Mercurial > hg > CbC > CbC_llvm
view flang/lib/Semantics/semantics.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===-- lib/Semantics/semantics.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Semantics/semantics.h" #include "assignment.h" #include "canonicalize-acc.h" #include "canonicalize-do.h" #include "canonicalize-omp.h" #include "check-acc-structure.h" #include "check-allocate.h" #include "check-arithmeticif.h" #include "check-case.h" #include "check-coarray.h" #include "check-cuda.h" #include "check-data.h" #include "check-deallocate.h" #include "check-declarations.h" #include "check-do-forall.h" #include "check-if-stmt.h" #include "check-io.h" #include "check-namelist.h" #include "check-nullify.h" #include "check-omp-structure.h" #include "check-purity.h" #include "check-return.h" #include "check-select-rank.h" #include "check-select-type.h" #include "check-stop.h" #include "compute-offsets.h" #include "mod-file.h" #include "resolve-labels.h" #include "resolve-names.h" #include "rewrite-parse-tree.h" #include "flang/Common/default-kinds.h" #include "flang/Parser/parse-tree-visitor.h" #include "flang/Parser/tools.h" #include "flang/Semantics/expression.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/symbol.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Host.h" #include "llvm/TargetParser/Triple.h" namespace Fortran::semantics { using NameToSymbolMap = std::multimap<parser::CharBlock, SymbolRef>; static void DoDumpSymbols(llvm::raw_ostream &, const Scope &, int indent = 0); static void PutIndent(llvm::raw_ostream &, int indent); static void GetSymbolNames(const Scope &scope, NameToSymbolMap &symbols) { // Finds all symbol names in the scope without collecting duplicates. for (const auto &pair : scope) { symbols.emplace(pair.second->name(), *pair.second); } for (const auto &pair : scope.commonBlocks()) { symbols.emplace(pair.second->name(), *pair.second); } for (const auto &child : scope.children()) { GetSymbolNames(child, symbols); } } // A parse tree visitor that calls Enter/Leave functions from each checker // class C supplied as template parameters. Enter is called before the node's // children are visited, Leave is called after. No two checkers may have the // same Enter or Leave function. Each checker must be constructible from // SemanticsContext and have BaseChecker as a virtual base class. template <typename... C> class SemanticsVisitor : public virtual BaseChecker, public virtual C... { public: using BaseChecker::Enter; using BaseChecker::Leave; using C::Enter...; using C::Leave...; SemanticsVisitor(SemanticsContext &context) : C{context}..., context_{context} {} template <typename N> bool Pre(const N &node) { if constexpr (common::HasMember<const N *, ConstructNode>) { context_.PushConstruct(node); } Enter(node); return true; } template <typename N> void Post(const N &node) { Leave(node); if constexpr (common::HasMember<const N *, ConstructNode>) { context_.PopConstruct(); } } template <typename T> bool Pre(const parser::Statement<T> &node) { context_.set_location(node.source); Enter(node); return true; } template <typename T> bool Pre(const parser::UnlabeledStatement<T> &node) { context_.set_location(node.source); Enter(node); return true; } template <typename T> void Post(const parser::Statement<T> &node) { Leave(node); context_.set_location(std::nullopt); } template <typename T> void Post(const parser::UnlabeledStatement<T> &node) { Leave(node); context_.set_location(std::nullopt); } bool Walk(const parser::Program &program) { parser::Walk(program, *this); return !context_.AnyFatalError(); } private: SemanticsContext &context_; }; class MiscChecker : public virtual BaseChecker { public: explicit MiscChecker(SemanticsContext &context) : context_{context} {} void Leave(const parser::EntryStmt &) { if (!context_.constructStack().empty()) { // C1571 context_.Say("ENTRY may not appear in an executable construct"_err_en_US); } } void Leave(const parser::AssignStmt &stmt) { CheckAssignGotoName(std::get<parser::Name>(stmt.t)); } void Leave(const parser::AssignedGotoStmt &stmt) { CheckAssignGotoName(std::get<parser::Name>(stmt.t)); } private: void CheckAssignGotoName(const parser::Name &name) { if (context_.HasError(name.symbol)) { return; } const Symbol &symbol{DEREF(name.symbol)}; auto type{evaluate::DynamicType::From(symbol)}; if (!IsVariableName(symbol) || symbol.Rank() != 0 || !type || type->category() != TypeCategory::Integer || type->kind() != context_.defaultKinds().GetDefaultKind(TypeCategory::Integer)) { context_ .Say(name.source, "'%s' must be a default integer scalar variable"_err_en_US, name.source) .Attach(symbol.name(), "Declaration of '%s'"_en_US, symbol.name()); } } SemanticsContext &context_; }; using StatementSemanticsPass1 = ExprChecker; using StatementSemanticsPass2 = SemanticsVisitor<AllocateChecker, ArithmeticIfStmtChecker, AssignmentChecker, CaseChecker, CoarrayChecker, DataChecker, DeallocateChecker, DoForallChecker, IfStmtChecker, IoChecker, MiscChecker, NamelistChecker, NullifyChecker, PurityChecker, ReturnStmtChecker, SelectRankConstructChecker, SelectTypeChecker, StopChecker>; static bool PerformStatementSemantics( SemanticsContext &context, parser::Program &program) { ResolveNames(context, program, context.globalScope()); RewriteParseTree(context, program); ComputeOffsets(context, context.globalScope()); CheckDeclarations(context); StatementSemanticsPass1{context}.Walk(program); StatementSemanticsPass2 pass2{context}; pass2.Walk(program); if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenACC)) { SemanticsVisitor<AccStructureChecker>{context}.Walk(program); } if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenMP)) { SemanticsVisitor<OmpStructureChecker>{context}.Walk(program); } if (context.languageFeatures().IsEnabled(common::LanguageFeature::CUDA)) { SemanticsVisitor<CUDAChecker>{context}.Walk(program); } if (!context.AnyFatalError()) { pass2.CompileDataInitializationsIntoInitializers(); } return !context.AnyFatalError(); } /// This class keeps track of the common block appearances with the biggest size /// and with an initial value (if any) in a program. This allows reporting /// conflicting initialization and warning about appearances of a same /// named common block with different sizes. The biggest common block size and /// initialization (if any) can later be provided so that lowering can generate /// the correct symbol size and initial values, even when named common blocks /// appears with different sizes and are initialized outside of block data. class CommonBlockMap { private: struct CommonBlockInfo { // Common block symbol for the appearance with the biggest size. SymbolRef biggestSize; // Common block symbol for the appearance with the initialized members (if // any). std::optional<SymbolRef> initialization; }; public: void MapCommonBlockAndCheckConflicts( SemanticsContext &context, const Symbol &common) { const Symbol *isInitialized{CommonBlockIsInitialized(common)}; auto [it, firstAppearance] = commonBlocks_.insert({common.name(), isInitialized ? CommonBlockInfo{common, common} : CommonBlockInfo{common, std::nullopt}}); if (!firstAppearance) { CommonBlockInfo &info{it->second}; if (isInitialized) { if (info.initialization.has_value() && &**info.initialization != &common) { // Use the location of the initialization in the error message because // common block symbols may have no location if they are blank // commons. const Symbol &previousInit{ DEREF(CommonBlockIsInitialized(**info.initialization))}; context .Say(isInitialized->name(), "Multiple initialization of COMMON block /%s/"_err_en_US, common.name()) .Attach(previousInit.name(), "Previous initialization of COMMON block /%s/"_en_US, common.name()); } else { info.initialization = common; } } if (common.size() != info.biggestSize->size() && !common.name().empty()) { context .Say(common.name(), "A named COMMON block should have the same size everywhere it appears (%zd bytes here)"_port_en_US, common.size()) .Attach(info.biggestSize->name(), "Previously defined with a size of %zd bytes"_en_US, info.biggestSize->size()); } if (common.size() > info.biggestSize->size()) { info.biggestSize = common; } } } CommonBlockList GetCommonBlocks() const { CommonBlockList result; for (const auto &[_, blockInfo] : commonBlocks_) { result.emplace_back( std::make_pair(blockInfo.initialization ? *blockInfo.initialization : blockInfo.biggestSize, blockInfo.biggestSize->size())); } return result; } private: /// Return the symbol of an initialized member if a COMMON block /// is initalized. Otherwise, return nullptr. static Symbol *CommonBlockIsInitialized(const Symbol &common) { const auto &commonDetails = common.get<Fortran::semantics::CommonBlockDetails>(); for (const auto &member : commonDetails.objects()) { if (IsInitialized(*member)) { return &*member; } } // Common block may be initialized via initialized variables that are in an // equivalence with the common block members. for (const Fortran::semantics::EquivalenceSet &set : common.owner().equivalenceSets()) { for (const Fortran::semantics::EquivalenceObject &obj : set) { if (!obj.symbol.test( Fortran::semantics::Symbol::Flag::CompilerCreated)) { if (FindCommonBlockContaining(obj.symbol) == &common && IsInitialized(obj.symbol)) { return &obj.symbol; } } } } return nullptr; } std::map<SourceName, CommonBlockInfo> commonBlocks_; }; SemanticsContext::SemanticsContext( const common::IntrinsicTypeDefaultKinds &defaultKinds, const common::LanguageFeatureControl &languageFeatures, parser::AllCookedSources &allCookedSources) : defaultKinds_{defaultKinds}, languageFeatures_{languageFeatures}, allCookedSources_{allCookedSources}, intrinsics_{evaluate::IntrinsicProcTable::Configure(defaultKinds_)}, globalScope_{*this}, intrinsicModulesScope_{globalScope_.MakeScope( Scope::Kind::IntrinsicModules, nullptr)}, foldingContext_{parser::ContextualMessages{&messages_}, defaultKinds_, intrinsics_, targetCharacteristics_} {} SemanticsContext::~SemanticsContext() {} int SemanticsContext::GetDefaultKind(TypeCategory category) const { return defaultKinds_.GetDefaultKind(category); } const DeclTypeSpec &SemanticsContext::MakeNumericType( TypeCategory category, int kind) { if (kind == 0) { kind = GetDefaultKind(category); } return globalScope_.MakeNumericType(category, KindExpr{kind}); } const DeclTypeSpec &SemanticsContext::MakeLogicalType(int kind) { if (kind == 0) { kind = GetDefaultKind(TypeCategory::Logical); } return globalScope_.MakeLogicalType(KindExpr{kind}); } bool SemanticsContext::AnyFatalError() const { return !messages_.empty() && (warningsAreErrors_ || messages_.AnyFatalError()); } bool SemanticsContext::HasError(const Symbol &symbol) { return errorSymbols_.count(symbol) > 0; } bool SemanticsContext::HasError(const Symbol *symbol) { return !symbol || HasError(*symbol); } bool SemanticsContext::HasError(const parser::Name &name) { return HasError(name.symbol); } void SemanticsContext::SetError(const Symbol &symbol, bool value) { if (value) { CheckError(symbol); errorSymbols_.emplace(symbol); } } void SemanticsContext::CheckError(const Symbol &symbol) { if (!AnyFatalError()) { std::string buf; llvm::raw_string_ostream ss{buf}; ss << symbol; common::die( "No error was reported but setting error on: %s", ss.str().c_str()); } } const Scope &SemanticsContext::FindScope(parser::CharBlock source) const { return const_cast<SemanticsContext *>(this)->FindScope(source); } Scope &SemanticsContext::FindScope(parser::CharBlock source) { if (auto *scope{globalScope_.FindScope(source)}) { return *scope; } else { common::die( "SemanticsContext::FindScope(): invalid source location for '%s'", source.ToString().c_str()); } } bool SemanticsContext::IsInModuleFile(parser::CharBlock source) const { for (const Scope *scope{&FindScope(source)}; !scope->IsGlobal(); scope = &scope->parent()) { if (scope->IsModuleFile()) { return true; } } return false; } void SemanticsContext::PopConstruct() { CHECK(!constructStack_.empty()); constructStack_.pop_back(); } void SemanticsContext::CheckIndexVarRedefine(const parser::CharBlock &location, const Symbol &variable, parser::MessageFixedText &&message) { const Symbol &symbol{ResolveAssociations(variable)}; auto it{activeIndexVars_.find(symbol)}; if (it != activeIndexVars_.end()) { std::string kind{EnumToString(it->second.kind)}; Say(location, std::move(message), kind, symbol.name()) .Attach(it->second.location, "Enclosing %s construct"_en_US, kind); } } void SemanticsContext::WarnIndexVarRedefine( const parser::CharBlock &location, const Symbol &variable) { CheckIndexVarRedefine(location, variable, "Possible redefinition of %s variable '%s'"_warn_en_US); } void SemanticsContext::CheckIndexVarRedefine( const parser::CharBlock &location, const Symbol &variable) { CheckIndexVarRedefine( location, variable, "Cannot redefine %s variable '%s'"_err_en_US); } void SemanticsContext::CheckIndexVarRedefine(const parser::Variable &variable) { if (const Symbol * entity{GetLastName(variable).symbol}) { CheckIndexVarRedefine(variable.GetSource(), *entity); } } void SemanticsContext::CheckIndexVarRedefine(const parser::Name &name) { if (const Symbol * entity{name.symbol}) { CheckIndexVarRedefine(name.source, *entity); } } void SemanticsContext::ActivateIndexVar( const parser::Name &name, IndexVarKind kind) { CheckIndexVarRedefine(name); if (const Symbol * indexVar{name.symbol}) { activeIndexVars_.emplace( ResolveAssociations(*indexVar), IndexVarInfo{name.source, kind}); } } void SemanticsContext::DeactivateIndexVar(const parser::Name &name) { if (Symbol * indexVar{name.symbol}) { auto it{activeIndexVars_.find(ResolveAssociations(*indexVar))}; if (it != activeIndexVars_.end() && it->second.location == name.source) { activeIndexVars_.erase(it); } } } SymbolVector SemanticsContext::GetIndexVars(IndexVarKind kind) { SymbolVector result; for (const auto &[symbol, info] : activeIndexVars_) { if (info.kind == kind) { result.push_back(symbol); } } return result; } SourceName SemanticsContext::SaveTempName(std::string &&name) { return {*tempNames_.emplace(std::move(name)).first}; } SourceName SemanticsContext::GetTempName(const Scope &scope) { for (const auto &str : tempNames_) { if (IsTempName(str)) { SourceName name{str}; if (scope.find(name) == scope.end()) { return name; } } } return SaveTempName(".F18."s + std::to_string(tempNames_.size())); } bool SemanticsContext::IsTempName(const std::string &name) { return name.size() > 5 && name.substr(0, 5) == ".F18."; } Scope *SemanticsContext::GetBuiltinModule(const char *name) { return ModFileReader{*this}.Read(SourceName{name, std::strlen(name)}, true /*intrinsic*/, nullptr, true /*silence errors*/); } void SemanticsContext::UseFortranBuiltinsModule() { if (builtinsScope_ == nullptr) { builtinsScope_ = GetBuiltinModule("__fortran_builtins"); if (builtinsScope_) { intrinsics_.SupplyBuiltins(*builtinsScope_); } } } void SemanticsContext::UsePPCBuiltinTypesModule() { if (ppcBuiltinTypesScope_ == nullptr) { ppcBuiltinTypesScope_ = GetBuiltinModule("__ppc_types"); } } const Scope &SemanticsContext::GetCUDABuiltinsScope() { if (!cudaBuiltinsScope_) { cudaBuiltinsScope_ = GetBuiltinModule("__cuda_builtins"); CHECK(cudaBuiltinsScope_.value() != nullptr); } return **cudaBuiltinsScope_; } void SemanticsContext::UsePPCBuiltinsModule() { if (ppcBuiltinsScope_ == nullptr) { ppcBuiltinsScope_ = GetBuiltinModule("__ppc_intrinsics"); } } parser::Program &SemanticsContext::SaveParseTree(parser::Program &&tree) { return modFileParseTrees_.emplace_back(std::move(tree)); } bool Semantics::Perform() { // Implicitly USE the __Fortran_builtins module so that special types // (e.g., __builtin_team_type) are available to semantics, esp. for // intrinsic checking. if (!program_.v.empty()) { const auto *frontModule{std::get_if<common::Indirection<parser::Module>>( &program_.v.front().u)}; if (frontModule && (std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t) .statement.v.source == "__fortran_builtins" || std::get<parser::Statement<parser::ModuleStmt>>( frontModule->value().t) .statement.v.source == "__ppc_types")) { // Don't try to read the builtins module when we're actually building it. } else if (frontModule && (std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t) .statement.v.source == "__ppc_intrinsics" || std::get<parser::Statement<parser::ModuleStmt>>( frontModule->value().t) .statement.v.source == "mma")) { // The derived type definition for the vectors is needed. context_.UsePPCBuiltinTypesModule(); } else { context_.UseFortranBuiltinsModule(); llvm::Triple targetTriple{llvm::Triple( llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple()))}; // Only use __ppc_intrinsics module when targetting PowerPC arch if (context_.targetCharacteristics().isPPC()) { context_.UsePPCBuiltinTypesModule(); context_.UsePPCBuiltinsModule(); } } } return ValidateLabels(context_, program_) && parser::CanonicalizeDo(program_) && // force line break CanonicalizeAcc(context_.messages(), program_) && CanonicalizeOmp(context_.messages(), program_) && CanonicalizeCUDA(program_) && PerformStatementSemantics(context_, program_) && ModFileWriter{context_}.WriteAll(); } void Semantics::EmitMessages(llvm::raw_ostream &os) const { context_.messages().Emit(os, context_.allCookedSources()); } void Semantics::DumpSymbols(llvm::raw_ostream &os) { DoDumpSymbols(os, context_.globalScope()); } void Semantics::DumpSymbolsSources(llvm::raw_ostream &os) const { NameToSymbolMap symbols; GetSymbolNames(context_.globalScope(), symbols); const parser::AllCookedSources &allCooked{context_.allCookedSources()}; for (const auto &pair : symbols) { const Symbol &symbol{pair.second}; if (auto sourceInfo{allCooked.GetSourcePositionRange(symbol.name())}) { os << symbol.name().ToString() << ": " << sourceInfo->first.path << ", " << sourceInfo->first.line << ", " << sourceInfo->first.column << "-" << sourceInfo->second.column << "\n"; } else if (symbol.has<semantics::UseDetails>()) { os << symbol.name().ToString() << ": " << symbol.GetUltimate().owner().symbol()->name().ToString() << "\n"; } } } void DoDumpSymbols(llvm::raw_ostream &os, const Scope &scope, int indent) { PutIndent(os, indent); os << Scope::EnumToString(scope.kind()) << " scope:"; if (const auto *symbol{scope.symbol()}) { os << ' ' << symbol->name(); } if (scope.alignment().has_value()) { os << " size=" << scope.size() << " alignment=" << *scope.alignment(); } if (scope.derivedTypeSpec()) { os << " instantiation of " << *scope.derivedTypeSpec(); } os << " sourceRange=" << scope.sourceRange().size() << " bytes\n"; ++indent; for (const auto &pair : scope) { const auto &symbol{*pair.second}; PutIndent(os, indent); os << symbol << '\n'; if (const auto *details{symbol.detailsIf<GenericDetails>()}) { if (const auto &type{details->derivedType()}) { PutIndent(os, indent); os << *type << '\n'; } } } if (!scope.equivalenceSets().empty()) { PutIndent(os, indent); os << "Equivalence Sets:"; for (const auto &set : scope.equivalenceSets()) { os << ' '; char sep = '('; for (const auto &object : set) { os << sep << object.AsFortran(); sep = ','; } os << ')'; } os << '\n'; } if (!scope.crayPointers().empty()) { PutIndent(os, indent); os << "Cray Pointers:"; for (const auto &[pointee, pointer] : scope.crayPointers()) { os << " (" << pointer->name() << ',' << pointee << ')'; } } for (const auto &pair : scope.commonBlocks()) { const auto &symbol{*pair.second}; PutIndent(os, indent); os << symbol << '\n'; } for (const auto &child : scope.children()) { DoDumpSymbols(os, child, indent); } --indent; } static void PutIndent(llvm::raw_ostream &os, int indent) { for (int i = 0; i < indent; ++i) { os << " "; } } void SemanticsContext::MapCommonBlockAndCheckConflicts(const Symbol &common) { if (!commonBlockMap_) { commonBlockMap_ = std::make_unique<CommonBlockMap>(); } commonBlockMap_->MapCommonBlockAndCheckConflicts(*this, common); } CommonBlockList SemanticsContext::GetCommonBlocks() const { if (commonBlockMap_) { return commonBlockMap_->GetCommonBlocks(); } return {}; } } // namespace Fortran::semantics