiring anything new for operation, however). const Arg *Std = Args.getLastArg(options::OPT_std_EQ); ModulesModeCXX20 = !Args.hasArg(options::OPT_fmodules) && Std && (Std->containsValue("c++20") || Std->containsValue("c++2a") || Std->containsValue("c++23") || Std->containsValue("c++2b") || Std->containsValue("c++26") || Std->containsValue("c++2c") || Std->containsValue("c++latest")); // Process -fmodule-header{=} flags. if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ, options::OPT_fmodule_header)) { // These flags force C++20 handling of headers. ModulesModeCXX20 = true; if (A->getOption().matches(options::OPT_fmodule_header)) CXX20HeaderType = HeaderMode_Default; else { StringRef ArgName = A->getValue(); unsigned Kind = llvm::StringSwitch<unsigned>(ArgName) .Case("user", HeaderMode_User) .Case("system", HeaderMode_System) .Default(~0U); if (Kind == ~0U) { Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << ArgName; } else CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind); } } std::unique_ptr<llvm::opt::InputArgList> UArgs = std::make_unique<InputArgList>(std::move(Args)); // Perform the default argument translations. DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); // Owned by the host. const ToolChain &TC = getToolChain( *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); // Report warning when arm64EC option is overridden by specified target if ((TC.getTriple().getArch() != llvm::Triple::aarch64 || TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) && UArgs->hasArg(options::OPT__SLASH_arm64EC)) { getDiags().Report(clang::diag::warn_target_override_arm64ec) << TC.getTriple().str(); } // A common user mistake is specifying a target of aarch64-none-eabi or // arm-none-elf whereas the correct names are aarch64-none-elf & // arm-none-eabi. Detect these cases and issue a warning. if (TC.getTriple().getOS() == llvm::Triple::UnknownOS && TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) { switch (TC.getTriple().getArch()) { case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: if (TC.getTriple().getEnvironmentName() == "elf") { Diag(diag::warn_target_unrecognized_env) << TargetTriple << (TC.getTriple().getArchName().str() + "-none-eabi"); } break; case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::aarch64_32: if (TC.getTriple().getEnvironmentName().startswith("eabi")) { Diag(diag::warn_target_unrecognized_env) << TargetTriple << (TC.getTriple().getArchName().str() + "-none-elf"); } break; default: break; } } // The compilation takes ownership of Args. Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, ContainsError); if (!HandleImmediateArgs(*C)) return C; // Construct the list of inputs. InputList Inputs; BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); // Populate the tool chains for the offloading devices, if any. CreateOffloadingDeviceToolChains(*C, Inputs); // Construct the list of abstract actions to perform for this compilation. On // MachO targets this uses the driver-driver and universal actions. if (TC.getTriple().isOSBinFormatMachO()) BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); else BuildActions(*C, C->getArgs(), Inputs, C->getActions()); if (CCCPrintPhases) { PrintActions(*C); return C; } BuildJobs(*C); return C; } static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { llvm::opt::ArgStringList ASL; for (const auto *A : Args) { // Use user's original spelling of flags. For example, use // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user // wrote the former. while (A->getAlias()) A = A->getAlias(); A->render(Args, ASL); } for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { if (I != ASL.begin()) OS << ' '; llvm::sys::printArg(OS, *I, true); } OS << '\n'; } bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, SmallString<128> &CrashDiagDir) { using namespace llvm::sys; assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && "Only knows about .crash files on Darwin"); // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. path::home_directory(CrashDiagDir); if (CrashDiagDir.startswith("/var/root")) CrashDiagDir = "/"; path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); int PID = #if LLVM_ON_UNIX getpid(); #else 0; #endif std::error_code EC; fs::file_status FileStatus; TimePoint<> LastAccessTime; SmallString<128> CrashFilePath; // Lookup the .crash files and get the one generated by a subprocess spawned // by this driver invocation. for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { StringRef FileName = path::filename(File->path()); if (!FileName.startswith(Name)) continue; if (fs::status(File->path(), FileStatus)) continue; llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = llvm::MemoryBuffer::getFile(File->path()); if (!CrashFile) continue; // The first line should start with "Process:", otherwise this isn't a real // .crash file. StringRef Data = CrashFile.get()->getBuffer(); if (!Data.startswith("Process:")) continue; // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" size_t ParentProcPos = Data.find("Parent Process:"); if (ParentProcPos == StringRef::npos) continue; size_t LineEnd = Data.find_first_of("\n", ParentProcPos); if (LineEnd == StringRef::npos) continue; StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); int OpenBracket = -1, CloseBracket = -1; for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { if (ParentProcess[i] == '[') OpenBracket = i; if (ParentProcess[i] == ']') CloseBracket = i; } // Extract the parent process PID from the .crash file and check whether // it matches this driver invocation pid. int CrashPID; if (OpenBracket < 0 || CloseBracket < 0 || ParentProcess.slice(OpenBracket + 1, CloseBracket) .getAsInteger(10, CrashPID) || CrashPID != PID) { continue; } // Found a .crash file matching the driver pid. To avoid getting an older // and misleading crash file, continue looking for the most recent. // FIXME: the driver can dispatch multiple cc1 invocations, leading to // multiple crashes poiting to the same parent process. Since the driver // does not collect pid information for the dispatched invocation there's // currently no way to distinguish among them. const auto FileAccessTime = FileStatus.getLastModificationTime(); if (FileAccessTime > LastAccessTime) { CrashFilePath.assign(File->path()); LastAccessTime = FileAccessTime; } } // If found, copy it over to the location of other reproducer files. if (!CrashFilePath.empty()) { EC = fs::copy_file(CrashFilePath, ReproCrashFilename); if (EC) return false; return true; } return false; } static const char BugReporMsg[] = "\n********************\n\n" "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" "Preprocessed source(s) and associated run script(s) are located at:"; // When clang crashes, produce diagnostic information including the fully // preprocessed source file(s). Request that the developer attach the // diagnostic information to a bug report. void Driver::generateCompilationDiagnostics( Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) return; unsigned Level = 1; if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) { Level = llvm::StringSwitch<unsigned>(A->getValue()) .Case("off", 0) .Case("compiler", 1) .Case("all", 2) .Default(1); } if (!Level) return; // Don't try to generate diagnostics for dsymutil jobs. if (FailingCommand.getCreator().isDsymutilJob()) return; bool IsLLD = false; ArgStringList SavedTemps; if (FailingCommand.getCreator().isLinkJob()) { C.getDefaultToolChain().GetLinkerPath(&IsLLD); if (!IsLLD || Level < 2) return; // If lld crashed, we will re-run the same command with the input it used // to have. In that case we should not remove temp files in // initCompilationForDiagnostics yet. They will be added back and removed // later. SavedTemps = std::move(C.getTempFiles()); assert(!C.getTempFiles().size()); } // Print the version of the compiler. PrintVersion(C, llvm::errs()); // Suppress driver output and emit preprocessor output to temp file. CCGenDiagnostics = true; // Save the original job command(s). Command Cmd = FailingCommand; // Keep track of whether we produce any errors while trying to produce // preprocessed sources. DiagnosticErrorTrap Trap(Diags); // Suppress tool output. C.initCompilationForDiagnostics(); // If lld failed, rerun it again with --reproduce. if (IsLLD) { const char *TmpName = CreateTempFile(C, "linker-crash", "tar"); Command NewLLDInvocation = Cmd; llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments(); StringRef ReproduceOption = C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment() ? "/reproduce:" : "--reproduce="; ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data()); NewLLDInvocation.replaceArguments(std::move(ArgList)); // Redirect stdout/stderr to /dev/null. NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr); Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg; Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName; Diag(clang::diag::note_drv_command_failed_diag_msg) << "\n\n********************"; if (Report) Report->TemporaryFiles.push_back(TmpName); return; } // Construct the list of inputs. InputList Inputs; BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { bool IgnoreInput = false; // Ignore input from stdin or any inputs that cannot be preprocessed. // Check type first as not all linker inputs have a value. if (types::getPreprocessedType(it->first) == types::TY_INVALID) { IgnoreInput = true; } else if (!strcmp(it->second->getValue(), "-")) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - " "ignoring input from stdin."; IgnoreInput = true; } if (IgnoreInput) { it = Inputs.erase(it); ie = Inputs.end(); } else { ++it; } } if (Inputs.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - " "no preprocessable inputs."; return; } // Don't attempt to generate preprocessed files if multiple -arch options are // used, unless they're all duplicates. llvm::StringSet<> ArchNames; for (const Arg *A : C.getArgs()) { if (A->getOption().matches(options::OPT_arch)) { StringRef ArchName = A->getValue(); ArchNames.insert(ArchName); } } if (ArchNames.size() > 1) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - cannot generate " "preprocessed source with multiple -arch options."; return; } // Construct the list of abstract actions to perform for this compilation. On // Darwin OSes this uses the driver-driver and builds universal actions. const ToolChain &TC = C.getDefaultToolChain(); if (TC.getTriple().isOSBinFormatMachO()) BuildUniversalActions(C, TC, Inputs); else BuildActions(C, C.getArgs(), Inputs, C.getActions()); BuildJobs(C); // If there were errors building the compilation, quit now. if (Trap.hasErrorOccurred()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } // Generate preprocessed output. SmallVector<std::pair<int, const Command *>, 4> FailingCommands; C.ExecuteJobs(C.getJobs(), FailingCommands); // If any of the preprocessing commands failed, clean up and exit. if (!FailingCommands.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } const ArgStringList &TempFiles = C.getTempFiles(); if (TempFiles.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg; SmallString<128> VFS; SmallString<128> ReproCrashFilename; for (const char *TempFile : TempFiles) { Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; if (Report) Report->TemporaryFiles.push_back(TempFile); if (ReproCrashFilename.empty()) { ReproCrashFilename = TempFile; llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); } if (StringRef(TempFile).endswith(".cache")) { // In some cases (modules) we'll dump extra data to help with reproducing // the crash into a directory next to the output. VFS = llvm::sys::path::filename(TempFile); llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); } } for (const char *TempFile : SavedTemps) C.addTempFile(TempFile); // Assume associated files are based off of the first temporary file. CrashReportInfo CrashInfo(TempFiles[0], VFS); llvm::SmallString<128> Script(CrashInfo.Filename); llvm::sys::path::replace_extension(Script, "sh"); std::error_code EC; llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew, llvm::sys::fs::FA_Write, llvm::sys::fs::OF_Text); if (EC) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating run script: " << Script << " " << EC.message(); } else { ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" << "# Driver args: "; printArgList(ScriptOS, C.getInputArgs()); ScriptOS << "# Original command: "; Cmd.Print(ScriptOS, "\n", /*Quote=*/true); Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); if (!AdditionalInformation.empty()) ScriptOS << "\n# Additional information: " << AdditionalInformation << "\n"; if (Report) Report->TemporaryFiles.push_back(std::string(Script.str())); Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; } // On darwin, provide information about the .crash diagnostic report. if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { SmallString<128> CrashDiagDir; if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { Diag(clang::diag::note_drv_command_failed_diag_msg) << ReproCrashFilename.str(); } else { // Suggest a directory for the user to look for .crash files. llvm::sys::path::append(CrashDiagDir, Name); CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; Diag(clang::diag::note_drv_command_failed_diag_msg) << "Crash backtrace is located in"; Diag(clang::diag::note_drv_command_failed_diag_msg) << CrashDiagDir.str(); Diag(clang::diag::note_drv_command_failed_diag_msg) << "(choose the .crash file that corresponds to your crash)"; } } Diag(clang::diag::note_drv_command_failed_diag_msg) << "\n\n********************"; } void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { // Since commandLineFitsWithinSystemLimits() may underestimate system's // capacity if the tool does not support response files, there is a chance/ // that things will just work without a response file, so we silently just // skip it. if (Cmd.getResponseFileSupport().ResponseKind == ResponseFileSupport::RF_None || llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments())) return; std::string TmpName = GetTemporaryPath("response", "txt"); Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); } int Driver::ExecuteCompilation( Compilation &C, SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { if (C.getArgs().hasArg(options::OPT_fdriver_only)) { if (C.getArgs().hasArg(options::OPT_v)) C.getJobs().Print(llvm::errs(), "\n", true); C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true); // If there were errors building the compilation, quit now. if (!FailingCommands.empty() || Diags.hasErrorOccurred()) return 1; return 0; } // Just print if -### was present. if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { C.getJobs().Print(llvm::errs(), "\n", true); return Diags.hasErrorOccurred() ? 1 : 0; } // If there were errors building the compilation, quit now. if (Diags.hasErrorOccurred()) return 1; // Set up response file names for each command, if necessary. for (auto &Job : C.getJobs()) setUpResponseFiles(C, Job); C.ExecuteJobs(C.getJobs(), FailingCommands); // If the command succeeded, we are done. if (FailingCommands.empty()) return 0; // Otherwise, remove result files and print extra information about abnormal // failures. int Res = 0; for (const auto &CmdPair : FailingCommands) { int CommandRes = CmdPair.first; const Command *FailingCommand = CmdPair.second; // Remove result files if we're not saving temps. if (!isSaveTempsEnabled()) { const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); C.CleanupFileMap(C.getResultFiles(), JA, true); // Failure result files are valid unless we crashed. if (CommandRes < 0) C.CleanupFileMap(C.getFailureResultFiles(), JA, true); } // llvm/lib/Support/*/Signals.inc will exit with a special return code // for SIGPIPE. Do not print diagnostics for this case. if (CommandRes == EX_IOERR) { Res = CommandRes; continue; } // Print extra information about abnormal failures, if possible. // // This is ad-hoc, but we don't want to be excessively noisy. If the result // status was 1, assume the command failed normally. In particular, if it // was the compiler then assume it gave a reasonable error code. Failures // in other tools are less common, and they generally have worse // diagnostics, so always print the diagnostic there. const Tool &FailingTool = FailingCommand->getCreator(); if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { // FIXME: See FIXME above regarding result code interpretation. if (CommandRes < 0) Diag(clang::diag::err_drv_command_signalled) << FailingTool.getShortName(); else Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName() << CommandRes; } } return Res; } void Driver::PrintHelp(bool ShowHidden) const { unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsCLMode()); ExcludedFlagsBitmask |= options::NoDriverOption; if (!ShowHidden) ExcludedFlagsBitmask |= HelpHidden; if (IsFlangMode()) IncludedFlagsBitmask |= options::FlangOption; else ExcludedFlagsBitmask |= options::FlangOnlyOption; std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), IncludedFlagsBitmask, ExcludedFlagsBitmask, /*ShowAllAliases=*/false); } void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { if (IsFlangMode()) { OS << getClangToolFullVersion("flang-new") << '\n'; } else { // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. OS << getClangFullVersion() << '\n'; } const ToolChain &TC = C.getDefaultToolChain(); OS << "Target: " << TC.getTripleString() << '\n'; // Print the threading model. if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { // Don't print if the ToolChain would have barfed on it already if (TC.isThreadModelSupported(A->getValue())) OS << "Thread model: " << A->getValue(); } else OS << "Thread model: " << TC.getThreadModel(); OS << '\n'; // Print out the install directory. OS << "InstalledDir: " << InstalledDir << '\n'; // If configuration files were used, print their paths. for (auto ConfigFile : ConfigFiles) OS << "Configuration file: " << ConfigFile << '\n'; } /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories /// option. static void PrintDiagnosticCategories(raw_ostream &OS) { // Skip the empty category. for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; ++i) OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; } void Driver::HandleAutocompletions(StringRef PassedFlags) const { if (PassedFlags == "") return; // Print out all options that start with a given argument. This is used for // shell autocompletion. std::vector<std::string> SuggestedCompletions; std::vector<std::string> Flags; unsigned int DisableFlags = options::NoDriverOption | options::Unsupported | options::Ignored; // Make sure that Flang-only options don't pollute the Clang output // TODO: Make sure that Clang-only options don't pollute Flang output if (!IsFlangMode()) DisableFlags |= options::FlangOnlyOption; // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," // because the latter indicates that the user put space before pushing tab // which should end up in a file completion. const bool HasSpace = PassedFlags.endswith(","); // Parse PassedFlags by "," as all the command-line flags are passed to this // function separated by "," StringRef TargetFlags = PassedFlags; while (TargetFlags != "") { StringRef CurFlag; std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); Flags.push_back(std::string(CurFlag)); } // We want to show cc1-only options only when clang is invoked with -cc1 or // -Xclang. if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) DisableFlags &= ~options::NoDriverOption; const llvm::opt::OptTable &Opts = getOpts(); StringRef Cur; Cur = Flags.at(Flags.size() - 1); StringRef Prev; if (Flags.size() >= 2) { Prev = Flags.at(Flags.size() - 2); SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); } if (SuggestedCompletions.empty()) SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); // If Flags were empty, it means the user typed `clang [tab]` where we should // list all possible flags. If there was no value completion and the user // pressed tab after a space, we should fall back to a file completion. // We're printing a newline to be consistent with what we print at the end of // this function. if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { llvm::outs() << '\n'; return; } // When flag ends with '=' and there was no value completion, return empty // string and fall back to the file autocompletion. if (SuggestedCompletions.empty() && !Cur.endswith("=")) { // If the flag is in the form of "--autocomplete=-foo", // we were requested to print out all option names that start with "-foo". // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); // We have to query the -W flags manually as they're not in the OptTable. // TODO: Find a good way to add them to OptTable instead and them remove // this code. for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) if (S.startswith(Cur)) SuggestedCompletions.push_back(std::string(S)); } // Sort the autocomplete candidates so that shells print them out in a // deterministic order. We could sort in any way, but we chose // case-insensitive sorting for consistency with the -help option // which prints out options in the case-insensitive alphabetical order. llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { if (int X = A.compare_insensitive(B)) return X < 0; return A.compare(B) > 0; }); llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; } bool Driver::HandleImmediateArgs(const Compilation &C) { // The order these options are handled in gcc is all over the place, but we // don't expect inconsistencies w.r.t. that to matter in practice. if (C.getArgs().hasArg(options::OPT_dumpmachine)) { llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_dumpversion)) { // Since -dumpversion is only implemented for pedantic GCC compatibility, we // return an answer which matches our definition of __VERSION__. llvm::outs() << CLANG_VERSION_STRING << "\n"; return false; } if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { PrintDiagnosticCategories(llvm::outs()); return false; } if (C.getArgs().hasArg(options::OPT_help) || C.getArgs().hasArg(options::OPT__help_hidden)) { PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); return false; } if (C.getArgs().hasArg(options::OPT__version)) { // Follow gcc behavior and use stdout for --version and stderr for -v. PrintVersion(C, llvm::outs()); return false; } if (C.getArgs().hasArg(options::OPT_v) || C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || C.getArgs().hasArg(options::OPT_print_supported_cpus)) { PrintVersion(C, llvm::errs()); SuppressMissingInputWarning = true; } if (C.getArgs().hasArg(options::OPT_v)) { if (!SystemConfigDir.empty()) llvm::errs() << "System configuration file directory: " << SystemConfigDir << "\n"; if (!UserConfigDir.empty()) llvm::errs() << "User configuration file directory: " << UserConfigDir << "\n"; } const ToolChain &TC = C.getDefaultToolChain(); if (C.getArgs().hasArg(options::OPT_v)) TC.printVerboseInfo(llvm::errs()); if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { llvm::outs() << ResourceDir << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { llvm::outs() << "programs: ="; bool separator = false; // Print -B and COMPILER_PATH. for (const std::string &Path : PrefixDirs) { if (separator) llvm::outs() << llvm::sys::EnvPathSeparator; llvm::outs() << Path; separator = true; } for (const std::string &Path : TC.getProgramPaths()) { if (separator) llvm::outs() << llvm::sys::EnvPathSeparator; llvm::outs() << Path; separator = true; } llvm::outs() << "\n"; llvm::outs() << "libraries: =" << ResourceDir; StringRef sysroot = C.getSysRoot(); for (const std::string &Path : TC.getFilePaths()) { // Always print a separator. ResourceDir was the first item shown. llvm::outs() << llvm::sys::EnvPathSeparator; // Interpretation of leading '=' is needed only for NetBSD. if (Path[0] == '=') llvm::outs() << sysroot << Path.substr(1); else llvm::outs() << Path; } llvm::outs() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) { std::string RuntimePath; // Get the first existing path, if any. for (auto Path : TC.getRuntimePaths()) { if (getVFS().exists(Path)) { RuntimePath = Path; break; } } if (!RuntimePath.empty()) llvm::outs() << RuntimePath << '\n'; else llvm::outs() << TC.getCompilerRTPath() << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) { std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags(); for (std::size_t I = 0; I != Flags.size(); I += 2) llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n"; return false; } // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { StringRef ProgName = A->getValue(); // Null program name cannot have a path. if (! ProgName.empty()) llvm::outs() << GetProgramPath(ProgName, TC); llvm::outs() << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { StringRef PassedFlags = A->getValue(); HandleAutocompletions(PassedFlags); return false; } if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); RegisterEffectiveTriple TripleRAII(TC, Triple); switch (RLT) { case ToolChain::RLT_CompilerRT: llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; break; case ToolChain::RLT_Libgcc: llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; break; } return false; } if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { for (const Multilib &Multilib : TC.getMultilibs()) llvm::outs() << Multilib << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_multi_flags)) { Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs()); llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags); std::set<llvm::StringRef> SortedFlags; for (const auto &FlagEntry : ExpandedFlags) SortedFlags.insert(FlagEntry.getKey()); for (auto Flag : SortedFlags) llvm::outs() << Flag << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { for (const Multilib &Multilib : TC.getSelectedMultilibs()) { if (Multilib.gccSuffix().empty()) llvm::outs() << ".\n"; else { StringRef Suffix(Multilib.gccSuffix()); assert(Suffix.front() == '/'); llvm::outs() << Suffix.substr(1) << "\n"; } } return false; } if (C.getArgs().hasArg(options::OPT_print_target_triple)) { llvm::outs() << TC.getTripleString() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); llvm::outs() << Triple.getTriple() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_targets)) { llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs()); return false; } return true; } enum { TopLevelAction = 0, HeadSibAction = 1, OtherSibAction = 2, }; // Display an action graph human-readably. Action A is the "sink" node // and latest-occuring action. Traversal is in pre-order, visiting the // inputs to each action before printing the action itself. static unsigned PrintActions1(const Compilation &C, Action *A, std::map<Action *, unsigned> &Ids, Twine Indent = {}, int Kind = TopLevelAction) { if (Ids.count(A)) // A was already visited. return Ids[A]; std::string str; llvm::raw_string_ostream os(str); auto getSibIndent = [](int K) -> Twine { return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; }; Twine SibIndent = Indent + getSibIndent(Kind); int SibKind = HeadSibAction; os << Action::getClassName(A->getKind()) << ", "; if (InputAction *IA = dyn_cast<InputAction>(A)) { os << "\"" << IA->getInputArg().getValue() << "\""; } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { os << '"' << BIA->getArchName() << '"' << ", {" << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { bool IsFirst = true; OA->doOnEachDependence( [&](Action *A, const ToolChain *TC, const char *BoundArch) { assert(TC && "Unknown host toolchain"); // E.g. for two CUDA device dependences whose bound arch is sm_20 and // sm_35 this will generate: // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" // (nvptx64-nvidia-cuda:sm_35) {#ID} if (!IsFirst) os << ", "; os << '"'; os << A->getOffloadingKindPrefix(); os << " ("; os << TC->getTriple().normalize(); if (BoundArch) os << ":" << BoundArch; os << ")"; os << '"'; os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; IsFirst = false; SibKind = OtherSibAction; }); } else { const ActionList *AL = &A->getInputs(); if (AL->size()) { const char *Prefix = "{"; for (Action *PreRequisite : *AL) { os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); Prefix = ", "; SibKind = OtherSibAction; } os << "}"; } else os << "{}"; } // Append offload info for all options other than the offloading action // itself (e.g. (cuda-device, sm_20) or (cuda-host)). std::string offload_str; llvm::raw_string_ostream offload_os(offload_str); if (!isa<OffloadAction>(A)) { auto S = A->getOffloadingKindPrefix(); if (!S.empty()) { offload_os << ", (" << S; if (A->getOffloadingArch()) offload_os << ", " << A->getOffloadingArch(); offload_os << ")"; } } auto getSelfIndent = [](int K) -> Twine { return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; }; unsigned Id = Ids.size(); Ids[A] = Id; llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " << types::getTypeName(A->getType()) << offload_os.str() << "\n"; return Id; } // Print the action graphs in a compilation C. // For example "clang -c file1.c file2.c" is composed of two subgraphs. void Driver::PrintActions(const Compilation &C) const { std::map<Action *, unsigned> Ids; for (Action *A : C.getActions()) PrintActions1(C, A, Ids); } /// Check whether the given input tree contains any compilation or /// assembly actions. static bool ContainsCompileOrAssembleAction(const Action *A) { if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || isa<AssembleJobAction>(A)) return true; return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction); } void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const { DerivedArgList &Args = C.getArgs(); ActionList &Actions = C.getActions(); llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); // Collect the list of architectures. Duplicates are allowed, but should only // be handled once (in the order seen). llvm::StringSet<> ArchNames; SmallVector<const char *, 4> Archs; for (Arg *A : Args) { if (A->getOption().matches(options::OPT_arch)) { // Validate the option here; we don't save the type here because its // particular spelling may participate in other driver choices. llvm::Triple::ArchType Arch = tools::darwin::getArchTypeForMachOArchName(A->getValue()); if (Arch == llvm::Triple::UnknownArch) { Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); continue; } A->claim(); if (ArchNames.insert(A->getValue()).second) Archs.push_back(A->getValue()); } } // When there is no explicit arch for this platform, make sure we still bind // the architecture (to the default) so that -Xarch_ is handled correctly. if (!Archs.size()) Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); ActionList SingleActions; BuildActions(C, Args, BAInputs, SingleActions); // Add in arch bindings for every top level action, as well as lipo and // dsymutil steps if needed. for (Action* Act : SingleActions) { // Make sure we can lipo this kind of output. If not (and it is an actual // output) then we disallow, since we can't create an output file with the // right name without overwriting it. We could remove this oddity by just // changing the output names to include the arch, which would also fix // -save-temps. Compatibility wins for now. if (Archs.size() > 1 && !types::canLipoType(Act->getType())) Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) << types::getTypeName(Act->getType()); ActionList Inputs; for (unsigned i = 0, e = Archs.size(); i != e; ++i) Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); // Lipo if necessary, we do it this way because we need to set the arch flag // so that -Xarch_ gets overwritten. if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) Actions.append(Inputs.begin(), Inputs.end()); else Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); // Handle debug info queries. Arg *A = Args.getLastArg(options::OPT_g_Group); bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && !A->getOption().matches(options::OPT_gstabs); if ((enablesDebugInfo || willEmitRemarks(Args)) && ContainsCompileOrAssembleAction(Actions.back())) { // Add a 'dsymutil' step if necessary, when debug info is enabled and we // have a compile input. We need to run 'dsymutil' ourselves in such cases // because the debug info will refer to a temporary object file which // will be removed at the end of the compilation process. if (Act->getType() == types::TY_Image) { ActionList Inputs; Inputs.push_back(Actions.back()); Actions.pop_back(); Actions.push_back( C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); } // Verify the debug info output. if (Args.hasArg(options::OPT_verify_debug_info)) { Action* LastAction = Actions.back(); Actions.pop_back(); Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( LastAction, types::TY_Nothing)); } } } } bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, types::ID Ty, bool TypoCorrect) const { if (!getCheckInputsExist()) return true; // stdin always exists. if (Value == "-") return true; // If it's a header to be found in the system or user search path, then defer // complaints about its absence until those searches can be done. When we // are definitely processing headers for C++20 header units, extend this to // allow the user to put "-fmodule-header -xc++-header vector" for example. if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader || (ModulesModeCXX20 && Ty == types::TY_CXXHeader)) return true; if (getVFS().exists(Value)) return true; if (TypoCorrect) { // Check if the filename is a typo for an option flag. OptTable thinks // that all args that are not known options and that start with / are // filenames, but e.g. `/diagnostic:caret` is more likely a typo for // the option `/diagnostics:caret` than a reference to a file in the root // directory. unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsCLMode()); std::string Nearest; if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) <= 1) { Diag(clang::diag::err_drv_no_such_file_with_suggestion) << Value << Nearest; return false; } } // In CL mode, don't error on apparently non-existent linker inputs, because // they can be influenced by linker flags the clang driver might not // understand. // Examples: // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver // module look for an MSVC installation in the registry. (We could ask // the MSVCToolChain object if it can find `ole32.lib`, but the logic to // look in the registry might move into lld-link in the future so that // lld-link invocations in non-MSVC shells just work too.) // - `clang-cl ... /link ...` can pass arbitrary flags to the linker, // including /libpath:, which is used to find .lib and .obj files. // So do not diagnose this on the driver level. Rely on the linker diagnosing // it. (If we don't end up invoking the linker, this means we'll emit a // "'linker' input unused [-Wunused-command-line-argument]" warning instead // of an error.) // // Only do this skip after the typo correction step above. `/Brepo` is treated // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit // an error if we have a flag that's within an edit distance of 1 from a // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the // driver in the unlikely case they run into this.) // // Don't do this for inputs that start with a '/', else we'd pass options // like /libpath: through to the linker silently. // // Emitting an error for linker inputs can also cause incorrect diagnostics // with the gcc driver. The command // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o // will make lld look for some/dir/file.o, while we will diagnose here that // `/file.o` does not exist. However, configure scripts check if // `clang /GR-` compiles without error to see if the compiler is cl.exe, // so we can't downgrade diagnostics for `/GR-` from an error to a warning // in cc mode. (We can in cl mode because cl.exe itself only warns on // unknown flags.) if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/")) return true; Diag(clang::diag::err_drv_no_such_file) << Value; return false; } // Get the C++20 Header Unit type corresponding to the input type. static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) { switch (HM) { case HeaderMode_User: return types::TY_CXXUHeader; case HeaderMode_System: return types::TY_CXXSHeader; case HeaderMode_Default: break; case HeaderMode_None: llvm_unreachable("should not be called in this case"); } return types::TY_CXXHUHeader; } // Construct a the list of inputs and their types. void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, InputList &Inputs) const { const llvm::opt::OptTable &Opts = getOpts(); // Track the current user specified (-x) input. We also explicitly track the // argument used to set the type; we only want to claim the type when we // actually use it, so we warn about unused -x arguments. types::ID InputType = types::TY_Nothing; Arg *InputTypeArg = nullptr; // The last /TC or /TP option sets the input type to C or C++ globally. if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { InputTypeArg = TCTP; InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) ? types::TY_C : types::TY_CXX; Arg *Previous = nullptr; bool ShowNote = false; for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { if (Previous) { Diag(clang::diag::warn_drv_overriding_flag_option) << Previous->getSpelling() << A->getSpelling(); ShowNote = true; } Previous = A; } if (ShowNote) Diag(clang::diag::note_drv_t_option_is_global); } // Warn -x after last input file has no effect if (!IsCLMode()) { Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x); Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT); if (LastXArg && LastInputArg && LastInputArg->getIndex() < LastXArg->getIndex()) Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue(); } else { // In CL mode suggest /TC or /TP since -x doesn't make sense if passed via // /clang:. if (auto *A = Args.getLastArg(options::OPT_x)) Diag(diag::err_drv_unsupported_opt_with_suggestion) << A->getAsString(Args) << "/TC' or '/TP"; } for (Arg *A : Args) { if (A->getOption().getKind() == Option::InputClass) { const char *Value = A->getValue(); types::ID Ty = types::TY_INVALID; // Infer the input type if necessary. if (InputType == types::TY_Nothing) { // If there was an explicit arg for this, claim it. if (InputTypeArg) InputTypeArg->claim(); // stdin must be handled specially. if (memcmp(Value, "-", 2) == 0) { if (IsFlangMode()) { Ty = types::TY_Fortran; } else if (IsDXCMode()) { Ty = types::TY_HLSL; } else { // If running with -E, treat as a C input (this changes the // builtin macros, for example). This may be overridden by -ObjC // below. // // Otherwise emit an error but still use a valid type to avoid // spurious errors (e.g., no inputs). assert(!CCGenDiagnostics && "stdin produces no crash reproducer"); if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl : clang::diag::err_drv_unknown_stdin_type); Ty = types::TY_C; } } else { // Otherwise lookup by extension. // Fallback is C if invoked as C preprocessor, C++ if invoked with // clang-cl /E, or Object otherwise. // We use a host hook here because Darwin at least has its own // idea of what .s is. if (const char *Ext = strrchr(Value, '.')) Ty = TC.LookupTypeForExtension(Ext + 1); if (Ty == types::TY_INVALID) { if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics)) Ty = types::TY_CXX; else if (CCCIsCPP() || CCGenDiagnostics) Ty = types::TY_C; else Ty = types::TY_Object; } // If the driver is invoked as C++ compiler (like clang++ or c++) it // should autodetect some input files as C++ for g++ compatibility. if (CCCIsCXX()) { types::ID OldTy = Ty; Ty = types::lookupCXXTypeForCType(Ty); // Do not complain about foo.h, when we are known to be processing // it as a C++20 header unit. if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode())) Diag(clang::diag::warn_drv_treating_input_as_cxx) << getTypeName(OldTy) << getTypeName(Ty); } // If running with -fthinlto-index=, extensions that normally identify // native object files actually identify LLVM bitcode files. if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && Ty == types::TY_Object) Ty = types::TY_LLVM_BC; } // -ObjC and -ObjC++ override the default language, but only for "source // files". We just treat everything that isn't a linker input as a // source file. // // FIXME: Clean this up if we move the phase sequence into the type. if (Ty != types::TY_Object) { if (Args.hasArg(options::OPT_ObjC)) Ty = types::TY_ObjC; else if (Args.hasArg(options::OPT_ObjCXX)) Ty = types::TY_ObjCXX; } // Disambiguate headers that are meant to be header units from those // intended to be PCH. Avoid missing '.h' cases that are counted as // C headers by default - we know we are in C++ mode and we do not // want to issue a complaint about compiling things in the wrong mode. if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) && hasHeaderMode()) Ty = CXXHeaderUnitType(CXX20HeaderType); } else { assert(InputTypeArg && "InputType set w/o InputTypeArg"); if (!InputTypeArg->getOption().matches(options::OPT_x)) { // If emulating cl.exe, make sure that /TC and /TP don't affect input // object files. const char *Ext = strrchr(Value, '.'); if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) Ty = types::TY_Object; } if (Ty == types::TY_INVALID) { Ty = InputType; InputTypeArg->claim(); } } if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) Inputs.push_back(std::make_pair(Ty, A)); } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { StringRef Value = A->getValue(); if (DiagnoseInputExistence(Args, Value, types::TY_C, /*TypoCorrect=*/false)) { Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); Inputs.push_back(std::make_pair(types::TY_C, InputArg)); } A->claim(); } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { StringRef Value = A->getValue(); if (DiagnoseInputExistence(Args, Value, types::TY_CXX, /*TypoCorrect=*/false)) { Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); } A->claim(); } else if (A->getOption().hasFlag(options::LinkerInput)) { // Just treat as object type, we could make a special type for this if // necessary. Inputs.push_back(std::make_pair(types::TY_Object, A)); } else if (A->getOption().matches(options::OPT_x)) { InputTypeArg = A; InputType = types::lookupTypeForTypeSpecifier(A->getValue()); A->claim(); // Follow gcc behavior and treat as linker input for invalid -x // options. Its not clear why we shouldn't just revert to unknown; but // this isn't very important, we might as well be bug compatible. if (!InputType) { Diag(clang::diag::err_drv_unknown_language) << A->getValue(); InputType = types::TY_Object; } // If the user has put -fmodule-header{,=} then we treat C++ headers as // header unit inputs. So we 'promote' -xc++-header appropriately. if (InputType == types::TY_CXXHeader && hasHeaderMode()) InputType = CXXHeaderUnitType(CXX20HeaderType); } else if (A->getOption().getID() == options::OPT_U) { assert(A->getNumValues() == 1 && "The /U option has one value."); StringRef Val = A->getValue(0); if (Val.find_first_of("/\\") != StringRef::npos) { // Warn about e.g. "/Users/me/myfile.c". Diag(diag::warn_slash_u_filename) << Val; Diag(diag::note_use_dashdash); } } } if (CCCIsCPP() && Inputs.empty()) { // If called as standalone preprocessor, stdin is processed // if no other input is present. Arg *A = MakeInputArg(Args, Opts, "-"); Inputs.push_back(std::make_pair(types::TY_C, A)); } } namespace { /// Provides a convenient interface for different programming models to generate /// the required device actions. class OffloadingActionBuilder final { /// Flag used to trace errors in the builder. bool IsValid = false; /// The compilation that is using this builder. Compilation &C; /// Map between an input argument and the offload kinds used to process it. std::map<const Arg *, unsigned> InputArgToOffloadKindMap; /// Map between a host action and its originating input argument. std::map<Action *, const Arg *> HostActionToInputArgMap; /// Builder interface. It doesn't build anything or keep any state. class DeviceActionBuilder { public: typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; enum ActionBuilderReturnCode { // The builder acted successfully on the current action. ABRT_Success, // The builder didn't have to act on the current action. ABRT_Inactive, // The builder was successful and requested the host action to not be // generated. ABRT_Ignore_Host, }; protected: /// Compilation associated with this builder. Compilation &C; /// Tool chains associated with this builder. The same programming /// model may have associated one or more tool chains. SmallVector<const ToolChain *, 2> ToolChains; /// The derived arguments associated with this builder. DerivedArgList &Args; /// The inputs associated with this builder. const Driver::InputList &Inputs; /// The associated offload kind. Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; public: DeviceActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs, Action::OffloadKind AssociatedOffloadKind) : C(C), Args(Args), Inputs(Inputs), AssociatedOffloadKind(AssociatedOffloadKind) {} virtual ~DeviceActionBuilder() {} /// Fill up the array \a DA with all the device dependences that should be /// added to the provided host action \a HostAction. By default it is /// inactive. virtual ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) { return ABRT_Inactive; } /// Update the state to include the provided host action \a HostAction as a /// dependency of the current device action. By default it is inactive. virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) { return ABRT_Inactive; } /// Append top level actions generated by the builder. virtual void appendTopLevelActions(ActionList &AL) {} /// Append linker device actions generated by the builder. virtual void appendLinkDeviceActions(ActionList &AL) {} /// Append linker host action generated by the builder. virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; } /// Append linker actions generated by the builder. virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} /// Initialize the builder. Return true if any initialization errors are /// found. virtual bool initialize() { return false; } /// Return true if the builder can use bundling/unbundling. virtual bool canUseBundlerUnbundler() const { return false; } /// Return true if this builder is valid. We have a valid builder if we have /// associated device tool chains. bool isValid() { return !ToolChains.empty(); } /// Return the associated offload kind. Action::OffloadKind getAssociatedOffloadKind() { return AssociatedOffloadKind; } }; /// Base class for CUDA/HIP action builder. It injects device code in /// the host backend action. class CudaActionBuilderBase : public DeviceActionBuilder { protected: /// Flags to signal if the user requested host-only or device-only /// compilation. bool CompileHostOnly = false; bool CompileDeviceOnly = false; bool EmitLLVM = false; bool EmitAsm = false; /// ID to identify each device compilation. For CUDA it is simply the /// GPU arch string. For HIP it is either the GPU arch string or GPU /// arch string plus feature strings delimited by a plus sign, e.g. /// gfx906+xnack. struct TargetID { /// Target ID string which is persistent throughout the compilation. const char *ID; TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); } TargetID(const char *ID) : ID(ID) {} operator const char *() { return ID; } operator StringRef() { return StringRef(ID); } }; /// List of GPU architectures to use in this compilation. SmallVector<TargetID, 4> GpuArchList; /// The CUDA actions for the current input. ActionList CudaDeviceActions; /// The CUDA fat binary if it was generated for the current input. Action *CudaFatBinary = nullptr; /// Flag that is set to true if this builder acted on the current input. bool IsActive = false; /// Flag for -fgpu-rdc. bool Relocatable = false; /// Default GPU architecture if there's no one specified. CudaArch DefaultCudaArch = CudaArch::UNKNOWN; /// Method to generate compilation unit ID specified by option /// '-fuse-cuid='. enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid }; UseCUIDKind UseCUID = CUID_Hash; /// Compilation unit ID specified by option '-cuid='. StringRef FixedCUID; public: CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs, Action::OffloadKind OFKind) : DeviceActionBuilder(C, Args, Inputs, OFKind) { CompileDeviceOnly = C.getDriver().offloadDeviceOnly(); Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, /*Default=*/false); } ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override { // While generating code for CUDA, we only depend on the host input action // to trigger the creation of all the CUDA device actions. // If we are dealing with an input action, replicate it for each GPU // architecture. If we are in host-only mode we return 'success' so that // the host uses the CUDA offload kind. if (auto *IA = dyn_cast<InputAction>(HostAction)) { assert(!GpuArchList.empty() && "We should have at least one GPU architecture."); // If the host input is not CUDA or HIP, we don't need to bother about // this input. if (!(IA->getType() == types::TY_CUDA || IA->getType() == types::TY_HIP || IA->getType() == types::TY_PP_HIP)) { // The builder will ignore this input. IsActive = false; return ABRT_Inactive; } // Set the flag to true, so that the builder acts on the current input. IsActive = true; if (CompileHostOnly) return ABRT_Success; // Replicate inputs for each GPU architecture. auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE : types::TY_CUDA_DEVICE; std::string CUID = FixedCUID.str(); if (CUID.empty()) { if (UseCUID == CUID_Random) CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(), /*LowerCase=*/true); else if (UseCUID == CUID_Hash) { llvm::MD5 Hasher; llvm::MD5::MD5Result Hash; SmallString<256> RealPath; llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath, /*expand_tilde=*/true); Hasher.update(RealPath); for (auto *A : Args) { if (A->getOption().matches(options::OPT_INPUT)) continue; Hasher.update(A->getAsString(Args)); } Hasher.final(Hash); CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true); } } IA->setId(CUID); for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { CudaDeviceActions.push_back( C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId())); } return ABRT_Success; } // If this is an unbundling action use it as is for each CUDA toolchain. if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { // If -fgpu-rdc is disabled, should not unbundle since there is no // device code to link. if (UA->getType() == types::TY_Object && !Relocatable) return ABRT_Inactive; CudaDeviceActions.clear(); auto *IA = cast<InputAction>(UA->getInputs().back()); std::string FileName = IA->getInputArg().getAsString(Args); // Check if the type of the file is the same as the action. Do not // unbundle it if it is not. Do not unbundle .so files, for example, // which are not object files. Files with extension ".lib" is classified // as TY_Object but they are actually archives, therefore should not be // unbundled here as objects. They will be handled at other places. const StringRef LibFileExt = ".lib"; if (IA->getType() == types::TY_Object && (!llvm::sys::path::has_extension(FileName) || types::lookupTypeForExtension( llvm::sys::path::extension(FileName).drop_front()) != types::TY_Object || llvm::sys::path::extension(FileName) == LibFileExt)) return ABRT_Inactive; for (auto Arch : GpuArchList) { CudaDeviceActions.push_back(UA); UA->registerDependentActionInfo(ToolChains[0], Arch, AssociatedOffloadKind); } IsActive = true; return ABRT_Success; } return IsActive ? ABRT_Success : ABRT_Inactive; } void appendTopLevelActions(ActionList &AL) override { // Utility to append actions to the top level list. auto AddTopLevel = [&](Action *A, TargetID TargetID) { OffloadAction::DeviceDependences Dep; Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind); AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); }; // If we have a fat binary, add it to the list. if (CudaFatBinary) { AddTopLevel(CudaFatBinary, CudaArch::UNUSED); CudaDeviceActions.clear(); CudaFatBinary = nullptr; return; } if (CudaDeviceActions.empty()) return; // If we have CUDA actions at this point, that's because we have a have // partial compilation, so we should have an action for each GPU // architecture. assert(CudaDeviceActions.size() == GpuArchList.size() && "Expecting one action per GPU architecture."); assert(ToolChains.size() == 1 && "Expecting to have a single CUDA toolchain."); for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); CudaDeviceActions.clear(); } /// Get canonicalized offload arch option. \returns empty StringRef if the /// option is invalid. virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0; virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>> getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0; bool initialize() override { assert(AssociatedOffloadKind == Action::OFK_Cuda || AssociatedOffloadKind == Action::OFK_HIP); // We don't need to support CUDA. if (AssociatedOffloadKind == Action::OFK_Cuda && !C.hasOffloadToolChain<Action::OFK_Cuda>()) return false; // We don't need to support HIP. if (AssociatedOffloadKind == Action::OFK_HIP && !C.hasOffloadToolChain<Action::OFK_HIP>()) return false; const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); assert(HostTC && "No toolchain for host compilation."); if (HostTC->getTriple().isNVPTX() || HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { // We do not support targeting NVPTX/AMDGCN for host compilation. Throw // an error and abort pipeline construction early so we don't trip // asserts that assume device-side compilation. C.getDriver().Diag(diag::err_drv_cuda_host_arch) << HostTC->getTriple().getArchName(); return true; } ToolChains.push_back( AssociatedOffloadKind == Action::OFK_Cuda ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() : C.getSingleOffloadToolChain<Action::OFK_HIP>()); CompileHostOnly = C.getDriver().offloadHostOnly(); EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); EmitAsm = Args.getLastArg(options::OPT_S); FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ); if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) { StringRef UseCUIDStr = A->getValue(); UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr) .Case("hash", CUID_Hash) .Case("random", CUID_Random) .Case("none", CUID_None) .Default(CUID_Invalid); if (UseCUID == CUID_Invalid) { C.getDriver().Diag(diag::err_drv_invalid_value) << A->getAsString(Args) << UseCUIDStr; C.setContainsError(); return true; } } // --offload and --offload-arch options are mutually exclusive. if (Args.hasArgNoClaim(options::OPT_offload_EQ) && Args.hasArgNoClaim(options::OPT_offload_arch_EQ, options::OPT_no_offload_arch_EQ)) { C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch" << "--offload"; } // Collect all offload arch parameters, removing duplicates. std::set<StringRef> GpuArchs; bool Error = false; for (Arg *A : Args) { if (!(A->getOption().matches(options::OPT_offload_arch_EQ) || A->getOption().matches(options::OPT_no_offload_arch_EQ))) continue; A->claim(); for (StringRef ArchStr : llvm::split(A->getValue(), ",")) { if (A->getOption().matches(options::OPT_no_offload_arch_EQ) && ArchStr == "all") { GpuArchs.clear(); } else if (ArchStr == "native") { const ToolChain &TC = *ToolChains.front(); auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args); if (!GPUsOrErr) { TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch) << llvm::Triple::getArchTypeName(TC.getArch()) << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch"; continue; } for (auto GPU : *GPUsOrErr) { GpuArchs.insert(Args.MakeArgString(GPU)); } } else { ArchStr = getCanonicalOffloadArch(ArchStr); if (ArchStr.empty()) { Error = true; } else if (A->getOption().matches(options::OPT_offload_arch_EQ)) GpuArchs.insert(ArchStr); else if (A->getOption().matches(options::OPT_no_offload_arch_EQ)) GpuArchs.erase(ArchStr); else llvm_unreachable("Unexpected option."); } } } auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs); if (ConflictingArchs) { C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) << ConflictingArchs->first << ConflictingArchs->second; C.setContainsError(); return true; } // Collect list of GPUs remaining in the set. for (auto Arch : GpuArchs) GpuArchList.push_back(Arch.data()); // Default to sm_20 which is the lowest common denominator for // supported GPUs. sm_20 code should work correctly, if // suboptimally, on all newer GPUs. if (GpuArchList.empty()) { if (ToolChains.front()->getTriple().isSPIRV()) GpuArchList.push_back(CudaArch::Generic); else GpuArchList.push_back(DefaultCudaArch); } return Error; } }; /// \brief CUDA action builder. It injects device code in the host backend /// action. class CudaActionBuilder final : public CudaActionBuilderBase { public: CudaActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { DefaultCudaArch = CudaArch::SM_35; } StringRef getCanonicalOffloadArch(StringRef ArchStr) override { CudaArch Arch = StringToCudaArch(ArchStr); if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) { C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; return StringRef(); } return CudaArchToString(Arch); } std::optional<std::pair<llvm::StringRef, llvm::StringRef>> getConflictOffloadArchCombination( const std::set<StringRef> &GpuArchs) override { return std::nullopt; } ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) override { if (!IsActive) return ABRT_Inactive; // If we don't have more CUDA actions, we don't have any dependences to // create for the host. if (CudaDeviceActions.empty()) return ABRT_Success; assert(CudaDeviceActions.size() == GpuArchList.size() && "Expecting one action per GPU architecture."); assert(!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."); // If we are generating code for the device or we are in a backend phase, // we attempt to generate the fat binary. We compile each arch to ptx and // assemble to cubin, then feed the cubin *and* the ptx into a device // "link" action, which uses fatbinary to combine these cubins into one // fatbin. The fatbin is then an input to the host action if not in // device-only mode. if (CompileDeviceOnly || CurPhase == phases::Backend) { ActionList DeviceActions; for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { // Produce the device action from the current phase up to the assemble // phase. for (auto Ph : Phases) { // Skip the phases that were already dealt with. if (Ph < CurPhase) continue; // We have to be consistent with the host final phase. if (Ph > FinalPhase) break; CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); if (Ph == phases::Assemble) break; } // If we didn't reach the assemble phase, we can't generate the fat // binary. We don't need to generate the fat binary if we are not in // device-only mode. if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || CompileDeviceOnly) continue; Action *AssembleAction = CudaDeviceActions[I]; assert(AssembleAction->getType() == types::TY_Object); assert(AssembleAction->getInputs().size() == 1); Action *BackendAction = AssembleAction->getInputs()[0]; assert(BackendAction->getType() == types::TY_PP_Asm); for (auto &A : {AssembleAction, BackendAction}) { OffloadAction::DeviceDependences DDep; DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda); DeviceActions.push_back( C.MakeAction<OffloadAction>(DDep, A->getType())); } } // We generate the fat binary if we have device input actions. if (!DeviceActions.empty()) { CudaFatBinary = C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); if (!CompileDeviceOnly) { DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, Action::OFK_Cuda); // Clear the fat binary, it is already a dependence to an host // action. CudaFatBinary = nullptr; } // Remove the CUDA actions as they are already connected to an host // action or fat binary. CudaDeviceActions.clear(); } // We avoid creating host action in device-only mode. return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; } else if (CurPhase > phases::Backend) { // If we are past the backend phase and still have a device action, we // don't have to do anything as this action is already a device // top-level action. return ABRT_Success; } assert(CurPhase < phases::Backend && "Generating single CUDA " "instructions should only occur " "before the backend phase!"); // By default, we produce an action for each device arch. for (Action *&A : CudaDeviceActions) A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); return ABRT_Success; } }; /// \brief HIP action builder. It injects device code in the host backend /// action. class HIPActionBuilder final : public CudaActionBuilderBase { /// The linker inputs obtained for each device arch. SmallVector<ActionList, 8> DeviceLinkerInputs; // The default bundling behavior depends on the type of output, therefore // BundleOutput needs to be tri-value: None, true, or false. // Bundle code objects except --no-gpu-output is specified for device // only compilation. Bundle other type of output files only if // --gpu-bundle-output is specified for device only compilation. std::optional<bool> BundleOutput; std::optional<bool> EmitReloc; public: HIPActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { DefaultCudaArch = CudaArch::GFX906; if (Args.hasArg(options::OPT_fhip_emit_relocatable, options::OPT_fno_hip_emit_relocatable)) { EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable, options::OPT_fno_hip_emit_relocatable, false); if (*EmitReloc) { if (Relocatable) { C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "-fhip-emit-relocatable" << "-fgpu-rdc"; } if (!CompileDeviceOnly) { C.getDriver().Diag(diag::err_opt_not_valid_without_opt) << "-fhip-emit-relocatable" << "--cuda-device-only"; } } } if (Args.hasArg(options::OPT_gpu_bundle_output, options::OPT_no_gpu_bundle_output)) BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output, options::OPT_no_gpu_bundle_output, true) && (!EmitReloc || !*EmitReloc); } bool canUseBundlerUnbundler() const override { return true; } StringRef getCanonicalOffloadArch(StringRef IdStr) override { llvm::StringMap<bool> Features; // getHIPOffloadTargetTriple() is known to return valid value as it has // been called successfully in the CreateOffloadingDeviceToolChains(). auto ArchStr = parseTargetID( *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr, &Features); if (!ArchStr) { C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr; C.setContainsError(); return StringRef(); } auto CanId = getCanonicalTargetID(*ArchStr, Features); return Args.MakeArgStringRef(CanId); }; std::optional<std::pair<llvm::StringRef, llvm::StringRef>> getConflictOffloadArchCombination( const std::set<StringRef> &GpuArchs) override { return getConflictTargetIDCombination(GpuArchs); } ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) override { if (!IsActive) return ABRT_Inactive; // amdgcn does not support linking of object files, therefore we skip // backend and assemble phases to output LLVM IR. Except for generating // non-relocatable device code, where we generate fat binary for device // code and pass to host in Backend phase. if (CudaDeviceActions.empty()) return ABRT_Success; assert(((CurPhase == phases::Link && Relocatable) || CudaDeviceActions.size() == GpuArchList.size()) && "Expecting one action per GPU architecture."); assert(!CompileHostOnly && "Not expecting HIP actions in host-only compilation."); bool ShouldLink = !EmitReloc || !*EmitReloc; if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && !EmitAsm && ShouldLink) { // If we are in backend phase, we attempt to generate the fat binary. // We compile each arch to IR and use a link action to generate code // object containing ISA. Then we use a special "link" action to create // a fat binary containing all the code objects for different GPU's. // The fat binary is then an input to the host action. for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) { // When LTO is enabled, skip the backend and assemble phases and // use lld to link the bitcode. ActionList AL; AL.push_back(CudaDeviceActions[I]); // Create a link action to link device IR with device library // and generate ISA. CudaDeviceActions[I] = C.MakeAction<LinkJobAction>(AL, types::TY_Image); } else { // When LTO is not enabled, we follow the conventional // compiler phases, including backend and assemble phases. ActionList AL; Action *BackendAction = nullptr; if (ToolChains.front()->getTriple().isSPIRV()) { // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain // (HIPSPVToolChain) runs post-link LLVM IR passes. types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; BackendAction = C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output); } else BackendAction = C.getDriver().ConstructPhaseAction( C, Args, phases::Backend, CudaDeviceActions[I], AssociatedOffloadKind); auto AssembleAction = C.getDriver().ConstructPhaseAction( C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind); AL.push_back(AssembleAction); // Create a link action to link device IR with device library // and generate ISA. CudaDeviceActions[I] = C.MakeAction<LinkJobAction>(AL, types::TY_Image); } // OffloadingActionBuilder propagates device arch until an offload // action. Since the next action for creating fatbin does // not have device arch, whereas the above link action and its input // have device arch, an offload action is needed to stop the null // device arch of the next action being propagated to the above link // action. OffloadAction::DeviceDependences DDep; DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], AssociatedOffloadKind); CudaDeviceActions[I] = C.MakeAction<OffloadAction>( DDep, CudaDeviceActions[I]->getType()); } if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) { // Create HIP fat binary with a special "link" action. CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions, types::TY_HIP_FATBIN); if (!CompileDeviceOnly) { DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, AssociatedOffloadKind); // Clear the fat binary, it is already a dependence to an host // action. CudaFatBinary = nullptr; } // Remove the CUDA actions as they are already connected to an host // action or fat binary. CudaDeviceActions.clear(); } return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; } else if (CurPhase == phases::Link) { if (!ShouldLink) return ABRT_Success; // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. // This happens to each device action originated from each input file. // Later on, device actions in DeviceLinkerInputs are used to create // device link actions in appendLinkDependences and the created device // link actions are passed to the offload action as device dependence. DeviceLinkerInputs.resize(CudaDeviceActions.size()); auto LI = DeviceLinkerInputs.begin(); for (auto *A : CudaDeviceActions) { LI->push_back(A); ++LI; } // We will pass the device action as a host dependence, so we don't // need to do anything else with them. CudaDeviceActions.clear(); return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; } // By default, we produce an action for each device arch. for (Action *&A : CudaDeviceActions) A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, AssociatedOffloadKind); if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput && *BundleOutput) { for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { OffloadAction::DeviceDependences DDep; DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], AssociatedOffloadKind); CudaDeviceActions[I] = C.MakeAction<OffloadAction>( DDep, CudaDeviceActions[I]->getType()); } CudaFatBinary = C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions); CudaDeviceActions.clear(); } return (CompileDeviceOnly && (CurPhase == FinalPhase || (!ShouldLink && CurPhase == phases::Assemble))) ? ABRT_Ignore_Host : ABRT_Success; } void appendLinkDeviceActions(ActionList &AL) override { if (DeviceLinkerInputs.size() == 0) return; assert(DeviceLinkerInputs.size() == GpuArchList.size() && "Linker inputs and GPU arch list sizes do not match."); ActionList Actions; unsigned I = 0; // Append a new link action for each device. // Each entry in DeviceLinkerInputs corresponds to a GPU arch. for (auto &LI : DeviceLinkerInputs) { types::ID Output = Args.hasArg(options::OPT_emit_llvm) ? types::TY_LLVM_BC : types::TY_Image; auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output); // Linking all inputs for the current GPU arch. // LI contains all the inputs for the linker. OffloadAction::DeviceDependences DeviceLinkDeps; DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0], GpuArchList[I], AssociatedOffloadKind); Actions.push_back(C.MakeAction<OffloadAction>( DeviceLinkDeps, DeviceLinkAction->getType())); ++I; } DeviceLinkerInputs.clear(); // If emitting LLVM, do not generate final host/device compilation action if (Args.hasArg(options::OPT_emit_llvm)) { AL.append(Actions); return; } // Create a host object from all the device images by embedding them // in a fat binary for mixed host-device compilation. For device-only // compilation, creates a fat binary. OffloadAction::DeviceDependences DDeps; if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) { auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>( Actions, CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object); DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr, AssociatedOffloadKind); // Offload the host object to the host linker. AL.push_back( C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType())); } else { AL.append(Actions); } } Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); } void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} }; /// /// TODO: Add the implementation for other specialized builders here. /// /// Specialized builders being used by this offloading action builder. SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; /// Flag set to true if all valid builders allow file bundling/unbundling. bool CanUseBundler; public: OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : C(C) { // Create a specialized builder for each device toolchain. IsValid = true; // Create a specialized builder for CUDA. SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); // Create a specialized builder for HIP. SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); // // TODO: Build other specialized builders here. // // Initialize all the builders, keeping track of errors. If all valid // builders agree that we can use bundling, set the flag to true. unsigned ValidBuilders = 0u; unsigned ValidBuildersSupportingBundling = 0u; for (auto *SB : SpecializedBuilders) { IsValid = IsValid && !SB->initialize(); // Update the counters if the builder is valid. if (SB->isValid()) { ++ValidBuilders; if (SB->canUseBundlerUnbundler()) ++ValidBuildersSupportingBundling; } } CanUseBundler = ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; } ~OffloadingActionBuilder() { for (auto *SB : SpecializedBuilders) delete SB; } /// Record a host action and its originating input argument. void recordHostAction(Action *HostAction, const Arg *InputArg) { assert(HostAction && "Invalid host action"); assert(InputArg && "Invalid input argument"); auto Loc = HostActionToInputArgMap.find(HostAction); if (Loc == HostActionToInputArgMap.end()) HostActionToInputArgMap[HostAction] = InputArg; assert(HostActionToInputArgMap[HostAction] == InputArg && "host action mapped to multiple input arguments"); } /// Generate an action that adds device dependences (if any) to a host action. /// If no device dependence actions exist, just return the host action \a /// HostAction. If an error is found or if no builder requires the host action /// to be generated, return nullptr. Action * addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, phases::ID CurPhase, phases::ID FinalPhase, DeviceActionBuilder::PhasesTy &Phases) { if (!IsValid) return nullptr; if (SpecializedBuilders.empty()) return HostAction; assert(HostAction && "Invalid host action!"); recordHostAction(HostAction, InputArg); OffloadAction::DeviceDependences DDeps; // Check if all the programming models agree we should not emit the host // action. Also, keep track of the offloading kinds employed. auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; unsigned InactiveBuilders = 0u; unsigned IgnoringBuilders = 0u; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) { ++InactiveBuilders; continue; } auto RetCode = SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); // If the builder explicitly says the host action should be ignored, // we need to increment the variable that tracks the builders that request // the host object to be ignored. if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) ++IgnoringBuilders; // Unless the builder was inactive for this action, we have to record the // offload kind because the host will have to use it. if (RetCode != DeviceActionBuilder::ABRT_Inactive) OffloadKind |= SB->getAssociatedOffloadKind(); } // If all builders agree that the host object should be ignored, just return // nullptr. if (IgnoringBuilders && SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) return nullptr; if (DDeps.getActions().empty()) return HostAction; // We have dependences we need to bundle together. We use an offload action // for that. OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), /*BoundArch=*/nullptr, DDeps); return C.MakeAction<OffloadAction>(HDep, DDeps); } /// Generate an action that adds a host dependence to a device action. The /// results will be kept in this action builder. Return true if an error was /// found. bool addHostDependenceToDeviceActions(Action *&HostAction, const Arg *InputArg) { if (!IsValid) return true; recordHostAction(HostAction, InputArg); // If we are supporting bundling/unbundling and the current action is an // input action of non-source file, we replace the host action by the // unbundling action. The bundler tool has the logic to detect if an input // is a bundle or not and if the input is not a bundle it assumes it is a // host file. Therefore it is safe to create an unbundling action even if // the input is not a bundle. if (CanUseBundler && isa<InputAction>(HostAction) && InputArg->getOption().getKind() == llvm::opt::Option::InputClass && (!types::isSrcFile(HostAction->getType()) || HostAction->getType() == types::TY_PP_HIP)) { auto UnbundlingHostAction = C.MakeAction<OffloadUnbundlingJobAction>(HostAction); UnbundlingHostAction->registerDependentActionInfo( C.getSingleOffloadToolChain<Action::OFK_Host>(), /*BoundArch=*/StringRef(), Action::OFK_Host); HostAction = UnbundlingHostAction; recordHostAction(HostAction, InputArg); } assert(HostAction && "Invalid host action!"); // Register the offload kinds that are used. auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; auto RetCode = SB->addDeviceDependences(HostAction); // Host dependences for device actions are not compatible with that same // action being ignored. assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && "Host dependence not expected to be ignored.!"); // Unless the builder was inactive for this action, we have to record the // offload kind because the host will have to use it. if (RetCode != DeviceActionBuilder::ABRT_Inactive) OffloadKind |= SB->getAssociatedOffloadKind(); } // Do not use unbundler if the Host does not depend on device action. if (OffloadKind == Action::OFK_None && CanUseBundler) if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) HostAction = UA->getInputs().back(); return false; } /// Add the offloading top level actions to the provided action list. This /// function can replace the host action by a bundling action if the /// programming models allow it. bool appendTopLevelActions(ActionList &AL, Action *HostAction, const Arg *InputArg) { if (HostAction) recordHostAction(HostAction, InputArg); // Get the device actions to be appended. ActionList OffloadAL; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendTopLevelActions(OffloadAL); } // If we can use the bundler, replace the host action by the bundling one in // the resulting list. Otherwise, just append the device actions. For // device only compilation, HostAction is a null pointer, therefore only do // this when HostAction is not a null pointer. if (CanUseBundler && HostAction && HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { // Add the host action to the list in order to create the bundling action. OffloadAL.push_back(HostAction); // We expect that the host action was just appended to the action list // before this method was called. assert(HostAction == AL.back() && "Host action not in the list??"); HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); recordHostAction(HostAction, InputArg); AL.back() = HostAction; } else AL.append(OffloadAL.begin(), OffloadAL.end()); // Propagate to the current host action (if any) the offload information // associated with the current input. if (HostAction) HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], /*BoundArch=*/nullptr); return false; } void appendDeviceLinkActions(ActionList &AL) { for (DeviceActionBuilder *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendLinkDeviceActions(AL); } } Action *makeHostLinkAction() { // Build a list of device linking actions. ActionList DeviceAL; appendDeviceLinkActions(DeviceAL); if (DeviceAL.empty()) return nullptr; // Let builders add host linking actions. Action* HA = nullptr; for (DeviceActionBuilder *SB : SpecializedBuilders) { if (!SB->isValid()) continue; HA = SB->appendLinkHostActions(DeviceAL); // This created host action has no originating input argument, therefore // needs to set its offloading kind directly. if (HA) HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(), /*BoundArch=*/nullptr); } return HA; } /// Processes the host linker action. This currently consists of replacing it /// with an offload action if there are device link objects and propagate to /// the host action all the offload kinds used in the current compilation. The /// resulting action is returned. Action *processHostLinkAction(Action *HostAction) { // Add all the dependences from the device linking actions. OffloadAction::DeviceDependences DDeps; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendLinkDependences(DDeps); } // Calculate all the offload kinds used in the current compilation. unsigned ActiveOffloadKinds = 0u; for (auto &I : InputArgToOffloadKindMap) ActiveOffloadKinds |= I.second; // If we don't have device dependencies, we don't have to create an offload // action. if (DDeps.getActions().empty()) { // Set all the active offloading kinds to the link action. Given that it // is a link action it is assumed to depend on all actions generated so // far. HostAction->setHostOffloadInfo(ActiveOffloadKinds, /*BoundArch=*/nullptr); // Propagate active offloading kinds for each input to the link action. // Each input may have different active offloading kind. for (auto *A : HostAction->inputs()) { auto ArgLoc = HostActionToInputArgMap.find(A); if (ArgLoc == HostActionToInputArgMap.end()) continue; auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second); if (OFKLoc == InputArgToOffloadKindMap.end()) continue; A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr); } return HostAction; } // Create the offload action with all dependences. When an offload action // is created the kinds are propagated to the host action, so we don't have // to do that explicitly here. OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), /*BoundArch*/ nullptr, ActiveOffloadKinds); return C.MakeAction<OffloadAction>(HDep, DDeps); } }; } // anonymous namespace. void Driver::handleArguments(Compilation &C, DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const { // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); Args.eraseArg(options::OPT__SLASH_Yc); Args.eraseArg(options::OPT__SLASH_Yu); YcArg = YuArg = nullptr; } if (YcArg && Inputs.size() > 1) { Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); Args.eraseArg(options::OPT__SLASH_Yc); YcArg = nullptr; } Arg *FinalPhaseArg; phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); if (FinalPhase == phases::Link) { // Emitting LLVM while linking disabled except in HIPAMD Toolchain if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link)) Diag(clang::diag::err_drv_emit_llvm_link); if (IsCLMode() && LTOMode != LTOK_None && !Args.getLastArgValue(options::OPT_fuse_ld_EQ) .equals_insensitive("lld")) Diag(clang::diag::err_drv_lto_without_lld); // If -dumpdir is not specified, give a default prefix derived from the link // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes // `-dumpdir x-` to cc1. If -o is unspecified, use // stem(getDefaultImageName()) (usually stem("a.out") = "a"). if (!Args.hasArg(options::OPT_dumpdir)) { Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o); Arg *Arg = Args.MakeSeparateArg( nullptr, getOpts().getOption(options::OPT_dumpdir), Args.MakeArgString( (FinalOutput ? FinalOutput->getValue() : llvm::sys::path::stem(getDefaultImageName())) + "-")); Arg->claim(); Args.append(Arg); } } if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { // If only preprocessing or /Y- is used, all pch handling is disabled. // Rather than check for it everywhere, just remove clang-cl pch-related // flags here. Args.eraseArg(options::OPT__SLASH_Fp); Args.eraseArg(options::OPT__SLASH_Yc); Args.eraseArg(options::OPT__SLASH_Yu); YcArg = YuArg = nullptr; } unsigned LastPLSize = 0; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; auto PL = types::getCompilationPhases(InputType); LastPLSize = PL.size(); // If the first step comes after the final phase we are doing as part of // this compilation, warn the user about it. phases::ID InitialPhase = PL[0]; if (InitialPhase > FinalPhase) { if (InputArg->isClaimed()) continue; // Claim here to avoid the more general unused warning. InputArg->claim(); // Suppress all unused style warnings with -Qunused-arguments if (Args.hasArg(options::OPT_Qunused_arguments)) continue; // Special case when final phase determined by binary name, rather than // by a command-line argument with a corresponding Arg. if (CCCIsCPP()) Diag(clang::diag::warn_drv_input_file_unused_by_cpp) << InputArg->getAsString(Args) << getPhaseName(InitialPhase); // Special case '-E' warning on a previously preprocessed file to make // more sense. else if (InitialPhase == phases::Compile && (Args.getLastArg(options::OPT__SLASH_EP, options::OPT__SLASH_P) || Args.getLastArg(options::OPT_E) || Args.getLastArg(options::OPT_M, options::OPT_MM)) && getPreprocessedType(InputType) == types::TY_INVALID) Diag(clang::diag::warn_drv_preprocessed_input_file_unused) << InputArg->getAsString(Args) << !!FinalPhaseArg << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); else Diag(clang::diag::warn_drv_input_file_unused) << InputArg->getAsString(Args) << getPhaseName(InitialPhase) << !!FinalPhaseArg << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); continue; } if (YcArg) { // Add a separate precompile phase for the compile phase. if (FinalPhase >= phases::Compile) { const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); // Build the pipeline for the pch file. Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); for (phases::ID Phase : types::getCompilationPhases(HeaderType)) ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); assert(ClangClPch); Actions.push_back(ClangClPch); // The driver currently exits after the first failed command. This // relies on that behavior, to make sure if the pch generation fails, // the main compilation won't run. // FIXME: If the main compilation fails, the PCH generation should // probably not be considered successful either. } } } // If we are linking, claim any options which are obviously only used for // compilation. // FIXME: Understand why the last Phase List length is used here. if (FinalPhase == phases::Link && LastPLSize == 1) { Args.ClaimAllArgs(options::OPT_CompileOnly_Group); Args.ClaimAllArgs(options::OPT_cl_compile_Group); } } void Driver::BuildActions(Compilation &C, DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); if (!SuppressMissingInputWarning && Inputs.empty()) { Diag(clang::diag::err_drv_no_input_files); return; } // Diagnose misuse of /Fo. if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { StringRef V = A->getValue(); if (Inputs.size() > 1 && !V.empty() && !llvm::sys::path::is_separator(V.back())) { // Check whether /Fo tries to name an output file for multiple inputs. Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) << A->getSpelling() << V; Args.eraseArg(options::OPT__SLASH_Fo); } } // Diagnose misuse of /Fa. if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { StringRef V = A->getValue(); if (Inputs.size() > 1 && !V.empty() && !llvm::sys::path::is_separator(V.back())) { // Check whether /Fa tries to name an asm file for multiple inputs. Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) << A->getSpelling() << V; Args.eraseArg(options::OPT__SLASH_Fa); } } // Diagnose misuse of /o. if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { if (A->getValue()[0] == '\0') { // It has to have a value. Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; Args.eraseArg(options::OPT__SLASH_o); } } handleArguments(C, Args, Inputs, Actions); bool UseNewOffloadingDriver = C.isOffloadingHostKind(Action::OFK_OpenMP) || Args.hasFlag(options::OPT_offload_new_driver, options::OPT_no_offload_new_driver, false); // Builder to be used to build offloading actions. std::unique_ptr<OffloadingActionBuilder> OffloadBuilder = !UseNewOffloadingDriver ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs) : nullptr; // Construct the actions to perform. ExtractAPIJobAction *ExtractAPIAction = nullptr; ActionList LinkerInputs; ActionList MergerInputs; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; auto PL = types::getCompilationPhases(*this, Args, InputType); if (PL.empty()) continue; auto FullPL = types::getCompilationPhases(InputType); // Build the pipeline for this file. Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); // Use the current host action in any of the offloading actions, if // required. if (!UseNewOffloadingDriver) if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg)) break; for (phases::ID Phase : PL) { // Add any offload action the host action depends on. if (!UseNewOffloadingDriver) Current = OffloadBuilder->addDeviceDependencesToHostAction( Current, InputArg, Phase, PL.back(), FullPL); if (!Current) break; // Queue linker inputs. if (Phase == phases::Link) { assert(Phase == PL.back() && "linking must be final compilation step."); // We don't need to generate additional link commands if emitting AMD // bitcode or compiling only for the offload device if (!(C.getInputArgs().hasArg(options::OPT_hip_link) && (C.getInputArgs().hasArg(options::OPT_emit_llvm))) && !offloadDeviceOnly()) LinkerInputs.push_back(Current); Current = nullptr; break; } // TODO: Consider removing this because the merged may not end up being // the final Phase in the pipeline. Perhaps the merged could just merge // and then pass an artifact of some sort to the Link Phase. // Queue merger inputs. if (Phase == phases::IfsMerge) { assert(Phase == PL.back() && "merging must be final compilation step."); MergerInputs.push_back(Current); Current = nullptr; break; } if (Phase == phases::Precompile && ExtractAPIAction) { ExtractAPIAction->addHeaderInput(Current); Current = nullptr; break; } // FIXME: Should we include any prior module file outputs as inputs of // later actions in the same command line? // Otherwise construct the appropriate action. Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); // We didn't create a new action, so we will just move to the next phase. if (NewCurrent == Current) continue; if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent)) ExtractAPIAction = EAA; Current = NewCurrent; // Try to build the offloading actions and add the result as a dependency // to the host. if (UseNewOffloadingDriver) Current = BuildOffloadingActions(C, Args, I, Current); // Use the current host action in any of the offloading actions, if // required. else if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg)) break; if (Current->getType() == types::TY_Nothing) break; } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); // Add any top level actions generated for offloading. if (!UseNewOffloadingDriver) OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg); else if (Current) Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(), /*BoundArch=*/nullptr); } // Add a link action if necessary. if (LinkerInputs.empty()) { Arg *FinalPhaseArg; if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link) if (!UseNewOffloadingDriver) OffloadBuilder->appendDeviceLinkActions(Actions); } if (!LinkerInputs.empty()) { if (!UseNewOffloadingDriver) if (Action *Wrapper = OffloadBuilder->makeHostLinkAction()) LinkerInputs.push_back(Wrapper); Action *LA; // Check if this Linker Job should emit a static library. if (ShouldEmitStaticLibrary(Args)) { LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image); } else if (UseNewOffloadingDriver || Args.hasArg(options::OPT_offload_link)) { LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image); LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(), /*BoundArch=*/nullptr); } else { LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); } if (!UseNewOffloadingDriver) LA = OffloadBuilder->processHostLinkAction(LA); Actions.push_back(LA); } // Add an interface stubs merge action if necessary. if (!MergerInputs.empty()) Actions.push_back( C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); if (Args.hasArg(options::OPT_emit_interface_stubs)) { auto PhaseList = types::getCompilationPhases( types::TY_IFS_CPP, Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge); ActionList MergerInputs; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; // Currently clang and the llvm assembler do not support generating symbol // stubs from assembly, so we skip the input on asm files. For ifs files // we rely on the normal pipeline setup in the pipeline setup code above. if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || InputType == types::TY_Asm) continue; Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); for (auto Phase : PhaseList) { switch (Phase) { default: llvm_unreachable( "IFS Pipeline can only consist of Compile followed by IfsMerge."); case phases::Compile: { // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs // files where the .o file is located. The compile action can not // handle this. if (InputType == types::TY_Object) break; Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP); break; } case phases::IfsMerge: { assert(Phase == PhaseList.back() && "merging must be final compilation step."); MergerInputs.push_back(Current); Current = nullptr; break; } } } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); } // Add an interface stubs merge action if necessary. if (!MergerInputs.empty()) Actions.push_back( C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); } // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom // Compile phase that prints out supported cpu models and quits. if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { // Use the -mcpu=? flag as the dummy input to cc1. Actions.clear(); Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); Actions.push_back( C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); for (auto &I : Inputs) I.second->claim(); } // Call validator for dxil when -Vd not in Args. if (C.getDefaultToolChain().getTriple().isDXIL()) { // Only add action when needValidation. const auto &TC = static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain()); if (TC.requiresValidation(Args)) { Action *LastAction = Actions.back(); Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>( LastAction, types::TY_DX_CONTAINER)); } } // Claim ignored clang-cl options. Args.ClaimAllArgs(options::OPT_cl_ignored_Group); } /// Returns the canonical name for the offloading architecture when using a HIP /// or CUDA architecture. static StringRef getCanonicalArchString(Compilation &C, const llvm::opt::DerivedArgList &Args, StringRef ArchStr, const llvm::Triple &Triple, bool SuppressError = false) { // Lookup the CUDA / HIP architecture string. Only report an error if we were // expecting the triple to be only NVPTX / AMDGPU. CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr)); if (!SuppressError && Triple.isNVPTX() && (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) { C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch) << "CUDA" << ArchStr; return StringRef(); } else if (!SuppressError && Triple.isAMDGPU() && (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) { C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch) << "HIP" << ArchStr; return StringRef(); } if (IsNVIDIAGpuArch(Arch)) return Args.MakeArgStringRef(CudaArchToString(Arch)); if (IsAMDGpuArch(Arch)) { llvm::StringMap<bool> Features; auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()); if (!HIPTriple) return StringRef(); auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features); if (!Arch) { C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr; C.setContainsError(); return StringRef(); } return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features)); } // If the input isn't CUDA or HIP just return the architecture. return ArchStr; } /// Checks if the set offloading architectures does not conflict. Returns the /// incompatible pair if a conflict occurs. static std::optional<std::pair<llvm::StringRef, llvm::StringRef>> getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs, llvm::Triple Triple) { if (!Triple.isAMDGPU()) return std::nullopt; std::set<StringRef> ArchSet; llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin())); return getConflictTargetIDCombination(ArchSet); } llvm::DenseSet<StringRef> Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args, Action::OffloadKind Kind, const ToolChain *TC, bool SuppressError) const { if (!TC) TC = &C.getDefaultToolChain(); // --offload and --offload-arch options are mutually exclusive. if (Args.hasArgNoClaim(options::OPT_offload_EQ) && Args.hasArgNoClaim(options::OPT_offload_arch_EQ, options::OPT_no_offload_arch_EQ)) { C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload" << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ) ? "--offload-arch" : "--no-offload-arch"); } if (KnownArchs.contains(TC)) return KnownArchs.lookup(TC); llvm::DenseSet<StringRef> Archs; for (auto *Arg : Args) { // Extract any '--[no-]offload-arch' arguments intended for this toolchain. std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr; if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) && ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) { Arg->claim(); unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1)); ExtractedArg = getOpts().ParseOneArg(Args, Index); Arg = ExtractedArg.get(); } // Add or remove the seen architectures in order of appearance. If an // invalid architecture is given we simply exit. if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) { for (StringRef Arch : llvm::split(Arg->getValue(), ",")) { if (Arch == "native" || Arch.empty()) { auto GPUsOrErr = TC->getSystemGPUArchs(Args); if (!GPUsOrErr) { if (SuppressError) llvm::consumeError(GPUsOrErr.takeError()); else TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch) << llvm::Triple::getArchTypeName(TC->getArch()) << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch"; continue; } for (auto ArchStr : *GPUsOrErr) { Archs.insert( getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr), TC->getTriple(), SuppressError)); } } else { StringRef ArchStr = getCanonicalArchString( C, Args, Arch, TC->getTriple(), SuppressError); if (ArchStr.empty()) return Archs; Archs.insert(ArchStr); } } } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) { for (StringRef Arch : llvm::split(Arg->getValue(), ",")) { if (Arch == "all") { Archs.clear(); } else { StringRef ArchStr = getCanonicalArchString( C, Args, Arch, TC->getTriple(), SuppressError); if (ArchStr.empty()) return Archs; Archs.erase(ArchStr); } } } } if (auto ConflictingArchs = getConflictOffloadArchCombination(Archs, TC->getTriple())) { C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) << ConflictingArchs->first << ConflictingArchs->second; C.setContainsError(); } // Skip filling defaults if we're just querying what is availible. if (SuppressError) return Archs; if (Archs.empty()) { if (Kind == Action::OFK_Cuda) Archs.insert(CudaArchToString(CudaArch::CudaDefault)); else if (Kind == Action::OFK_HIP) Archs.insert(CudaArchToString(CudaArch::HIPDefault)); else if (Kind == Action::OFK_OpenMP) Archs.insert(StringRef()); } else { Args.ClaimAllArgs(options::OPT_offload_arch_EQ); Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ); } return Archs; } Action *Driver::BuildOffloadingActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputTy &Input, Action *HostAction) const { // Don't build offloading actions if explicitly disabled or we do not have a // valid source input and compile action to embed it in. If preprocessing only // ignore embedding. if (offloadHostOnly() || !types::isSrcFile(Input.first) || !(isa<CompileJobAction>(HostAction) || getFinalPhase(Args) == phases::Preprocess)) return HostAction; ActionList OffloadActions; OffloadAction::DeviceDependences DDeps; const Action::OffloadKind OffloadKinds[] = { Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP}; for (Action::OffloadKind Kind : OffloadKinds) { SmallVector<const ToolChain *, 2> ToolChains; ActionList DeviceActions; auto TCRange = C.getOffloadToolChains(Kind); for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI) ToolChains.push_back(TI->second); if (ToolChains.empty()) continue; types::ID InputType = Input.first; const Arg *InputArg = Input.second; // The toolchain can be active for unsupported file types. if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) || (Kind == Action::OFK_HIP && !types::isHIP(InputType))) continue; // Get the product of all bound architectures and toolchains. SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs; for (const ToolChain *TC : ToolChains) for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC)) TCAndArchs.push_back(std::make_pair(TC, Arch)); for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I) DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType)); if (DeviceActions.empty()) return HostAction; auto PL = types::getCompilationPhases(*this, Args, InputType); for (phases::ID Phase : PL) { if (Phase == phases::Link) { assert(Phase == PL.back() && "linking must be final compilation step."); break; } auto TCAndArch = TCAndArchs.begin(); for (Action *&A : DeviceActions) { if (A->getType() == types::TY_Nothing) continue; // Propagate the ToolChain so we can use it in ConstructPhaseAction. A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(), TCAndArch->first); A = ConstructPhaseAction(C, Args, Phase, A, Kind); if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) && Kind == Action::OFK_OpenMP && HostAction->getType() != types::TY_Nothing) { // OpenMP offloading has a dependency on the host compile action to // identify which declarations need to be emitted. This shouldn't be // collapsed with any other actions so we can use it in the device. HostAction->setCannotBeCollapsedWithNextDependentAction(); OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), TCAndArch->second.data(), Kind); OffloadAction::DeviceDependences DDep; DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); A = C.MakeAction<OffloadAction>(HDep, DDep); } ++TCAndArch; } } // Compiling HIP in non-RDC mode requires linking each action individually. for (Action *&A : DeviceActions) { if ((A->getType() != types::TY_Object && A->getType() != types::TY_LTO_BC) || Kind != Action::OFK_HIP || Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) continue; ActionList LinkerInput = {A}; A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image); } auto TCAndArch = TCAndArchs.begin(); for (Action *A : DeviceActions) { DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); OffloadAction::DeviceDependences DDep; DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType())); ++TCAndArch; } } if (offloadDeviceOnly()) return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing); if (OffloadActions.empty()) return HostAction; OffloadAction::DeviceDependences DDep; if (C.isOffloadingHostKind(Action::OFK_Cuda) && !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) { // If we are not in RDC-mode we just emit the final CUDA fatbinary for // each translation unit without requiring any linking. Action *FatbinAction = C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN); DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(), nullptr, Action::OFK_Cuda); } else if (C.isOffloadingHostKind(Action::OFK_HIP) && !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) { // If we are not in RDC-mode we just emit the final HIP fatbinary for each // translation unit, linking each input individually. Action *FatbinAction = C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN); DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(), nullptr, Action::OFK_HIP); } else { // Package all the offloading actions into a single output that can be // embedded in the host and linked. Action *PackagerAction = C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image); DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), nullptr, C.getActiveOffloadKinds()); } // If we are unable to embed a single device output into the host, we need to // add each device output as a host dependency to ensure they are still built. bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) { return A->getType() == types::TY_Nothing; }) && isa<CompileJobAction>(HostAction); OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps); return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps); } Action *Driver::ConstructPhaseAction( Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind) const { llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); // Some types skip the assembler phase (e.g., llvm-bc), but we can't // encode this in the steps because the intermediate type depends on // arguments. Just special case here. if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) return Input; // Build the appropriate action. switch (Phase) { case phases::Link: llvm_unreachable("link action invalid here."); case phases::IfsMerge: llvm_unreachable("ifsmerge action invalid here."); case phases::Preprocess: { types::ID OutputTy; // -M and -MM specify the dependency file name by altering the output type, // -if -MD and -MMD are not specified. if (Args.hasArg(options::OPT_M, options::OPT_MM) && !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { OutputTy = types::TY_Dependencies; } else { OutputTy = Input->getType(); // For these cases, the preprocessor is only translating forms, the Output // still needs preprocessing. if (!Args.hasFlag(options::OPT_frewrite_includes, options::OPT_fno_rewrite_includes, false) && !Args.hasFlag(options::OPT_frewrite_imports, options::OPT_fno_rewrite_imports, false) && !Args.hasFlag(options::OPT_fdirectives_only, options::OPT_fno_directives_only, false) && !CCGenDiagnostics) OutputTy = types::getPreprocessedType(OutputTy); assert(OutputTy != types::TY_INVALID && "Cannot preprocess this input type!"); } return C.MakeAction<PreprocessJobAction>(Input, OutputTy); } case phases::Precompile: { // API extraction should not generate an actual precompilation action. if (Args.hasArg(options::OPT_extract_api)) return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO); types::ID OutputTy = getPrecompiledType(Input->getType()); assert(OutputTy != types::TY_INVALID && "Cannot precompile this input type!"); // If we're given a module name, precompile header file inputs as a // module, not as a precompiled header. const char *ModName = nullptr; if (OutputTy == types::TY_PCH) { if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) ModName = A->getValue(); if (ModName) OutputTy = types::TY_ModuleFile; } if (Args.hasArg(options::OPT_fsyntax_only)) { // Syntax checks should not emit a PCH file OutputTy = types::TY_Nothing; } return C.MakeAction<PrecompileJobAction>(Input, OutputTy); } case phases::Compile: { if (Args.hasArg(options::OPT_fsyntax_only)) return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); if (Args.hasArg(options::OPT_rewrite_objc)) return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); if (Args.hasArg(options::OPT_rewrite_legacy_objc)) return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenLegacyObjC); if (Args.hasArg(options::OPT__analyze)) return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); if (Args.hasArg(options::OPT__migrate)) return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); if (Args.hasArg(options::OPT_emit_ast)) return C.MakeAction<CompileJobAction>(Input, types::TY_AST); if (Args.hasArg(options::OPT_module_file_info)) return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); if (Args.hasArg(options::OPT_verify_pch)) return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); if (Args.hasArg(options::OPT_extract_api)) return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO); return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); } case phases::Backend: { if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { types::ID Output; if (Args.hasArg(options::OPT_S)) Output = types::TY_LTO_IR; else if (Args.hasArg(options::OPT_ffat_lto_objects)) Output = types::TY_PP_Asm; else Output = types::TY_LTO_BC; return C.MakeAction<BackendJobAction>(Input, Output); } if (isUsingLTO(/* IsOffload */ true) && TargetDeviceOffloadKind != Action::OFK_None) { types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; return C.MakeAction<BackendJobAction>(Input, Output); } if (Args.hasArg(options::OPT_emit_llvm) || (((Input->getOffloadingToolChain() && Input->getOffloadingToolChain()->getTriple().isAMDGPU()) || TargetDeviceOffloadKind == Action::OFK_HIP) && (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false) || TargetDeviceOffloadKind == Action::OFK_OpenMP))) { types::ID Output = Args.hasArg(options::OPT_S) && (TargetDeviceOffloadKind == Action::OFK_None || offloadDeviceOnly() || (TargetDeviceOffloadKind == Action::OFK_HIP && !Args.hasFlag(options::OPT_offload_new_driver, options::OPT_no_offload_new_driver, false))) ? types::TY_LLVM_IR : types::TY_LLVM_BC; return C.MakeAction<BackendJobAction>(Input, Output); } return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); } case phases::Assemble: return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); } llvm_unreachable("invalid phase in ConstructPhaseAction"); } void Driver::BuildJobs(Compilation &C) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); // It is an error to provide a -o option if we are making multiple output // files. There are exceptions: // // IfsMergeJob: when generating interface stubs enabled we want to be able to // generate the stub file at the same time that we generate the real // library/a.out. So when a .o, .so, etc are the output, with clang interface // stubs there will also be a .ifs and .ifso at the same location. // // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled // and -c is passed, we still want to be able to generate a .ifs file while // we are also generating .o files. So we allow more than one output file in // this case as well. // // OffloadClass of type TY_Nothing: device-only output will place many outputs // into a single offloading action. We should count all inputs to the action // as outputs. Also ignore device-only outputs if we're compiling with // -fsyntax-only. if (FinalOutput) { unsigned NumOutputs = 0; unsigned NumIfsOutputs = 0; for (const Action *A : C.getActions()) { if (A->getType() != types::TY_Nothing && A->getType() != types::TY_DX_CONTAINER && !(A->getKind() == Action::IfsMergeJobClass || (A->getType() == clang::driver::types::TY_IFS_CPP && A->getKind() == clang::driver::Action::CompileJobClass && 0 == NumIfsOutputs++) || (A->getKind() == Action::BindArchClass && A->getInputs().size() && A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) ++NumOutputs; else if (A->getKind() == Action::OffloadClass && A->getType() == types::TY_Nothing && !C.getArgs().hasArg(options::OPT_fsyntax_only)) NumOutputs += A->size(); } if (NumOutputs > 1) { Diag(clang::diag::err_drv_output_argument_with_multiple_files); FinalOutput = nullptr; } } const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple(); // Collect the list of architectures. llvm::StringSet<> ArchNames; if (RawTriple.isOSBinFormatMachO()) for (const Arg *A : C.getArgs()) if (A->getOption().matches(options::OPT_arch)) ArchNames.insert(A->getValue()); // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults; for (Action *A : C.getActions()) { // If we are linking an image for multiple archs then the linker wants // -arch_multiple and -final_output <final image name>. Unfortunately, this // doesn't fit in cleanly because we have to pass this information down. // // FIXME: This is a hack; find a cleaner way to integrate this into the // process. const char *LinkingOutput = nullptr; if (isa<LipoJobAction>(A)) { if (FinalOutput) LinkingOutput = FinalOutput->getValue(); else LinkingOutput = getDefaultImageName(); } BuildJobsForAction(C, A, &C.getDefaultToolChain(), /*BoundArch*/ StringRef(), /*AtTopLevel*/ true, /*MultipleArchs*/ ArchNames.size() > 1, /*LinkingOutput*/ LinkingOutput, CachedResults, /*TargetDeviceOffloadKind*/ Action::OFK_None); } // If we have more than one job, then disable integrated-cc1 for now. Do this // also when we need to report process execution statistics. if (C.getJobs().size() > 1 || CCPrintProcessStats) for (auto &J : C.getJobs()) J.InProcess = false; if (CCPrintProcessStats) { C.setPostCallback([=](const Command &Cmd, int Res) { std::optional<llvm::sys::ProcessStatistics> ProcStat = Cmd.getProcessStatistics(); if (!ProcStat) return; const char *LinkingOutput = nullptr; if (FinalOutput) LinkingOutput = FinalOutput->getValue(); else if (!Cmd.getOutputFilenames().empty()) LinkingOutput = Cmd.getOutputFilenames().front().c_str(); else LinkingOutput = getDefaultImageName(); if (CCPrintStatReportFilename.empty()) { using namespace llvm; // Human readable output. outs() << sys::path::filename(Cmd.getExecutable()) << ": " << "output=" << LinkingOutput; outs() << ", total=" << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms" << ", user=" << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms" << ", mem=" << ProcStat->PeakMemory << " Kb\n"; } else { // CSV format. std::string Buffer; llvm::raw_string_ostream Out(Buffer); llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()), /*Quote*/ true); Out << ','; llvm::sys::printArg(Out, LinkingOutput, true); Out << ',' << ProcStat->TotalTime.count() << ',' << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory << '\n'; Out.flush(); std::error_code EC; llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC, llvm::sys::fs::OF_Append | llvm::sys::fs::OF_Text); if (EC) return; auto L = OS.lock(); if (!L) { llvm::errs() << "ERROR: Cannot lock file " << CCPrintStatReportFilename << ": " << toString(L.takeError()) << "\n"; return; } OS << Buffer; OS.flush(); } }); } // If the user passed -Qunused-arguments or there were errors, don't warn // about any unused arguments. if (Diags.hasErrorOccurred() || C.getArgs().hasArg(options::OPT_Qunused_arguments)) return; // Claim -fdriver-only here. (void)C.getArgs().hasArg(options::OPT_fdriver_only); // Claim -### here. (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); // Claim --driver-mode, --rsp-quoting, it was handled earlier. (void)C.getArgs().hasArg(options::OPT_driver_mode); (void)C.getArgs().hasArg(options::OPT_rsp_quoting); for (Arg *A : C.getArgs()) { // FIXME: It would be nice to be able to send the argument to the // DiagnosticsEngine, so that extra values, position, and so on could be // printed. if (!A->isClaimed()) { if (A->getOption().hasFlag(options::NoArgumentUnused)) continue; // Suppress the warning automatically if this is just a flag, and it is an // instance of an argument we already claimed. const Option &Opt = A->getOption(); if (Opt.getKind() == Option::FlagClass) { bool DuplicateClaimed = false; for (const Arg *AA : C.getArgs().filtered(&Opt)) { if (AA->isClaimed()) { DuplicateClaimed = true; break; } } if (DuplicateClaimed) continue; } // In clang-cl, don't mention unknown arguments here since they have // already been warned about. if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) { if (A->getOption().hasFlag(options::TargetSpecific) && !A->isIgnoredTargetSpecific()) { Diag(diag::err_drv_unsupported_opt_for_target) << A->getSpelling() << getTargetTriple(); } else { Diag(clang::diag::warn_drv_unused_argument) << A->getAsString(C.getArgs()); } } } } } namespace { /// Utility class to control the collapse of dependent actions and select the /// tools accordingly. class ToolSelector final { /// The tool chain this selector refers to. const ToolChain &TC; /// The compilation this selector refers to. const Compilation &C; /// The base action this selector refers to. const JobAction *BaseAction; /// Set to true if the current toolchain refers to host actions. bool IsHostSelector; /// Set to true if save-temps and embed-bitcode functionalities are active. bool SaveTemps; bool EmbedBitcode; /// Get previous dependent action or null if that does not exist. If /// \a CanBeCollapsed is false, that action must be legal to collapse or /// null will be returned. const JobAction *getPrevDependentAction(const ActionList &Inputs, ActionList &SavedOffloadAction, bool CanBeCollapsed = true) { // An option can be collapsed only if it has a single input. if (Inputs.size() != 1) return nullptr; Action *CurAction = *Inputs.begin(); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; // If the input action is an offload action. Look through it and save any // offload action that can be dropped in the event of a collapse. if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { // If the dependent action is a device action, we will attempt to collapse // only with other device actions. Otherwise, we would do the same but // with host actions only. if (!IsHostSelector) { if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { CurAction = OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; SavedOffloadAction.push_back(OA); return dyn_cast<JobAction>(CurAction); } } else if (OA->hasHostDependence()) { CurAction = OA->getHostDependence(); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; SavedOffloadAction.push_back(OA); return dyn_cast<JobAction>(CurAction); } return nullptr; } return dyn_cast<JobAction>(CurAction); } /// Return true if an assemble action can be collapsed. bool canCollapseAssembleAction() const { return TC.useIntegratedAs() && !SaveTemps && !C.getArgs().hasArg(options::OPT_via_file_asm) && !C.getArgs().hasArg(options::OPT__SLASH_FA) && !C.getArgs().hasArg(options::OPT__SLASH_Fa); } /// Return true if a preprocessor action can be collapsed. bool canCollapsePreprocessorAction() const { return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && !C.getArgs().hasArg(options::OPT_rewrite_objc); } /// Struct that relates an action with the offload actions that would be /// collapsed with it. struct JobActionInfo final { /// The action this info refers to. const JobAction *JA = nullptr; /// The offload actions we need to take care off if this action is /// collapsed. ActionList SavedOffloadAction; }; /// Append collapsed offload actions from the give nnumber of elements in the /// action info array. static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, ArrayRef<JobActionInfo> &ActionInfo, unsigned ElementNum) { assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); for (unsigned I = 0; I < ElementNum; ++I) CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), ActionInfo[I].SavedOffloadAction.end()); } /// Functions that attempt to perform the combining. They detect if that is /// legal, and if so they update the inputs \a Inputs and the offload action /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with /// the combined action is returned. If the combining is not legal or if the /// tool does not exist, null is returned. /// Currently three kinds of collapsing are supported: /// - Assemble + Backend + Compile; /// - Assemble + Backend ; /// - Backend + Compile. const Tool * combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) return nullptr; auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); if (!AJ || !BJ || !CJ) return nullptr; // Get compiler tool. const Tool *T = TC.SelectTool(*CJ); if (!T) return nullptr; // Can't collapse if we don't have codegen support unless we are // emitting LLVM IR. bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType()); if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR())) return nullptr; // When using -fembed-bitcode, it is required to have the same tool (clang) // for both CompilerJA and BackendJA. Otherwise, combine two stages. if (EmbedBitcode) { const Tool *BT = TC.SelectTool(*BJ); if (BT == T) return nullptr; } if (!T->hasIntegratedAssembler()) return nullptr; Inputs = CJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/3); return T; } const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) return nullptr; auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); if (!AJ || !BJ) return nullptr; // Get backend tool. const Tool *T = TC.SelectTool(*BJ); if (!T) return nullptr; if (!T->hasIntegratedAssembler()) return nullptr; Inputs = BJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/2); return T; } const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 2) return nullptr; auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); if (!BJ || !CJ) return nullptr; // Check if the initial input (to the compile job or its predessor if one // exists) is LLVM bitcode. In that case, no preprocessor step is required // and we can still collapse the compile and backend jobs when we have // -save-temps. I.e. there is no need for a separate compile job just to // emit unoptimized bitcode. bool InputIsBitcode = true; for (size_t i = 1; i < ActionInfo.size(); i++) if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && ActionInfo[i].JA->getType() != types::TY_LTO_BC) { InputIsBitcode = false; break; } if (!InputIsBitcode && !canCollapsePreprocessorAction()) return nullptr; // Get compiler tool. const Tool *T = TC.SelectTool(*CJ); if (!T) return nullptr; // Can't collapse if we don't have codegen support unless we are // emitting LLVM IR. bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType()); if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR())) return nullptr; if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) return nullptr; Inputs = CJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/2); return T; } /// Updates the inputs if the obtained tool supports combining with /// preprocessor action, and the current input is indeed a preprocessor /// action. If combining results in the collapse of offloading actions, those /// are appended to \a CollapsedOffloadAction. void combineWithPreprocessor(const Tool *T, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) return; // Attempt to get a preprocessor action dependence. ActionList PreprocessJobOffloadActions; ActionList NewInputs; for (Action *A : Inputs) { auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); if (!PJ || !isa<PreprocessJobAction>(PJ)) { NewInputs.push_back(A); continue; } // This is legal to combine. Append any offload action we found and add the // current input to preprocessor inputs. CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), PreprocessJobOffloadActions.end()); NewInputs.append(PJ->input_begin(), PJ->input_end()); } Inputs = NewInputs; } public: ToolSelector(const JobAction *BaseAction, const ToolChain &TC, const Compilation &C, bool SaveTemps, bool EmbedBitcode) : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), EmbedBitcode(EmbedBitcode) { assert(BaseAction && "Invalid base action."); IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; } /// Check if a chain of actions can be combined and return the tool that can /// handle the combination of actions. The pointer to the current inputs \a /// Inputs and the list of offload actions \a CollapsedOffloadActions /// connected to collapsed actions are updated accordingly. The latter enables /// the caller of the selector to process them afterwards instead of just /// dropping them. If no suitable tool is found, null will be returned. const Tool *getTool(ActionList &Inputs, ActionList &CollapsedOffloadAction) { // // Get the largest chain of actions that we could combine. // SmallVector<JobActionInfo, 5> ActionChain(1); ActionChain.back().JA = BaseAction; while (ActionChain.back().JA) { const Action *CurAction = ActionChain.back().JA; // Grow the chain by one element. ActionChain.resize(ActionChain.size() + 1); JobActionInfo &AI = ActionChain.back(); // Attempt to fill it with the AI.JA = getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); } // Pop the last action info as it could not be filled. ActionChain.pop_back(); // // Attempt to combine actions. If all combining attempts failed, just return // the tool of the provided action. At the end we attempt to combine the // action with any preprocessor action it may depend on. // const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); if (!T) T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); if (!T) T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); if (!T) { Inputs = BaseAction->getInputs(); T = TC.SelectTool(*BaseAction); } combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); return T; } }; } /// Return a string that uniquely identifies the result of a job. The bound arch /// is not necessarily represented in the toolchain's triple -- for example, /// armv7 and armv7s both map to the same triple -- so we need both in our map. /// Also, we need to add the offloading device kind, as the same tool chain can /// be used for host and device for some programming models, e.g. OpenMP. static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind) { std::string TriplePlusArch = TC->getTriple().normalize(); if (!BoundArch.empty()) { TriplePlusArch += "-"; TriplePlusArch += BoundArch; } TriplePlusArch += "-"; TriplePlusArch += Action::GetOffloadKindName(OffloadKind); return TriplePlusArch; } InputInfoList Driver::BuildJobsForAction( Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map<std::pair<const Action *, std::string>, InputInfoList> &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const { std::pair<const Action *, std::string> ActionTC = { A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; auto CachedResult = CachedResults.find(ActionTC); if (CachedResult != CachedResults.end()) { return CachedResult->second; } InputInfoList Result = BuildJobsForActionNoCache( C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, CachedResults, TargetDeviceOffloadKind); CachedResults[ActionTC] = Result; return Result; } static void handleTimeTrace(Compilation &C, const ArgList &Args, const JobAction *JA, const char *BaseInput, const InputInfo &Result) { Arg *A = Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ); if (!A) return; SmallString<128> Path; if (A->getOption().matches(options::OPT_ftime_trace_EQ)) { Path = A->getValue(); if (llvm::sys::fs::is_directory(Path)) { SmallString<128> Tmp(Result.getFilename()); llvm::sys::path::replace_extension(Tmp, "json"); llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp)); } } else { if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) { // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not // end with a path separator. Path = DumpDir->getValue(); Path += llvm::sys::path::filename(BaseInput); } else { Path = Result.getFilename(); } llvm::sys::path::replace_extension(Path, "json"); } const char *ResultFile = C.getArgs().MakeArgString(Path); C.addTimeTraceFile(ResultFile, JA); C.addResultFile(ResultFile, JA); } InputInfoList Driver::BuildJobsForActionNoCache( Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map<std::pair<const Action *, std::string>, InputInfoList> &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); InputInfoList OffloadDependencesInputInfo; bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { // The 'Darwin' toolchain is initialized only when its arguments are // computed. Get the default arguments for OFK_None to ensure that // initialization is performed before processing the offload action. // FIXME: Remove when darwin's toolchain is initialized during construction. C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); // The offload action is expected to be used in four different situations. // // a) Set a toolchain/architecture/kind for a host action: // Host Action 1 -> OffloadAction -> Host Action 2 // // b) Set a toolchain/architecture/kind for a device action; // Device Action 1 -> OffloadAction -> Device Action 2 // // c) Specify a device dependence to a host action; // Device Action 1 _ // \ // Host Action 1 ---> OffloadAction -> Host Action 2 // // d) Specify a host dependence to a device action. // Host Action 1 _ // \ // Device Action 1 ---> OffloadAction -> Device Action 2 // // For a) and b), we just return the job generated for the dependences. For // c) and d) we override the current action with the host/device dependence // if the current toolchain is host/device and set the offload dependences // info with the jobs obtained from the device/host dependence(s). // If there is a single device option or has no host action, just generate // the job for it. if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) { InputInfoList DevA; OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind())); }); return DevA; } // If 'Action 2' is host, we generate jobs for the device dependences and // override the current action with the host dependence. Otherwise, we // generate the host dependences and override the action with the device // dependence. The dependences can't therefore be a top-level action. OA->doOnEachDependence( /*IsHostDependence=*/BuildingForOffloadDevice, [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { OffloadDependencesInputInfo.append(BuildJobsForAction( C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind())); }); A = BuildingForOffloadDevice ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) : OA->getHostDependence(); // We may have already built this action as a part of the offloading // toolchain, return the cached input if so. std::pair<const Action *, std::string> ActionTC = { OA->getHostDependence(), GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; if (CachedResults.find(ActionTC) != CachedResults.end()) { InputInfoList Inputs = CachedResults[ActionTC]; Inputs.append(OffloadDependencesInputInfo); return Inputs; } } if (const InputAction *IA = dyn_cast<InputAction>(A)) { // FIXME: It would be nice to not claim this here; maybe the old scheme of // just using Args was better? const Arg &Input = IA->getInputArg(); Input.claim(); if (Input.getOption().matches(options::OPT_INPUT)) { const char *Name = Input.getValue(); return {InputInfo(A, Name, /* _BaseInput = */ Name)}; } return {InputInfo(A, &Input, /* _BaseInput = */ "")}; } if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { const ToolChain *TC; StringRef ArchName = BAA->getArchName(); if (!ArchName.empty()) TC = &getToolChain(C.getArgs(), computeTargetTriple(*this, TargetTriple, C.getArgs(), ArchName)); else TC = &C.getDefaultToolChain(); return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, MultipleArchs, LinkingOutput, CachedResults, TargetDeviceOffloadKind); } ActionList Inputs = A->getInputs(); const JobAction *JA = cast<JobAction>(A); ActionList CollapsedOffloadActions; ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), embedBitcodeInObject() && !isUsingLTO()); const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); if (!T) return {InputInfo()}; // If we've collapsed action list that contained OffloadAction we // need to build jobs for host/device-side inputs it may have held. for (const auto *OA : CollapsedOffloadActions) cast<OffloadAction>(OA)->doOnEachDependence( /*IsHostDependence=*/BuildingForOffloadDevice, [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { OffloadDependencesInputInfo.append(BuildJobsForAction( C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind())); }); // Only use pipes when there is exactly one input. InputInfoList InputInfos; for (const Action *Input : Inputs) { // Treat dsymutil and verify sub-jobs as being at the top-level too, they // shouldn't get temporary output names. // FIXME: Clean this up. bool SubJobAtTopLevel = AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); InputInfos.append(BuildJobsForAction( C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, CachedResults, A->getOffloadingDeviceKind())); } // Always use the first file input as the base input. const char *BaseInput = InputInfos[0].getBaseInput(); for (auto &Info : InputInfos) { if (Info.isFilename()) { BaseInput = Info.getBaseInput(); break; } } // ... except dsymutil actions, which use their actual input as the base // input. if (JA->getType() == types::TY_dSYM) BaseInput = InputInfos[0].getFilename(); // Append outputs of offload device jobs to the input list if (!OffloadDependencesInputInfo.empty()) InputInfos.append(OffloadDependencesInputInfo.begin(), OffloadDependencesInputInfo.end()); // Set the effective triple of the toolchain for the duration of this job. llvm::Triple EffectiveTriple; const ToolChain &ToolTC = T->getToolChain(); const ArgList &Args = C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); if (InputInfos.size() != 1) { EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); } else { // Pass along the input type if it can be unambiguously determined. EffectiveTriple = llvm::Triple( ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); } RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); // Determine the place to write output to, if any. InputInfo Result; InputInfoList UnbundlingResults; if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { // If we have an unbundling job, we need to create results for all the // outputs. We also update the results cache so that other actions using // this unbundling action can get the right results. for (auto &UI : UA->getDependentActionsInfo()) { assert(UI.DependentOffloadKind != Action::OFK_None && "Unbundling with no offloading??"); // Unbundling actions are never at the top level. When we generate the // offloading prefix, we also do that for the host file because the // unbundling action does not change the type of the output which can // cause a overwrite. std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( UI.DependentOffloadKind, UI.DependentToolChain->getTriple().normalize(), /*CreatePrefixForHost=*/true); auto CurI = InputInfo( UA, GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, /*AtTopLevel=*/false, MultipleArchs || UI.DependentOffloadKind == Action::OFK_HIP, OffloadingPrefix), BaseInput); // Save the unbundling result. UnbundlingResults.push_back(CurI); // Get the unique string identifier for this dependence and cache the // result. StringRef Arch; if (TargetDeviceOffloadKind == Action::OFK_HIP) { if (UI.DependentOffloadKind == Action::OFK_Host) Arch = StringRef(); else Arch = UI.DependentBoundArch; } else Arch = BoundArch; CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, UI.DependentOffloadKind)}] = { CurI}; } // Now that we have all the results generated, select the one that should be // returned for the current depending action. std::pair<const Action *, std::string> ActionTC = { A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; assert(CachedResults.find(ActionTC) != CachedResults.end() && "Result does not exist??"); Result = CachedResults[ActionTC].front(); } else if (JA->getType() == types::TY_Nothing) Result = {InputInfo(A, BaseInput)}; else { // We only have to generate a prefix for the host if this is not a top-level // action. std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( A->getOffloadingDeviceKind(), TC->getTriple().normalize(), /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) || !(A->getOffloadingHostActiveKinds() == Action::OFK_None || AtTopLevel)); Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, AtTopLevel, MultipleArchs, OffloadingPrefix), BaseInput); if (T->canEmitIR() && OffloadingPrefix.empty()) handleTimeTrace(C, Args, JA, BaseInput, Result); } if (CCCPrintBindings && !CCGenDiagnostics) { llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' << " - \"" << T->getName() << "\", inputs: ["; for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { llvm::errs() << InputInfos[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } if (UnbundlingResults.empty()) llvm::errs() << "], output: " << Result.getAsString() << "\n"; else { llvm::errs() << "], outputs: ["; for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { llvm::errs() << UnbundlingResults[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } llvm::errs() << "] \n"; } } else { if (UnbundlingResults.empty()) T->ConstructJob( C, *JA, Result, InputInfos, C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), LinkingOutput); else T->ConstructJobMultipleOutputs( C, *JA, UnbundlingResults, InputInfos, C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), LinkingOutput); } return {Result}; } const char *Driver::getDefaultImageName() const { llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); return Target.isOSWindows() ? "a.exe" : "a.out"; } /// Create output filename based on ArgValue, which could either be a /// full filename, filename without extension, or a directory. If ArgValue /// does not provide a filename, then use BaseName, and use the extension /// suitable for FileType. static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType) { SmallString<128> Filename = ArgValue; if (ArgValue.empty()) { // If the argument is empty, output to BaseName in the current dir. Filename = BaseName; } else if (llvm::sys::path::is_separator(Filename.back())) { // If the argument is a directory, output to BaseName in that dir. llvm::sys::path::append(Filename, BaseName); } if (!llvm::sys::path::has_extension(ArgValue)) { // If the argument didn't provide an extension, then set it. const char *Extension = types::getTypeTempSuffix(FileType, true); if (FileType == types::TY_Image && Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { // The output file is a dll. Extension = "dll"; } llvm::sys::path::replace_extension(Filename, Extension); } return Args.MakeArgString(Filename.c_str()); } static bool HasPreprocessOutput(const Action &JA) { if (isa<PreprocessJobAction>(JA)) return true; if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0])) return true; if (isa<OffloadBundlingJobAction>(JA) && HasPreprocessOutput(*(JA.getInputs()[0]))) return true; return false; } const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix, StringRef Suffix, bool MultipleArchs, StringRef BoundArch, bool NeedUniqueDirectory) const { SmallString<128> TmpName; Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); std::optional<std::string> CrashDirectory = CCGenDiagnostics && A ? std::string(A->getValue()) : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR"); if (CrashDirectory) { if (!getVFS().exists(*CrashDirectory)) llvm::sys::fs::create_directories(*CrashDirectory); SmallString<128> Path(*CrashDirectory); llvm::sys::path::append(Path, Prefix); const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%"; if (std::error_code EC = llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } } else { if (MultipleArchs && !BoundArch.empty()) { if (NeedUniqueDirectory) { TmpName = GetTemporaryDirectory(Prefix); llvm::sys::path::append(TmpName, Twine(Prefix) + "-" + BoundArch + "." + Suffix); } else { TmpName = GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix); } } else { TmpName = GetTemporaryPath(Prefix, Suffix); } } return C.addTempFile(C.getArgs().MakeArgString(TmpName)); } // Calculate the output path of the module file when compiling a module unit // with the `-fmodule-output` option or `-fmodule-output=` option specified. // The behavior is: // - If `-fmodule-output=` is specfied, then the module file is // writing to the value. // - Otherwise if the output object file of the module unit is specified, the // output path // of the module file should be the same with the output object file except // the corresponding suffix. This requires both `-o` and `-c` are specified. // - Otherwise, the output path of the module file will be the same with the // input with the corresponding suffix. static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput) { assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile && (C.getArgs().hasArg(options::OPT_fmodule_output) || C.getArgs().hasArg(options::OPT_fmodule_output_EQ))); if (Arg *ModuleOutputEQ = C.getArgs().getLastArg(options::OPT_fmodule_output_EQ)) return C.addResultFile(ModuleOutputEQ->getValue(), &JA); SmallString<64> OutputPath; Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); if (FinalOutput && C.getArgs().hasArg(options::OPT_c)) OutputPath = FinalOutput->getValue(); else OutputPath = BaseInput; const char *Extension = types::getTypeTempSuffix(JA.getType()); llvm::sys::path::replace_extension(OutputPath, Extension); return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA); } const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef OrigBoundArch, bool AtTopLevel, bool MultipleArchs, StringRef OffloadingPrefix) const { std::string BoundArch = OrigBoundArch.str(); if (is_style_windows(llvm::sys::path::Style::native)) { // BoundArch may contains ':', which is invalid in file names on Windows, // therefore replace it with '%'. std::replace(BoundArch.begin(), BoundArch.end(), ':', '@'); } llvm::PrettyStackTraceString CrashInfo("Computing output path"); // Output to a user requested destination? if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) return C.addResultFile(FinalOutput->getValue(), &JA); } // For /P, preprocess to file named after BaseInput. if (C.getArgs().hasArg(options::OPT__SLASH_P)) { assert(AtTopLevel && isa<PreprocessJobAction>(JA)); StringRef BaseName = llvm::sys::path::filename(BaseInput); StringRef NameArg; if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) NameArg = A->getValue(); return C.addResultFile( MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), &JA); } // Default to writing to stdout? if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) { return "-"; } if (JA.getType() == types::TY_ModuleFile && C.getArgs().getLastArg(options::OPT_module_file_info)) { return "-"; } if (IsDXCMode() && !C.getArgs().hasArg(options::OPT_o)) return "-"; // Is this the assembly listing for /FA? if (JA.getType() == types::TY_PP_Asm && (C.getArgs().hasArg(options::OPT__SLASH_FA) || C.getArgs().hasArg(options::OPT__SLASH_Fa))) { // Use /Fa and the input filename to determine the asm file name. StringRef BaseName = llvm::sys::path::filename(BaseInput); StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); return C.addResultFile( MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), &JA); } bool SpecifiedModuleOutput = C.getArgs().hasArg(options::OPT_fmodule_output) || C.getArgs().hasArg(options::OPT_fmodule_output_EQ); if (MultipleArchs && SpecifiedModuleOutput) Diag(clang::diag::err_drv_module_output_with_multiple_arch); // If we're emitting a module output with the specified option // `-fmodule-output`. if (!AtTopLevel && isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) return GetModuleOutputPath(C, JA, BaseInput); // Output to a temporary file? if ((!AtTopLevel && !isSaveTempsEnabled() && !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || CCGenDiagnostics) { StringRef Name = llvm::sys::path::filename(BaseInput); std::pair<StringRef, StringRef> Split = Name.split('.'); const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); // The non-offloading toolchain on Darwin requires deterministic input // file name for binaries to be deterministic, therefore it needs unique // directory. llvm::Triple Triple(C.getDriver().getTargetTriple()); bool NeedUniqueDirectory = (JA.getOffloadingDeviceKind() == Action::OFK_None || JA.getOffloadingDeviceKind() == Action::OFK_Host) && Triple.isOSDarwin(); return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch, NeedUniqueDirectory); } SmallString<128> BasePath(BaseInput); SmallString<128> ExternalPath(""); StringRef BaseName; // Dsymutil actions should use the full path. if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) { ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue(); // We use posix style here because the tests (specifically // darwin-dsymutil.c) demonstrate that posix style paths are acceptable // even on Windows and if we don't then the similar test covering this // fails. llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix, llvm::sys::path::filename(BasePath)); BaseName = ExternalPath; } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) BaseName = BasePath; else BaseName = llvm::sys::path::filename(BasePath); // Determine what the derived output name should be. const char *NamedOutput; if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { // The /Fo or /o flag decides the object filename. StringRef Val = C.getArgs() .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) ->getValue(); NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); } else if (JA.getType() == types::TY_Image && C.getArgs().hasArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)) { // The /Fe or /o flag names the linked file. StringRef Val = C.getArgs() .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) ->getValue(); NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); } else if (JA.getType() == types::TY_Image) { if (IsCLMode()) { // clang-cl uses BaseName for the executable name. NamedOutput = MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); } else { SmallString<128> Output(getDefaultImageName()); // HIP image for device compilation with -fno-gpu-rdc is per compilation // unit. bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && !C.getArgs().hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false); bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA); if (UseOutExtension) { Output = BaseName; llvm::sys::path::replace_extension(Output, ""); } Output += OffloadingPrefix; if (MultipleArchs && !BoundArch.empty()) { Output += "-"; Output.append(BoundArch); } if (UseOutExtension) Output += ".out"; NamedOutput = C.getArgs().MakeArgString(Output.c_str()); } } else if (JA.getType() == types::TY_PCH && IsCLMode()) { NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) && C.getArgs().hasArg(options::OPT__SLASH_o)) { StringRef Val = C.getArgs() .getLastArg(options::OPT__SLASH_o) ->getValue(); NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); } else { const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); assert(Suffix && "All types used for output should have a suffix."); std::string::size_type End = std::string::npos; if (!types::appendSuffixForType(JA.getType())) End = BaseName.rfind('.'); SmallString<128> Suffixed(BaseName.substr(0, End)); Suffixed += OffloadingPrefix; if (MultipleArchs && !BoundArch.empty()) { Suffixed += "-"; Suffixed.append(BoundArch); } // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for // the unoptimized bitcode so that it does not get overwritten by the ".bc" // optimized bitcode output. auto IsAMDRDCInCompilePhase = [](const JobAction &JA, const llvm::opt::DerivedArgList &Args) { // The relocatable compilation in HIP and OpenMP implies -emit-llvm. // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode // (generated in the compile phase.) const ToolChain *TC = JA.getOffloadingToolChain(); return isa<CompileJobAction>(JA) && ((JA.getOffloadingDeviceKind() == Action::OFK_HIP && Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) || (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC && TC->getTriple().isAMDGPU())); }; if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC && (C.getArgs().hasArg(options::OPT_emit_llvm) || IsAMDRDCInCompilePhase(JA, C.getArgs()))) Suffixed += ".tmp"; Suffixed += '.'; Suffixed += Suffix; NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); } // Prepend object file path if -save-temps=obj if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && JA.getType() != types::TY_PCH) { Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); SmallString<128> TempPath(FinalOutput->getValue()); llvm::sys::path::remove_filename(TempPath); StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); llvm::sys::path::append(TempPath, OutputFileName); NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); } // If we're saving temps and the temp file conflicts with the input file, // then avoid overwriting input file. if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { bool SameFile = false; SmallString<256> Result; llvm::sys::fs::current_path(Result); llvm::sys::path::append(Result, BaseName); llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); // Must share the same path to conflict. if (SameFile) { StringRef Name = llvm::sys::path::filename(BaseInput); std::pair<StringRef, StringRef> Split = Name.split('.'); std::string TmpName = GetTemporaryPath( Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); return C.addTempFile(C.getArgs().MakeArgString(TmpName)); } } // As an annoying special case, PCH generation doesn't strip the pathname. if (JA.getType() == types::TY_PCH && !IsCLMode()) { llvm::sys::path::remove_filename(BasePath); if (BasePath.empty()) BasePath = NamedOutput; else llvm::sys::path::append(BasePath, NamedOutput); return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); } return C.addResultFile(NamedOutput, &JA); } std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { // Search for Name in a list of paths. auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) -> std::optional<std::string> { // Respect a limited subset of the '-Bprefix' functionality in GCC by // attempting to use this prefix when looking for file paths. for (const auto &Dir : P) { if (Dir.empty()) continue; SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); llvm::sys::path::append(P, Name); if (llvm::sys::fs::exists(Twine(P))) return std::string(P); } return std::nullopt; }; if (auto P = SearchPaths(PrefixDirs)) return *P; SmallString<128> R(ResourceDir); llvm::sys::path::append(R, Name); if (llvm::sys::fs::exists(Twine(R))) return std::string(R.str()); SmallString<128> P(TC.getCompilerRTPath()); llvm::sys::path::append(P, Name); if (llvm::sys::fs::exists(Twine(P))) return std::string(P.str()); SmallString<128> D(Dir); llvm::sys::path::append(D, "..", Name); if (llvm::sys::fs::exists(Twine(D))) return std::string(D.str()); if (auto P = SearchPaths(TC.getLibraryPaths())) return *P; if (auto P = SearchPaths(TC.getFilePaths())) return *P; return std::string(Name); } void Driver::generatePrefixedToolNames( StringRef Tool, const ToolChain &TC, SmallVectorImpl<std::string> &Names) const { // FIXME: Needs a better variable than TargetTriple Names.emplace_back((TargetTriple + "-" + Tool).str()); Names.emplace_back(Tool); } static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) { llvm::sys::path::append(Dir, Name); if (llvm::sys::fs::can_execute(Twine(Dir))) return true; llvm::sys::path::remove_filename(Dir); return false; } std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { SmallVector<std::string, 2> TargetSpecificExecutables; generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); // Respect a limited subset of the '-Bprefix' functionality in GCC by // attempting to use this prefix when looking for program paths. for (const auto &PrefixDir : PrefixDirs) { if (llvm::sys::fs::is_directory(PrefixDir)) { SmallString<128> P(PrefixDir); if (ScanDirForExecutable(P, Name)) return std::string(P.str()); } else { SmallString<128> P((PrefixDir + Name).str()); if (llvm::sys::fs::can_execute(Twine(P))) return std::string(P.str()); } } const ToolChain::path_list &List = TC.getProgramPaths(); for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) { // For each possible name of the tool look for it in // program paths first, then the path. // Higher priority names will be first, meaning that // a higher priority name in the path will be found // instead of a lower priority name in the program path. // E.g. <triple>-gcc on the path will be found instead // of gcc in the program path for (const auto &Path : List) { SmallString<128> P(Path); if (ScanDirForExecutable(P, TargetSpecificExecutable)) return std::string(P.str()); } // Fall back to the path if (llvm::ErrorOr<std::string> P = llvm::sys::findProgramByName(TargetSpecificExecutable)) return *P; } return std::string(Name); } std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { SmallString<128> Path; std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); if (EC) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } return std::string(Path.str()); } std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { SmallString<128> Path; std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); if (EC) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } return std::string(Path.str()); } std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { SmallString<128> Output; if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { // FIXME: If anybody needs it, implement this obscure rule: // "If you specify a directory without a file name, the default file name // is VCx0.pch., where x is the major version of Visual C++ in use." Output = FpArg->getValue(); // "If you do not specify an extension as part of the path name, an // extension of .pch is assumed. " if (!llvm::sys::path::has_extension(Output)) Output += ".pch"; } else { if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) Output = YcArg->getValue(); if (Output.empty()) Output = BaseName; llvm::sys::path::replace_extension(Output, ".pch"); } return std::string(Output.str()); } const ToolChain &Driver::getToolChain(const ArgList &Args, const llvm::Triple &Target) const { auto &TC = ToolChains[Target.str()]; if (!TC) { switch (Target.getOS()) { case llvm::Triple::AIX: TC = std::make_unique<toolchains::AIX>(*this, Target, Args); break; case llvm::Triple::Haiku: TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); break; case llvm::Triple::Ananas: TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); break; case llvm::Triple::CloudABI: TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); break; case llvm::Triple::Darwin: case llvm::Triple::MacOSX: case llvm::Triple::IOS: case llvm::Triple::TvOS: case llvm::Triple::WatchOS: case llvm::Triple::DriverKit: TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); break; case llvm::Triple::DragonFly: TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); break; case llvm::Triple::OpenBSD: TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); break; case llvm::Triple::NetBSD: TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); break; case llvm::Triple::FreeBSD: if (Target.isPPC()) TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target, Args); else TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); break; case llvm::Triple::Minix: TC = std::make_unique<toolchains::Minix>(*this, Target, Args); break; case llvm::Triple::Linux: case llvm::Triple::ELFIAMCU: if (Target.getArch() == llvm::Triple::hexagon) TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, Args); else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && !Target.hasEnvironment()) TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, Args); else if (Target.isPPC()) TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, Args); else if (Target.getArch() == llvm::Triple::ve) TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); else if (Target.isOHOSFamily()) TC = std::make_unique<toolchains::OHOS>(*this, Target, Args); else TC = std::make_unique<toolchains::Linux>(*this, Target, Args); break; case llvm::Triple::NaCl: TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); break; case llvm::Triple::Fuchsia: TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); break; case llvm::Triple::Solaris: TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); break; case llvm::Triple::CUDA: TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args); break; case llvm::Triple::AMDHSA: TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args); break; case llvm::Triple::AMDPAL: case llvm::Triple::Mesa3D: TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); break; case llvm::Triple::Win32: switch (Target.getEnvironment()) { default: if (Target.isOSBinFormatELF()) TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); else if (Target.isOSBinFormatMachO()) TC = std::make_unique<toolchains::MachO>(*this, Target, Args); else TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); break; case llvm::Triple::GNU: TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); break; case llvm::Triple::Itanium: TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, Args); break; case llvm::Triple::MSVC: case llvm::Triple::UnknownEnvironment: if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) .starts_with_insensitive("bfd")) TC = std::make_unique<toolchains::CrossWindowsToolChain>( *this, Target, Args); else TC = std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); break; } break; case llvm::Triple::PS4: TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); break; case llvm::Triple::PS5: TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args); break; case llvm::Triple::Contiki: TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); break; case llvm::Triple::Hurd: TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); break; case llvm::Triple::LiteOS: TC = std::make_unique<toolchains::OHOS>(*this, Target, Args); break; case llvm::Triple::ZOS: TC = std::make_unique<toolchains::ZOS>(*this, Target, Args); break; case llvm::Triple::ShaderModel: TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args); break; default: // Of these targets, Hexagon is the only one that might have // an OS of Linux, in which case it got handled above already. switch (Target.getArch()) { case llvm::Triple::tce: TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); break; case llvm::Triple::tcele: TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); break; case llvm::Triple::hexagon: TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, Args); break; case llvm::Triple::lanai: TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); break; case llvm::Triple::xcore: TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); break; case llvm::Triple::wasm32: case llvm::Triple::wasm64: TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); break; case llvm::Triple::avr: TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); break; case llvm::Triple::msp430: TC = std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); break; case llvm::Triple::riscv32: case llvm::Triple::riscv64: if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args)) TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); else TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); break; case llvm::Triple::ve: TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); break; case llvm::Triple::spirv32: case llvm::Triple::spirv64: TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args); break; case llvm::Triple::csky: TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args); break; default: if (Target.getVendor() == llvm::Triple::Myriad) TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, Args); else if (toolchains::BareMetal::handlesTarget(Target)) TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); else if (Target.isOSBinFormatELF()) TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); else if (Target.isOSBinFormatMachO()) TC = std::make_unique<toolchains::MachO>(*this, Target, Args); else TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); } } } return *TC; } const ToolChain &Driver::getOffloadingDeviceToolChain( const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC, const Action::OffloadKind &TargetDeviceOffloadKind) const { // Use device / host triples as the key into the ToolChains map because the // device ToolChain we create depends on both. auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()]; if (!TC) { // Categorized by offload kind > arch rather than OS > arch like // the normal getToolChain call, as it seems a reasonable way to categorize // things. switch (TargetDeviceOffloadKind) { case Action::OFK_HIP: { if (Target.getArch() == llvm::Triple::amdgcn && Target.getVendor() == llvm::Triple::AMD && Target.getOS() == llvm::Triple::AMDHSA) TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target, HostTC, Args); else if (Target.getArch() == llvm::Triple::spirv64 && Target.getVendor() == llvm::Triple::UnknownVendor && Target.getOS() == llvm::Triple::UnknownOS) TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target, HostTC, Args); break; } default: break; } } return *TC; } bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { // Say "no" if there is not exactly one input of a type clang understands. if (JA.size() != 1 || !types::isAcceptedByClang((*JA.input_begin())->getType())) return false; // And say "no" if this is not a kind of action clang understands. if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) && !isa<ExtractAPIJobAction>(JA)) return false; return true; } bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { // Say "no" if there is not exactly one input of a type flang understands. if (JA.size() != 1 || !types::isAcceptedByFlang((*JA.input_begin())->getType())) return false; // And say "no" if this is not a kind of action flang understands. if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) return false; return true; } bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const { // Only emit static library if the flag is set explicitly. if (Args.hasArg(options::OPT_emit_static_lib)) return true; return false; } /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the /// grouped values as integers. Numbers which are not provided are set to 0. /// /// \return True if the entire string was parsed (9.2), or all groups were /// parsed (10.3.5extrastuff). bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra) { HadExtra = false; Major = Minor = Micro = 0; if (Str.empty()) return false; if (Str.consumeInteger(10, Major)) return false; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); if (Str.consumeInteger(10, Minor)) return false; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); if (Str.consumeInteger(10, Micro)) return false; if (!Str.empty()) HadExtra = true; return true; } /// Parse digits from a string \p Str and fulfill \p Digits with /// the parsed numbers. This method assumes that the max number of /// digits to look for is equal to Digits.size(). /// /// \return True if the entire string was parsed and there are /// no extra characters remaining at the end. bool Driver::GetReleaseVersion(StringRef Str, MutableArrayRef<unsigned> Digits) { if (Str.empty()) return false; unsigned CurDigit = 0; while (CurDigit < Digits.size()) { unsigned Digit; if (Str.consumeInteger(10, Digit)) return false; Digits[CurDigit] = Digit; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); CurDigit++; } // More digits than requested, bail out... return false; } std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { unsigned IncludedFlagsBitmask = 0; unsigned ExcludedFlagsBitmask = options::NoDriverOption; if (IsClCompatMode) { // Include CL and Core options. IncludedFlagsBitmask |= options::CLOption; IncludedFlagsBitmask |= options::CLDXCOption; IncludedFlagsBitmask |= options::CoreOption; } else { ExcludedFlagsBitmask |= options::CLOption; } if (IsDXCMode()) { // Include DXC and Core options. IncludedFlagsBitmask |= options::DXCOption; IncludedFlagsBitmask |= options::CLDXCOption; IncludedFlagsBitmask |= options::CoreOption; } else { ExcludedFlagsBitmask |= options::DXCOption; } if (!IsClCompatMode && !IsDXCMode()) ExcludedFlagsBitmask |= options::CLDXCOption; return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); } const char *Driver::getExecutableForDriverMode(DriverMode Mode) { switch (Mode) { case GCCMode: return "clang"; case GXXMode: return "clang++"; case CPPMode: return "clang-cpp"; case CLMode: return "clang-cl"; case FlangMode: return "flang"; case DXCMode: return "clang-dxc"; } llvm_unreachable("Unhandled Mode"); } bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); } bool clang::driver::willEmitRemarks(const ArgList &Args) { // -fsave-optimization-record enables it. if (Args.hasFlag(options::OPT_fsave_optimization_record, options::OPT_fno_save_optimization_record, false)) return true; // -fsave-optimization-record=<format> enables it as well. if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, options::OPT_fno_save_optimization_record, false)) return true; // -foptimization-record-file alone enables it too. if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, options::OPT_fno_save_optimization_record, false)) return true; // -foptimization-record-passes alone enables it too. if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, options::OPT_fno_save_optimization_record, false)) return true; return false; } llvm::StringRef clang::driver::getDriverMode(StringRef ProgName, ArrayRef<const char *> Args) { static StringRef OptName = getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName(); llvm::StringRef Opt; for (StringRef Arg : Args) { if (!Arg.startswith(OptName)) continue; Opt = Arg; } if (Opt.empty()) Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode; return Opt.consume_front(OptName) ? Opt : ""; } bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); } llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args, bool ClangCLMode, llvm::BumpPtrAllocator &Alloc, llvm::vfs::FileSystem *FS) { // Parse response files using the GNU syntax, unless we're in CL mode. There // are two ways to put clang in CL compatibility mode: ProgName is either // clang-cl or cl, or --driver-mode=cl is on the command line. The normal // command line parsing can't happen until after response file parsing, so we // have to manually search for a --driver-mode=cl argument the hard way. // Finally, our -cc1 tools don't care which tokenization mode we use because // response files written by clang will tokenize the same way in either mode. enum { Default, POSIX, Windows } RSPQuoting = Default; for (const char *F : Args) { if (strcmp(F, "--rsp-quoting=posix") == 0) RSPQuoting = POSIX; else if (strcmp(F, "--rsp-quoting=windows") == 0) RSPQuoting = Windows; } // Determines whether we want nullptr markers in Args to indicate response // files end-of-lines. We only use this for the /LINK driver argument with // clang-cl.exe on Windows. bool MarkEOLs = ClangCLMode; llvm::cl::TokenizerCallback Tokenizer; if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode)) Tokenizer = &llvm::cl::TokenizeWindowsCommandLine; else Tokenizer = &llvm::cl::TokenizeGNUCommandLine; if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).startswith("-cc1")) MarkEOLs = false; llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer); ECtx.setMarkEOLs(MarkEOLs); if (FS) ECtx.setVFS(FS); if (llvm::Error Err = ECtx.expandResponseFiles(Args)) return Err; // If -cc1 came from a response file, remove the EOL sentinels. auto FirstArg = llvm::find_if(llvm::drop_begin(Args), [](const char *A) { return A != nullptr; }); if (FirstArg != Args.end() && StringRef(*FirstArg).startswith("-cc1")) { // If -cc1 came from a response file, remove the EOL sentinels. if (MarkEOLs) { auto newEnd = std::remove(Args.begin(), Args.end(), nullptr); Args.resize(newEnd - Args.begin()); } } return llvm::Error::success(); }