Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // //===----------------------------------------------------------------------===// #include "HexagonFrameLowering.h" #include "HexagonBlockRanges.h" #include "HexagonInstrInfo.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "MCTargetDesc/HexagonBaseInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <limits> #include <map> #include <optional> #include <utility> #include <vector> #define DEBUG_TYPE "hexagon-pei" // Hexagon stack frame layout as defined by the ABI: // // Incoming arguments // passed via stack // | // | // SP during function's FP during function's | // +-- runtime (top of stack) runtime (bottom) --+ | // | | | // --++---------------------+------------------+-----------------++-+------- // | parameter area for | variable-size | fixed-size |LR| arg // | called functions | local objects | local objects |FP| // --+----------------------+------------------+-----------------+--+------- // <- size known -> <- size unknown -> <- size known -> // // Low address High address // // <--- stack growth // // // - In any circumstances, the outgoing function arguments are always accessi- // ble using the SP, and the incoming arguments are accessible using the FP. // - If the local objects are not aligned, they can always be accessed using // the FP. // - If there are no variable-sized objects, the local objects can always be // accessed using the SP, regardless whether they are aligned or not. (The // alignment padding will be at the bottom of the stack (highest address), // and so the offset with respect to the SP will be known at the compile- // -time.) // // The only complication occurs if there are both, local aligned objects, and // dynamically allocated (variable-sized) objects. The alignment pad will be // placed between the FP and the local objects, thus preventing the use of the // FP to access the local objects. At the same time, the variable-sized objects // will be between the SP and the local objects, thus introducing an unknown // distance from the SP to the locals. // // To avoid this problem, a new register is created that holds the aligned // address of the bottom of the stack, referred in the sources as AP (aligned // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad // that aligns AP to the required boundary (a maximum of the alignments of // all stack objects, fixed- and variable-sized). All local objects[1] will // then use AP as the base pointer. // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get // their name from being allocated at fixed locations on the stack, relative // to the FP. In the presence of dynamic allocation and local alignment, such // objects can only be accessed through the FP. // // Illustration of the AP: // FP --+ // | // ---------------+---------------------+-----+-----------------------++-+-- // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| // stack frame | (aligned) | | (CSR, spills, etc.) |FP| // ---------------+---------------------+-----+-----------------+-----+--+-- // |<-- Multiple of the -->| // stack alignment +-- AP // // The AP is set up at the beginning of the function. Since it is not a dedi- // cated (reserved) register, it needs to be kept live throughout the function // to be available as the base register for local object accesses. // Normally, an address of a stack objects is obtained by a pseudo-instruction // PS_fi. To access local objects with the AP register present, a different // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra // argument compared to PS_fi: the first input register is the AP register. // This keeps the register live between its definition and its uses. // The AP register is originally set up using pseudo-instruction PS_aligna: // AP = PS_aligna A // where // A - required stack alignment // The alignment value must be the maximum of all alignments required by // any stack object. // The dynamic allocation uses a pseudo-instruction PS_alloca: // Rd = PS_alloca Rs, A // where // Rd - address of the allocated space // Rs - minimum size (the actual allocated can be larger to accommodate // alignment) // A - required alignment using namespace llvm; static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots", cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2)); static cl::opt<int> SpillFuncThreshold("spill-func-threshold", cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), cl::init(6)); static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, cl::desc("Specify Os spill func threshold"), cl::init(1)); static cl::opt<bool> EnableStackOVFSanitizer( "enable-stackovf-sanitizer", cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), cl::init(false)); static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, cl::desc("Enable stack frame shrink wrapping")); static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::desc("Max count of stack frame shrink-wraps")); static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden, cl::desc("Enable long calls for save-restore stubs."), cl::init(false)); static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), cl::Hidden, cl::desc("Refrain from using FP whenever possible")); static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, cl::init(true), cl::desc("Optimize spill slots")); #ifndef NDEBUG static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, cl::init(std::numeric_limits<unsigned>::max())); static unsigned SpillOptCount = 0; #endif namespace llvm { void initializeHexagonCallFrameInformationPass(PassRegistry&); FunctionPass *createHexagonCallFrameInformation(); } // end namespace llvm namespace { class HexagonCallFrameInformation : public MachineFunctionPass { public: static char ID; HexagonCallFrameInformation() : MachineFunctionPass(ID) { PassRegistry &PR = *PassRegistry::getPassRegistry(); initializeHexagonCallFrameInformationPass(PR); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; char HexagonCallFrameInformation::ID = 0; } // end anonymous namespace bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); bool NeedCFI = MF.needsFrameMoves(); if (!NeedCFI) return false; HFI.insertCFIInstructions(MF); return true; } INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", "Hexagon call frame information", false, false) FunctionPass *llvm::createHexagonCallFrameInformation() { return new HexagonCallFrameInformation(); } /// Map a register pair Reg to the subregister that has the greater "number", /// i.e. D3 (aka R7:6) will be mapped to R7, etc. static Register getMax32BitSubRegister(Register Reg, const TargetRegisterInfo &TRI, bool hireg = true) { if (Reg < Hexagon::D0 || Reg > Hexagon::D15) return Reg; Register RegNo = 0; for (MCPhysReg SubReg : TRI.subregs(Reg)) { if (hireg) { if (SubReg > RegNo) RegNo = SubReg; } else { if (!RegNo || SubReg < RegNo) RegNo = SubReg; } } return RegNo; } /// Returns the callee saved register with the largest id in the vector. static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo &TRI) { static_assert(Hexagon::R1 > 0, "Assume physical registers are encoded as positive integers"); if (CSI.empty()) return 0; Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); for (unsigned I = 1, E = CSI.size(); I < E; ++I) { Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); if (Reg > Max) Max = Reg; } return Max; } /// Checks if the basic block contains any instruction that needs a stack /// frame to be already in place. static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, const HexagonRegisterInfo &HRI) { for (const MachineInstr &MI : MBB) { if (MI.isCall()) return true; unsigned Opc = MI.getOpcode(); switch (Opc) { case Hexagon::PS_alloca: case Hexagon::PS_aligna: return true; default: break; } // Check individual operands. for (const MachineOperand &MO : MI.operands()) { // While the presence of a frame index does not prove that a stack // frame will be required, all frame indexes should be within alloc- // frame/deallocframe. Otherwise, the code that translates a frame // index into an offset would have to be aware of the placement of // the frame creation/destruction instructions. if (MO.isFI()) return true; if (MO.isReg()) { Register R = MO.getReg(); // Debug instructions may refer to $noreg. if (!R) continue; // Virtual registers will need scavenging, which then may require // a stack slot. if (R.isVirtual()) return true; for (MCPhysReg S : HRI.subregs_inclusive(R)) if (CSR[S]) return true; continue; } if (MO.isRegMask()) { // A regmask would normally have all callee-saved registers marked // as preserved, so this check would not be needed, but in case of // ever having other regmasks (for other calling conventions), // make sure they would be processed correctly. const uint32_t *BM = MO.getRegMask(); for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { unsigned R = x; // If this regmask does not preserve a CSR, a frame will be needed. if (!(BM[R/32] & (1u << (R%32)))) return true; } } } } return false; } /// Returns true if MBB has a machine instructions that indicates a tail call /// in the block. static bool hasTailCall(const MachineBasicBlock &MBB) { MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; unsigned RetOpc = I->getOpcode(); return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; } /// Returns true if MBB contains an instruction that returns. static bool hasReturn(const MachineBasicBlock &MBB) { for (const MachineInstr &MI : MBB.terminators()) if (MI.isReturn()) return true; return false; } /// Returns the "return" instruction from this block, or nullptr if there /// isn't any. static MachineInstr *getReturn(MachineBasicBlock &MBB) { for (auto &I : MBB) if (I.isReturn()) return &I; return nullptr; } static bool isRestoreCall(unsigned Opc) { switch (Opc) { case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: return true; } return false; } static inline bool isOptNone(const MachineFunction &MF) { return MF.getFunction().hasOptNone() || MF.getTarget().getOptLevel() == CodeGenOpt::None; } static inline bool isOptSize(const MachineFunction &MF) { const Function &F = MF.getFunction(); return F.hasOptSize() && !F.hasMinSize(); } static inline bool isMinSize(const MachineFunction &MF) { return MF.getFunction().hasMinSize(); } /// Implements shrink-wrapping of the stack frame. By default, stack frame /// is created in the function entry block, and is cleaned up in every block /// that returns. This function finds alternate blocks: one for the frame /// setup (prolog) and one for the cleanup (epilog). void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { static unsigned ShrinkCounter = 0; if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && MF.getFunction().isVarArg()) return; if (ShrinkLimit.getPosition()) { if (ShrinkCounter >= ShrinkLimit) return; ShrinkCounter++; } auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); MachineDominatorTree MDT; MDT.runOnMachineFunction(MF); MachinePostDominatorTree MPT; MPT.runOnMachineFunction(MF); using UnsignedMap = DenseMap<unsigned, unsigned>; using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; UnsignedMap RPO; RPOTType RPOT(&MF); unsigned RPON = 0; for (auto &I : RPOT) RPO[I->getNumber()] = RPON++; // Don't process functions that have loops, at least for now. Placement // of prolog and epilog must take loop structure into account. For simpli- // city don't do it right now. for (auto &I : MF) { unsigned BN = RPO[I.getNumber()]; for (MachineBasicBlock *Succ : I.successors()) // If found a back-edge, return. if (RPO[Succ->getNumber()] <= BN) return; } // Collect the set of blocks that need a stack frame to execute. Scan // each block for uses/defs of callee-saved registers, calls, etc. SmallVector<MachineBasicBlock*,16> SFBlocks; BitVector CSR(Hexagon::NUM_TARGET_REGS); for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) for (MCPhysReg S : HRI.subregs_inclusive(*P)) CSR[S] = true; for (auto &I : MF) if (needsStackFrame(I, CSR, HRI)) SFBlocks.push_back(&I); LLVM_DEBUG({ dbgs() << "Blocks needing SF: {"; for (auto &B : SFBlocks) dbgs() << " " << printMBBReference(*B); dbgs() << " }\n"; }); // No frame needed? if (SFBlocks.empty()) return; // Pick a common dominator and a common post-dominator. MachineBasicBlock *DomB = SFBlocks[0]; for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); if (!DomB) break; } MachineBasicBlock *PDomB = SFBlocks[0]; for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); if (!PDomB) break; } LLVM_DEBUG({ dbgs() << "Computed dom block: "; if (DomB) dbgs() << printMBBReference(*DomB); else dbgs() << "<null>"; dbgs() << ", computed pdom block: "; if (PDomB) dbgs() << printMBBReference(*PDomB); else dbgs() << "<null>"; dbgs() << "\n"; }); if (!DomB || !PDomB) return; // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. if (!MDT.dominates(DomB, PDomB)) { LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); return; } if (!MPT.dominates(PDomB, DomB)) { LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); return; } // Finally, everything seems right. PrologB = DomB; EpilogB = PDomB; } /// Perform most of the PEI work here: /// - saving/restoring of the callee-saved registers, /// - stack frame creation and destruction. /// Normally, this work is distributed among various functions, but doing it /// in one place allows shrink-wrapping of the stack frame. void HexagonFrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; if (EnableShrinkWrapping) findShrunkPrologEpilog(MF, PrologB, EpilogB); bool PrologueStubs = false; insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); insertPrologueInBlock(*PrologB, PrologueStubs); updateEntryPaths(MF, *PrologB); if (EpilogB) { insertCSRRestoresInBlock(*EpilogB, CSI, HRI); insertEpilogueInBlock(*EpilogB); } else { for (auto &B : MF) if (B.isReturnBlock()) insertCSRRestoresInBlock(B, CSI, HRI); for (auto &B : MF) if (B.isReturnBlock()) insertEpilogueInBlock(B); for (auto &B : MF) { if (B.empty()) continue; MachineInstr *RetI = getReturn(B); if (!RetI || isRestoreCall(RetI->getOpcode())) continue; for (auto &R : CSI) RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); } } if (EpilogB) { // If there is an epilog block, it may not have a return instruction. // In such case, we need to add the callee-saved registers as live-ins // in all blocks on all paths from the epilog to any return block. unsigned MaxBN = MF.getNumBlockIDs(); BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); } } /// Returns true if the target can safely skip saving callee-saved registers /// for noreturn nounwind functions. bool HexagonFrameLowering::enableCalleeSaveSkip( const MachineFunction &MF) const { const auto &F = MF.getFunction(); assert(F.hasFnAttribute(Attribute::NoReturn) && F.getFunction().hasFnAttribute(Attribute::NoUnwind) && !F.getFunction().hasFnAttribute(Attribute::UWTable)); (void)F; // No need to save callee saved registers if the function does not return. return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); } // Helper function used to determine when to eliminate the stack frame for // functions marked as noreturn and when the noreturn-stack-elim options are // specified. When both these conditions are true, then a FP may not be needed // if the function makes a call. It is very similar to enableCalleeSaveSkip, // but it used to check if the allocframe can be eliminated as well. static bool enableAllocFrameElim(const MachineFunction &MF) { const auto &F = MF.getFunction(); const auto &MFI = MF.getFrameInfo(); const auto &HST = MF.getSubtarget<HexagonSubtarget>(); assert(!MFI.hasVarSizedObjects() && !HST.getRegisterInfo()->hasStackRealignment(MF)); return F.hasFnAttribute(Attribute::NoReturn) && F.hasFnAttribute(Attribute::NoUnwind) && !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && MFI.getStackSize() == 0; } void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, bool PrologueStubs) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); // Calculate the total stack frame size. // Get the number of bytes to allocate from the FrameInfo. unsigned FrameSize = MFI.getStackSize(); // Round up the max call frame size to the max alignment on the stack. unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); MFI.setMaxCallFrameSize(MaxCFA); FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); MFI.setStackSize(FrameSize); bool AlignStack = (MaxAlign > getStackAlign()); // Get the number of bytes to allocate from the FrameInfo. unsigned NumBytes = MFI.getStackSize(); Register SP = HRI.getStackRegister(); unsigned MaxCF = MFI.getMaxCallFrameSize(); MachineBasicBlock::iterator InsertPt = MBB.begin(); SmallVector<MachineInstr *, 4> AdjustRegs; for (auto &MBB : MF) for (auto &MI : MBB) if (MI.getOpcode() == Hexagon::PS_alloca) AdjustRegs.push_back(&MI); for (auto *MI : AdjustRegs) { assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); expandAlloca(MI, HII, SP, MaxCF); MI->eraseFromParent(); } DebugLoc dl = MBB.findDebugLoc(InsertPt); if (MF.getFunction().isVarArg() && MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { // Calculate the size of register saved area. int NumVarArgRegs = 6 - FirstVarArgSavedReg; int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? NumVarArgRegs * 4 : NumVarArgRegs * 4 + 4; if (RegisterSavedAreaSizePlusPadding > 0) { // Decrement the stack pointer by size of register saved area plus // padding if any. BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) .addReg(SP) .addImm(-RegisterSavedAreaSizePlusPadding) .setMIFlag(MachineInstr::FrameSetup); int NumBytes = 0; // Copy all the named arguments below register saved area. auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); for (int i = HMFI.getFirstNamedArgFrameIndex(), e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { uint64_t ObjSize = MFI.getObjectSize(i); Align ObjAlign = MFI.getObjectAlign(i); // Determine the kind of load/store that should be used. unsigned LDOpc, STOpc; uint64_t OpcodeChecker = ObjAlign.value(); // Handle cases where alignment of an object is > its size. if (ObjAlign > ObjSize) { if (ObjSize <= 1) OpcodeChecker = 1; else if (ObjSize <= 2) OpcodeChecker = 2; else if (ObjSize <= 4) OpcodeChecker = 4; else if (ObjSize > 4) OpcodeChecker = 8; } switch (OpcodeChecker) { case 1: LDOpc = Hexagon::L2_loadrb_io; STOpc = Hexagon::S2_storerb_io; break; case 2: LDOpc = Hexagon::L2_loadrh_io; STOpc = Hexagon::S2_storerh_io; break; case 4: LDOpc = Hexagon::L2_loadri_io; STOpc = Hexagon::S2_storeri_io; break; case 8: default: LDOpc = Hexagon::L2_loadrd_io; STOpc = Hexagon::S2_storerd_io; break; } Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 : Hexagon::R6; int LoadStoreCount = ObjSize / OpcodeChecker; if (ObjSize % OpcodeChecker) ++LoadStoreCount; // Get the start location of the load. NumBytes is basically the // offset from the stack pointer of previous function, which would be // the caller in this case, as this function has variable argument // list. if (NumBytes != 0) NumBytes = alignTo(NumBytes, ObjAlign); int Count = 0; while (Count < LoadStoreCount) { // Load the value of the named argument on stack. BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) .addReg(SP) .addImm(RegisterSavedAreaSizePlusPadding + ObjAlign.value() * Count + NumBytes) .setMIFlag(MachineInstr::FrameSetup); // Store it below the register saved area plus padding. BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) .addReg(SP) .addImm(ObjAlign.value() * Count + NumBytes) .addReg(RegUsed) .setMIFlag(MachineInstr::FrameSetup); Count++; } NumBytes += MFI.getObjectSize(i); } // Make NumBytes 8 byte aligned NumBytes = alignTo(NumBytes, 8); // If the number of registers having variable arguments is odd, // leave 4 bytes of padding to get to the location where first // variable argument which was passed through register was copied. NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) .addReg(SP) .addImm(NumBytes + 4 * i) .addReg(Hexagon::R0 + j) .setMIFlag(MachineInstr::FrameSetup); } } } if (hasFP(MF)) { insertAllocframe(MBB, InsertPt, NumBytes); if (AlignStack) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(MaxAlign.value())); } // If the stack-checking is enabled, and we spilled the callee-saved // registers inline (i.e. did not use a spill function), then call // the stack checker directly. if (EnableStackOVFSanitizer && !PrologueStubs) BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) .addExternalSymbol("__runtime_stack_check"); } else if (NumBytes > 0) { assert(alignTo(NumBytes, 8) == NumBytes); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) .addReg(SP) .addImm(-int(NumBytes)); } } void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { MachineFunction &MF = *MBB.getParent(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); Register SP = HRI.getStackRegister(); MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); DebugLoc dl = MBB.findDebugLoc(InsertPt); if (!hasFP(MF)) { MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned NumBytes = MFI.getStackSize(); if (MF.getFunction().isVarArg() && MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { // On Hexagon Linux, deallocate the stack for the register saved area. int NumVarArgRegs = 6 - FirstVarArgSavedReg; int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); NumBytes += RegisterSavedAreaSizePlusPadding; } if (NumBytes) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) .addReg(SP) .addImm(NumBytes); } return; } MachineInstr *RetI = getReturn(MBB); unsigned RetOpc = RetI ? RetI->getOpcode() : 0; // Handle EH_RETURN. if (RetOpc == Hexagon::EH_RETURN_JMPR) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) .addDef(Hexagon::D15) .addReg(Hexagon::R30); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) .addReg(SP) .addReg(Hexagon::R28); return; } // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- // frame instruction if we encounter it. if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { MachineBasicBlock::iterator It = RetI; ++It; // Delete all instructions after the RESTORE (except labels). while (It != MBB.end()) { if (!It->isLabel()) It = MBB.erase(It); else ++It; } return; } // It is possible that the restoring code is a call to a library function. // All of the restore* functions include "deallocframe", so we need to make // sure that we don't add an extra one. bool NeedsDeallocframe = true; if (!MBB.empty() && InsertPt != MBB.begin()) { MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); unsigned COpc = PrevIt->getOpcode(); if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) NeedsDeallocframe = false; } if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || !MF.getFunction().isVarArg()) { if (!NeedsDeallocframe) return; // If the returning instruction is PS_jmpret, replace it with // dealloc_return, otherwise just add deallocframe. The function // could be returning via a tail call. if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) .addDef(Hexagon::D15) .addReg(Hexagon::R30); return; } unsigned NewOpc = Hexagon::L4_return; MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) .addDef(Hexagon::D15) .addReg(Hexagon::R30); // Transfer the function live-out registers. NewI->copyImplicitOps(MF, *RetI); MBB.erase(RetI); } else { // L2_deallocframe instruction after it. // Calculate the size of register saved area. int NumVarArgRegs = 6 - FirstVarArgSavedReg; int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() : std::prev(Term); if (I == MBB.end() || (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) .addDef(Hexagon::D15) .addReg(Hexagon::R30); if (RegisterSavedAreaSizePlusPadding != 0) BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) .addReg(SP) .addImm(RegisterSavedAreaSizePlusPadding); } } void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { MachineFunction &MF = *MBB.getParent(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); // Check for overflow. // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? const unsigned int ALLOCFRAME_MAX = 16384; // Create a dummy memory operand to avoid allocframe from being treated as // a volatile memory reference. auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), MachineMemOperand::MOStore, 4, Align(4)); DebugLoc dl = MBB.findDebugLoc(InsertPt); Register SP = HRI.getStackRegister(); if (NumBytes >= ALLOCFRAME_MAX) { // Emit allocframe(#0). BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addDef(SP) .addReg(SP) .addImm(0) .addMemOperand(MMO); // Subtract the size from the stack pointer. Register SP = HRI.getStackRegister(); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) .addReg(SP) .addImm(-int(NumBytes)); } else { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addDef(SP) .addReg(SP) .addImm(NumBytes) .addMemOperand(MMO); } } void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, MachineBasicBlock &SaveB) const { SetVector<unsigned> Worklist; MachineBasicBlock &EntryB = MF.front(); Worklist.insert(EntryB.getNumber()); unsigned SaveN = SaveB.getNumber(); auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); for (unsigned i = 0; i < Worklist.size(); ++i) { unsigned BN = Worklist[i]; MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); for (auto &R : CSI) if (!MBB.isLiveIn(R.getReg())) MBB.addLiveIn(R.getReg()); if (BN != SaveN) for (auto &SB : MBB.successors()) Worklist.insert(SB->getNumber()); } } bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, BitVector &Path) const { assert(MBB.getNumber() >= 0); unsigned BN = MBB.getNumber(); if (Path[BN] || DoneF[BN]) return false; if (DoneT[BN]) return true; auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); Path[BN] = true; bool ReachedExit = false; for (auto &SB : MBB.successors()) ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); if (!MBB.empty() && MBB.back().isReturn()) { // Add implicit uses of all callee-saved registers to the reached // return instructions. This is to prevent the anti-dependency breaker // from renaming these registers. MachineInstr &RetI = MBB.back(); if (!isRestoreCall(RetI.getOpcode())) for (auto &R : CSI) RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); ReachedExit = true; } // We don't want to add unnecessary live-ins to the restore block: since // the callee-saved registers are being defined in it, the entry of the // restore block cannot be on the path from the definitions to any exit. if (ReachedExit && &MBB != &RestoreB) { for (auto &R : CSI) if (!MBB.isLiveIn(R.getReg())) MBB.addLiveIn(R.getReg()); DoneT[BN] = true; } if (!ReachedExit) DoneF[BN] = true; Path[BN] = false; return ReachedExit; } static std::optional<MachineBasicBlock::iterator> findCFILocation(MachineBasicBlock &B) { // The CFI instructions need to be inserted right after allocframe. // An exception to this is a situation where allocframe is bundled // with a call: then the CFI instructions need to be inserted before // the packet with the allocframe+call (in case the call throws an // exception). auto End = B.instr_end(); for (MachineInstr &I : B) { MachineBasicBlock::iterator It = I.getIterator(); if (!I.isBundle()) { if (I.getOpcode() == Hexagon::S2_allocframe) return std::next(It); continue; } // I is a bundle. bool HasCall = false, HasAllocFrame = false; auto T = It.getInstrIterator(); while (++T != End && T->isBundled()) { if (T->getOpcode() == Hexagon::S2_allocframe) HasAllocFrame = true; else if (T->isCall()) HasCall = true; } if (HasAllocFrame) return HasCall ? It : std::next(It); } return std::nullopt; } void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { for (auto &B : MF) if (auto At = findCFILocation(B)) insertCFIInstructionsAt(B, *At); } void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator At) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); // If CFI instructions have debug information attached, something goes // wrong with the final assembly generation: the prolog_end is placed // in a wrong location. DebugLoc DL; const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); bool HasFP = hasFP(MF); if (HasFP) { unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); // Define CFA via an offset from the value of FP. // // -8 -4 0 (SP) // --+----+----+--------------------- // | FP | LR | increasing addresses --> // --+----+----+--------------------- // | +-- Old SP (before allocframe) // +-- New FP (after allocframe) // // MCCFIInstruction::cfiDefCfa adds the offset from the register. // MCCFIInstruction::createOffset takes the offset without sign change. auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(DefCfa)); // R31 (return addr) = CFA - 4 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(OffR31)); // R30 (frame ptr) = CFA - 8 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(OffR30)); } static Register RegsToMove[] = { Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister }; const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { Register Reg = RegsToMove[i]; auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { return C.getReg() == Reg; }; auto F = find_if(CSI, IfR); if (F == CSI.end()) continue; int64_t Offset; if (HasFP) { // If the function has a frame pointer (i.e. has an allocframe), // then the CFA has been defined in terms of FP. Any offsets in // the following CFI instructions have to be defined relative // to FP, which points to the bottom of the stack frame. // The function getFrameIndexReference can still choose to use SP // for the offset calculation, so we cannot simply call it here. // Instead, get the offset (relative to the FP) directly. Offset = MFI.getObjectOffset(F->getFrameIdx()); } else { Register FrameReg; Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); } // Subtract 8 to make room for R30 and R31, which are added above. Offset -= 8; if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, Offset); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(OffReg)); } else { // Split the double regs into subregs, and generate appropriate // cfi_offsets. // The only reason, we are split double regs is, llvm-mc does not // understand paired registers for cfi_offset. // Eg .cfi_offset r1:0, -64 Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, Offset+4); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(OffHi)); auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, Offset); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MF.addFrameInst(OffLo)); } } } bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { if (MF.getFunction().hasFnAttribute(Attribute::Naked)) return false; auto &MFI = MF.getFrameInfo(); auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); bool HasExtraAlign = HRI.hasStackRealignment(MF); bool HasAlloca = MFI.hasVarSizedObjects(); // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think // that this shouldn't be required, but doing so now because gcc does and // gdb can't break at the start of the function without it. Will remove if // this turns out to be a gdb bug. // if (MF.getTarget().getOptLevel() == CodeGenOpt::None) return true; // By default we want to use SP (since it's always there). FP requires // some setup (i.e. ALLOCFRAME). // Both, alloca and stack alignment modify the stack pointer by an // undetermined value, so we need to save it at the entry to the function // (i.e. use allocframe). if (HasAlloca || HasExtraAlign) return true; if (MFI.getStackSize() > 0) { // If FP-elimination is disabled, we have to use FP at this point. const TargetMachine &TM = MF.getTarget(); if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) return true; if (EnableStackOVFSanitizer) return true; } const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) return true; return false; } enum SpillKind { SK_ToMem, SK_FromMem, SK_FromMemTailcall }; static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType, bool Stkchk = false) { const char * V4SpillToMemoryFunctions[] = { "__save_r16_through_r17", "__save_r16_through_r19", "__save_r16_through_r21", "__save_r16_through_r23", "__save_r16_through_r25", "__save_r16_through_r27" }; const char * V4SpillToMemoryStkchkFunctions[] = { "__save_r16_through_r17_stkchk", "__save_r16_through_r19_stkchk", "__save_r16_through_r21_stkchk", "__save_r16_through_r23_stkchk", "__save_r16_through_r25_stkchk", "__save_r16_through_r27_stkchk" }; const char * V4SpillFromMemoryFunctions[] = { "__restore_r16_through_r17_and_deallocframe", "__restore_r16_through_r19_and_deallocframe", "__restore_r16_through_r21_and_deallocframe", "__restore_r16_through_r23_and_deallocframe", "__restore_r16_through_r25_and_deallocframe", "__restore_r16_through_r27_and_deallocframe" }; const char * V4SpillFromMemoryTailcallFunctions[] = { "__restore_r16_through_r17_and_deallocframe_before_tailcall", "__restore_r16_through_r19_and_deallocframe_before_tailcall", "__restore_r16_through_r21_and_deallocframe_before_tailcall", "__restore_r16_through_r23_and_deallocframe_before_tailcall", "__restore_r16_through_r25_and_deallocframe_before_tailcall", "__restore_r16_through_r27_and_deallocframe_before_tailcall" }; const char **SpillFunc = nullptr; switch(SpillType) { case SK_ToMem: SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions : V4SpillToMemoryFunctions; break; case SK_FromMem: SpillFunc = V4SpillFromMemoryFunctions; break; case SK_FromMemTailcall: SpillFunc = V4SpillFromMemoryTailcallFunctions; break; } assert(SpillFunc && "Unknown spill kind"); // Spill all callee-saved registers up to the highest register used. switch (MaxReg) { case Hexagon::R17: return SpillFunc[0]; case Hexagon::R19: return SpillFunc[1]; case Hexagon::R21: return SpillFunc[2]; case Hexagon::R23: return SpillFunc[3]; case Hexagon::R25: return SpillFunc[4]; case Hexagon::R27: return SpillFunc[5]; default: llvm_unreachable("Unhandled maximum callee save register"); } return nullptr; } StackOffset HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { auto &MFI = MF.getFrameInfo(); auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); int Offset = MFI.getObjectOffset(FI); bool HasAlloca = MFI.hasVarSizedObjects(); bool HasExtraAlign = HRI.hasStackRealignment(MF); bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); unsigned FrameSize = MFI.getStackSize(); Register SP = HRI.getStackRegister(); Register FP = HRI.getFrameRegister(); Register AP = HMFI.getStackAlignBaseReg(); // It may happen that AP will be absent even HasAlloca && HasExtraAlign // is true. HasExtraAlign may be set because of vector spills, without // aligned locals or aligned outgoing function arguments. Since vector // spills will ultimately be "unaligned", it is safe to use FP as the // base register. // In fact, in such a scenario the stack is actually not required to be // aligned, although it may end up being aligned anyway, since this // particular case is not easily detectable. The alignment will be // unnecessary, but not incorrect. // Unfortunately there is no quick way to verify that the above is // indeed the case (and that it's not a result of an error), so just // assume that missing AP will be replaced by FP. // (A better fix would be to rematerialize AP from FP and always align // vector spills.) bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). // Use FP at -O0, except when there are objects with extra alignment. // That additional alignment requirement may cause a pad to be inserted, // which will make it impossible to use FP to access objects located // past the pad. if (NoOpt && !HasExtraAlign) UseFP = true; if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { // Fixed and preallocated objects will be located before any padding // so FP must be used to access them. UseFP |= (HasAlloca || HasExtraAlign); } else { if (HasAlloca) { if (HasExtraAlign) UseAP = true; else UseFP = true; } } // If FP was picked, then there had better be FP. bool HasFP = hasFP(MF); assert((HasFP || !UseFP) && "This function must have frame pointer"); // Having FP implies allocframe. Allocframe will store extra 8 bytes: // FP/LR. If the base register is used to access an object across these // 8 bytes, then the offset will need to be adjusted by 8. // // After allocframe: // HexagonISelLowering adds 8 to ---+ // the offsets of all stack-based | // arguments (*) | // | // getObjectOffset < 0 0 8 getObjectOffset >= 8 // ------------------------+-----+------------------------> increasing // <local objects> |FP/LR| <input arguments> addresses // -----------------+------+-----+------------------------> // | | // SP/AP point --+ +-- FP points here (**) // somewhere on // this side of FP/LR // // (*) See LowerFormalArguments. The FP/LR is assumed to be present. // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. // The lowering assumes that FP/LR is present, and so the offsets of // the formal arguments start at 8. If FP/LR is not there we need to // reduce the offset by 8. if (Offset > 0 && !HasFP) Offset -= 8; if (UseFP) FrameReg = FP; else if (UseAP) FrameReg = AP; else FrameReg = SP; // Calculate the actual offset in the instruction. If there is no FP // (in other words, no allocframe), then SP will not be adjusted (i.e. // there will be no SP -= FrameSize), so the frame size should not be // added to the calculated offset. int RealOffset = Offset; if (!UseFP && !UseAP) RealOffset = FrameSize+Offset; return StackOffset::getFixed(RealOffset); } bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, const CSIVect &CSI, const HexagonRegisterInfo &HRI, bool &PrologueStubs) const { if (CSI.empty()) return true; MachineBasicBlock::iterator MI = MBB.begin(); PrologueStubs = false; MachineFunction &MF = *MBB.getParent(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); if (useSpillFunction(MF, CSI)) { PrologueStubs = true; Register MaxReg = getMaxCalleeSavedReg(CSI, HRI); bool StkOvrFlowEnabled = EnableStackOVFSanitizer; const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, StkOvrFlowEnabled); auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); bool IsPIC = HTM.isPositionIndependent(); bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); unsigned SpillOpc; if (StkOvrFlowEnabled) { if (LongCalls) SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; else SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC : Hexagon::SAVE_REGISTERS_CALL_V4STK; } else { if (LongCalls) SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; else SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC : Hexagon::SAVE_REGISTERS_CALL_V4; } MachineInstr *SaveRegsCall = BuildMI(MBB, MI, DL, HII.get(SpillOpc)) .addExternalSymbol(SpillFun); // Add callee-saved registers as use. addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); // Add live in registers. for (const CalleeSavedInfo &I : CSI) MBB.addLiveIn(I.getReg()); return true; } for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); // Add live in registers. We treat eh_return callee saved register r0 - r3 // specially. They are not really callee saved registers as they are not // supposed to be killed. bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); int FI = I.getFrameIdx(); const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register()); if (IsKill) MBB.addLiveIn(Reg); } return true; } bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { if (CSI.empty()) return false; MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); MachineFunction &MF = *MBB.getParent(); auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); if (useRestoreFunction(MF, CSI)) { bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); Register MaxR = getMaxCalleeSavedReg(CSI, HRI); SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); bool IsPIC = HTM.isPositionIndependent(); bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : MBB.findDebugLoc(MBB.end()); MachineInstr *DeallocCall = nullptr; if (HasTC) { unsigned RetOpc; if (LongCalls) RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; else RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) .addExternalSymbol(RestoreFn); } else { // The block has a return. MachineBasicBlock::iterator It = MBB.getFirstTerminator(); assert(It->isReturn() && std::next(It) == MBB.end()); unsigned RetOpc; if (LongCalls) RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; else RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) .addExternalSymbol(RestoreFn); // Transfer the function live-out registers. DeallocCall->copyImplicitOps(MF, *It); } addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); return true; } for (const CalleeSavedInfo &I : CSI) { Register Reg = I.getReg(); const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); int FI = I.getFrameIdx(); HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register()); } return true; } MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineInstr &MI = *I; unsigned Opc = MI.getOpcode(); (void)Opc; // Silence compiler warning. assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && "Cannot handle this call frame pseudo instruction"); return MBB.erase(I); } void HexagonFrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { // If this function has uses aligned stack and also has variable sized stack // objects, then we need to map all spill slots to fixed positions, so that // they can be accessed through FP. Otherwise they would have to be accessed // via AP, which may not be available at the particular place in the program. MachineFrameInfo &MFI = MF.getFrameInfo(); bool HasAlloca = MFI.hasVarSizedObjects(); bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); if (!HasAlloca || !NeedsAlign) return; // Set the physical aligned-stack base address register. Register AP = 0; if (const MachineInstr *AI = getAlignaInstr(MF)) AP = AI->getOperand(0).getReg(); auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); assert(!AP.isValid() || AP.isPhysical()); HMFI.setStackAlignBaseReg(AP); } /// Returns true if there are no caller-saved registers available in class RC. static bool needToReserveScavengingSpillSlots(MachineFunction &MF, const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { MachineRegisterInfo &MRI = MF.getRegInfo(); auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool { for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) if (MRI.isPhysRegUsed(*AI)) return true; return false; }; // Check for an unused caller-saved register. Callee-saved registers // have become pristine by now. for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) if (!IsUsed(*P)) return false; // All caller-saved registers are used. return true; } #ifndef NDEBUG static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { dbgs() << '{'; for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { Register R = x; dbgs() << ' ' << printReg(R, &TRI); } dbgs() << " }"; } #endif bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); MachineFrameInfo &MFI = MF.getFrameInfo(); BitVector SRegs(Hexagon::NUM_TARGET_REGS); // Generate a set of unique, callee-saved registers (SRegs), where each // register in the set is maximal in terms of sub-/super-register relation, // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. // (1) For each callee-saved register, add that register and all of its // sub-registers to SRegs. LLVM_DEBUG(dbgs() << "Initial CS registers: {"); for (const CalleeSavedInfo &I : CSI) { Register R = I.getReg(); LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); for (MCPhysReg SR : TRI->subregs_inclusive(R)) SRegs[SR] = true; } LLVM_DEBUG(dbgs() << " }\n"); LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (2) For each reserved register, remove that register and all of its // sub- and super-registers from SRegs. BitVector Reserved = TRI->getReservedRegs(MF); // Unreserve the stack align register: it is reserved for this function // only, it still needs to be saved/restored. Register AP = MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg(); if (AP.isValid()) { Reserved[AP] = false; // Unreserve super-regs if no other subregisters are reserved. for (MCPhysReg SP : TRI->superregs(AP)) { bool HasResSub = false; for (MCPhysReg SB : TRI->subregs(SP)) { if (!Reserved[SB]) continue; HasResSub = true; break; } if (!HasResSub) Reserved[SP] = false; } } for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { Register R = x; for (MCPhysReg SR : TRI->superregs_inclusive(R)) SRegs[SR] = false; } LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n"); LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (3) Collect all registers that have at least one sub-register in SRegs, // and also have no sub-registers that are reserved. These will be the can- // didates for saving as a whole instead of their individual sub-registers. // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) BitVector TmpSup(Hexagon::NUM_TARGET_REGS); for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { Register R = x; for (MCPhysReg SR : TRI->superregs(R)) TmpSup[SR] = true; } for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { Register R = x; for (MCPhysReg SR : TRI->subregs_inclusive(R)) { if (!Reserved[SR]) continue; TmpSup[R] = false; break; } } LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n"); // (4) Include all super-registers found in (3) into SRegs. SRegs |= TmpSup; LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (5) For each register R in SRegs, if any super-register of R is in SRegs, // remove R from SRegs. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { Register R = x; for (MCPhysReg SR : TRI->superregs(R)) { if (!SRegs[SR]) continue; SRegs[R] = false; break; } } LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // Now, for each register that has a fixed stack slot, create the stack // object for it. CSI.clear(); using SpillSlot = TargetFrameLowering::SpillSlot; unsigned NumFixed; int MinOffset = 0; // CS offsets are negative. const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { if (!SRegs[S->Reg]) continue; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); MinOffset = std::min(MinOffset, S->Offset); CSI.push_back(CalleeSavedInfo(S->Reg, FI)); SRegs[S->Reg] = false; } // There can be some registers that don't have fixed slots. For example, // we need to store R0-R3 in functions with exception handling. For each // such register, create a non-fixed stack object. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { Register R = x; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); unsigned Size = TRI->getSpillSize(*RC); int Off = MinOffset - Size; Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); Off &= -Alignment.value(); int FI = MFI.CreateFixedSpillStackObject(Size, Off); MinOffset = std::min(MinOffset, Off); CSI.push_back(CalleeSavedInfo(R, FI)); SRegs[R] = false; } LLVM_DEBUG({ dbgs() << "CS information: {"; for (const CalleeSavedInfo &I : CSI) { int FI = I.getFrameIdx(); int Off = MFI.getObjectOffset(FI); dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; if (Off >= 0) dbgs() << '+'; dbgs() << Off; } dbgs() << " }\n"; }); #ifndef NDEBUG // Verify that all registers were handled. bool MissedReg = false; for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { Register R = x; dbgs() << printReg(R, TRI) << ' '; MissedReg = true; } if (MissedReg) llvm_unreachable("...there are unhandled callee-saved registers!"); #endif return true; } bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); Register DstR = MI->getOperand(0).getReg(); Register SrcR = MI->getOperand(1).getReg(); if (!Hexagon::ModRegsRegClass.contains(DstR) || !Hexagon::ModRegsRegClass.contains(SrcR)) return false; Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) .addReg(TmpR, RegState::Kill); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineInstr *MI = &*It; if (!MI->getOperand(0).isFI()) return false; DebugLoc DL = MI->getDebugLoc(); unsigned Opc = MI->getOpcode(); Register SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); int FI = MI->getOperand(0).getIndex(); // TmpR = C2_tfrpr SrcR if SrcR is a predicate register // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr : Hexagon::A2_tfrcrr; BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) .addReg(SrcR, getKillRegState(IsKill)); // S2_storeri_io FI, 0, TmpR BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) .addFrameIndex(FI) .addImm(0) .addReg(TmpR, RegState::Kill) .cloneMemRefs(*MI); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineInstr *MI = &*It; if (!MI->getOperand(1).isFI()) return false; DebugLoc DL = MI->getDebugLoc(); unsigned Opc = MI->getOpcode(); Register DstR = MI->getOperand(0).getReg(); int FI = MI->getOperand(1).getIndex(); // TmpR = L2_loadri_io FI, 0 Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) .addFrameIndex(FI) .addImm(0) .cloneMemRefs(*MI); // DstR = C2_tfrrp TmpR if DstR is a predicate register // DstR = A2_tfrrcr TmpR if DstR is a modifier register unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp : Hexagon::A2_tfrrcr; BuildMI(B, It, DL, HII.get(TfrOpc), DstR) .addReg(TmpR, RegState::Kill); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineInstr *MI = &*It; if (!MI->getOperand(0).isFI()) return false; DebugLoc DL = MI->getDebugLoc(); Register SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); int FI = MI->getOperand(0).getIndex(); auto *RC = &Hexagon::HvxVRRegClass; // Insert transfer to general vector register. // TmpR0 = A2_tfrsi 0x01010101 // TmpR1 = V6_vandqrt Qx, TmpR0 // store FI, 0, TmpR1 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); Register TmpR1 = MRI.createVirtualRegister(RC); BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) .addImm(0x01010101); BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) .addReg(SrcR, getKillRegState(IsKill)) .addReg(TmpR0, RegState::Kill); auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register()); expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); NewRegs.push_back(TmpR0); NewRegs.push_back(TmpR1); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineInstr *MI = &*It; if (!MI->getOperand(1).isFI()) return false; DebugLoc DL = MI->getDebugLoc(); Register DstR = MI->getOperand(0).getReg(); int FI = MI->getOperand(1).getIndex(); auto *RC = &Hexagon::HvxVRRegClass; // TmpR0 = A2_tfrsi 0x01010101 // TmpR1 = load FI, 0 // DstR = V6_vandvrt TmpR1, TmpR0 Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); Register TmpR1 = MRI.createVirtualRegister(RC); BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) .addImm(0x01010101); MachineFunction &MF = *B.getParent(); auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register()); expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) .addReg(TmpR1, RegState::Kill) .addReg(TmpR0, RegState::Kill); NewRegs.push_back(TmpR0); NewRegs.push_back(TmpR1); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &MFI = MF.getFrameInfo(); auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); MachineInstr *MI = &*It; if (!MI->getOperand(0).isFI()) return false; // It is possible that the double vector being stored is only partially // defined. From the point of view of the liveness tracking, it is ok to // store it as a whole, but if we break it up we may end up storing a // register that is entirely undefined. LivePhysRegs LPR(HRI); LPR.addLiveIns(B); SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; for (auto R = B.begin(); R != It; ++R) { Clobbers.clear(); LPR.stepForward(*R, Clobbers); } DebugLoc DL = MI->getDebugLoc(); Register SrcR = MI->getOperand(2).getReg(); Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); bool IsKill = MI->getOperand(2).isKill(); int FI = MI->getOperand(0).getIndex(); unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); Align HasAlign = MFI.getObjectAlign(FI); unsigned StoreOpc; // Store low part. if (LPR.contains(SrcLo)) { StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(0) .addReg(SrcLo, getKillRegState(IsKill)) .cloneMemRefs(*MI); } // Store high part. if (LPR.contains(SrcHi)) { StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(Size) .addReg(SrcHi, getKillRegState(IsKill)) .cloneMemRefs(*MI); } B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &MFI = MF.getFrameInfo(); auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); MachineInstr *MI = &*It; if (!MI->getOperand(1).isFI()) return false; DebugLoc DL = MI->getDebugLoc(); Register DstR = MI->getOperand(0).getReg(); Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); int FI = MI->getOperand(1).getIndex(); unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); Align HasAlign = MFI.getObjectAlign(FI); unsigned LoadOpc; // Load low part. LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai; BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) .addFrameIndex(FI) .addImm(0) .cloneMemRefs(*MI); // Load high part. LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai; BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) .addFrameIndex(FI) .addImm(Size) .cloneMemRefs(*MI); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &MFI = MF.getFrameInfo(); MachineInstr *MI = &*It; if (!MI->getOperand(0).isFI()) return false; auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); DebugLoc DL = MI->getDebugLoc(); Register SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); int FI = MI->getOperand(0).getIndex(); Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); Align HasAlign = MFI.getObjectAlign(FI); unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(0) .addReg(SrcR, getKillRegState(IsKill)) .cloneMemRefs(*MI); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &MFI = MF.getFrameInfo(); MachineInstr *MI = &*It; if (!MI->getOperand(1).isFI()) return false; auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); DebugLoc DL = MI->getDebugLoc(); Register DstR = MI->getOperand(0).getReg(); int FI = MI->getOperand(1).getIndex(); Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); Align HasAlign = MFI.getObjectAlign(FI); unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai; BuildMI(B, It, DL, HII.get(LoadOpc), DstR) .addFrameIndex(FI) .addImm(0) .cloneMemRefs(*MI); B.erase(It); return true; } bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, SmallVectorImpl<Register> &NewRegs) const { auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool Changed = false; for (auto &B : MF) { // Traverse the basic block. MachineBasicBlock::iterator NextI; for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { MachineInstr *MI = &*I; NextI = std::next(I); unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::COPY: Changed |= expandCopy(B, I, MRI, HII, NewRegs); break; case Hexagon::STriw_pred: case Hexagon::STriw_ctr: Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); break; case Hexagon::LDriw_pred: case Hexagon::LDriw_ctr: Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); break; case Hexagon::PS_vstorerq_ai: Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); break; case Hexagon::PS_vloadrq_ai: Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); break; case Hexagon::PS_vloadrw_ai: Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); break; case Hexagon::PS_vstorerw_ai: Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); break; } } } return Changed; } void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); SavedRegs.resize(HRI.getNumRegs()); // If we have a function containing __builtin_eh_return we want to spill and // restore all callee saved registers. Pretend that they are used. if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) SavedRegs.set(*R); // Replace predicate register pseudo spill code. SmallVector<Register,8> NewRegs; expandSpillMacros(MF, NewRegs); if (OptimizeSpillSlots && !isOptNone(MF)) optimizeSpillSlots(MF, NewRegs); // We need to reserve a spill slot if scavenging could potentially require // spilling a scavenged register. if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SetVector<const TargetRegisterClass*> SpillRCs; // Reserve an int register in any case, because it could be used to hold // the stack offset in case it does not fit into a spill instruction. SpillRCs.insert(&Hexagon::IntRegsRegClass); for (Register VR : NewRegs) SpillRCs.insert(MRI.getRegClass(VR)); for (const auto *RC : SpillRCs) { if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) continue; unsigned Num = 1; switch (RC->getID()) { case Hexagon::IntRegsRegClassID: Num = NumberScavengerSlots; break; case Hexagon::HvxQRRegClassID: Num = 2; // Vector predicate spills also need a vector register. break; } unsigned S = HRI.getSpillSize(*RC); Align A = HRI.getSpillAlign(*RC); for (unsigned i = 0; i < Num; i++) { int NewFI = MFI.CreateSpillStackObject(S, A); RS->addScavengingFrameIndex(NewFI); } } } TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); } Register HexagonFrameLowering::findPhysReg(MachineFunction &MF, HexagonBlockRanges::IndexRange &FIR, HexagonBlockRanges::InstrIndexMap &IndexMap, HexagonBlockRanges::RegToRangeMap &DeadMap, const TargetRegisterClass *RC) const { auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); auto &MRI = MF.getRegInfo(); auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool { auto F = DeadMap.find({Reg,0}); if (F == DeadMap.end()) return false; for (auto &DR : F->second) if (DR.contains(FIR)) return true; return false; }; for (Register Reg : RC->getRawAllocationOrder(MF)) { bool Dead = true; for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { if (isDead(R.Reg)) continue; Dead = false; break; } if (Dead) return Reg; } return 0; } void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, SmallVectorImpl<Register> &VRegs) const { auto &HST = MF.getSubtarget<HexagonSubtarget>(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); auto &MRI = MF.getRegInfo(); HexagonBlockRanges HBR(MF); using BlockIndexMap = std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; using BlockRangeMap = std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; using IndexType = HexagonBlockRanges::IndexType; struct SlotInfo { BlockRangeMap Map; unsigned Size = 0; const TargetRegisterClass *RC = nullptr; SlotInfo() = default; }; BlockIndexMap BlockIndexes; SmallSet<int,4> BadFIs; std::map<int,SlotInfo> FIRangeMap; // Accumulate register classes: get a common class for a pre-existing // class HaveRC and a new class NewRC. Return nullptr if a common class // cannot be found, otherwise return the resulting class. If HaveRC is // nullptr, assume that it is still unset. auto getCommonRC = [](const TargetRegisterClass *HaveRC, const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { if (HaveRC == nullptr || HaveRC == NewRC) return NewRC; // Different classes, both non-null. Pick the more general one. if (HaveRC->hasSubClassEq(NewRC)) return HaveRC; if (NewRC->hasSubClassEq(HaveRC)) return NewRC; return nullptr; }; // Scan all blocks in the function. Check all occurrences of frame indexes, // and collect relevant information. for (auto &B : MF) { std::map<int,IndexType> LastStore, LastLoad; // Emplace appears not to be supported in gcc 4.7.2-4. //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); auto P = BlockIndexes.insert( std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); auto &IndexMap = P.first->second; LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" << IndexMap << '\n'); for (auto &In : B) { int LFI, SFI; bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); if (Load && Store) { // If it's both a load and a store, then we won't handle it. BadFIs.insert(LFI); BadFIs.insert(SFI); continue; } // Check for register classes of the register used as the source for // the store, and the register used as the destination for the load. // Also, only accept base+imm_offset addressing modes. Other addressing // modes can have side-effects (post-increments, etc.). For stack // slots they are very unlikely, so there is not much loss due to // this restriction. if (Load || Store) { int TFI = Load ? LFI : SFI; unsigned AM = HII.getAddrMode(In); SlotInfo &SI = FIRangeMap[TFI]; bool Bad = (AM != HexagonII::BaseImmOffset); if (!Bad) { // If the addressing mode is ok, check the register class. unsigned OpNum = Load ? 0 : 2; auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); RC = getCommonRC(SI.RC, RC); if (RC == nullptr) Bad = true; else SI.RC = RC; } if (!Bad) { // Check sizes. unsigned S = HII.getMemAccessSize(In); if (SI.Size != 0 && SI.Size != S) Bad = true; else SI.Size = S; } if (!Bad) { for (auto *Mo : In.memoperands()) { if (!Mo->isVolatile() && !Mo->isAtomic()) continue; Bad = true; break; } } if (Bad) BadFIs.insert(TFI); } // Locate uses of frame indices. for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { const MachineOperand &Op = In.getOperand(i); if (!Op.isFI()) continue; int FI = Op.getIndex(); // Make sure that the following operand is an immediate and that // it is 0. This is the offset in the stack object. if (i+1 >= n || !In.getOperand(i+1).isImm() || In.getOperand(i+1).getImm() != 0) BadFIs.insert(FI); if (BadFIs.count(FI)) continue; IndexType Index = IndexMap.getIndex(&In); if (Load) { if (LastStore[FI] == IndexType::None) LastStore[FI] = IndexType::Entry; LastLoad[FI] = Index; } else if (Store) { HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; if (LastStore[FI] != IndexType::None) RL.add(LastStore[FI], LastLoad[FI], false, false); else if (LastLoad[FI] != IndexType::None) RL.add(IndexType::Entry, LastLoad[FI], false, false); LastLoad[FI] = IndexType::None; LastStore[FI] = Index; } else { BadFIs.insert(FI); } } } for (auto &I : LastLoad) { IndexType LL = I.second; if (LL == IndexType::None) continue; auto &RL = FIRangeMap[I.first].Map[&B]; IndexType &LS = LastStore[I.first]; if (LS != IndexType::None) RL.add(LS, LL, false, false); else RL.add(IndexType::Entry, LL, false, false); LS = IndexType::None; } for (auto &I : LastStore) { IndexType LS = I.second; if (LS == IndexType::None) continue; auto &RL = FIRangeMap[I.first].Map[&B]; RL.add(LS, IndexType::None, false, false); } } LLVM_DEBUG({ for (auto &P : FIRangeMap) { dbgs() << "fi#" << P.first; if (BadFIs.count(P.first)) dbgs() << " (bad)"; dbgs() << " RC: "; if (P.second.RC != nullptr) dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; else dbgs() << "<null>\n"; for (auto &R : P.second.Map) dbgs() << " " << printMBBReference(*R.first) << " { " << R.second << "}\n"; } }); // When a slot is loaded from in a block without being stored to in the // same block, it is live-on-entry to this block. To avoid CFG analysis, // consider this slot to be live-on-exit from all blocks. SmallSet<int,4> LoxFIs; std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; for (auto &P : FIRangeMap) { // P = pair(FI, map: BB->RangeList) if (BadFIs.count(P.first)) continue; for (auto &B : MF) { auto F = P.second.Map.find(&B); // F = pair(BB, RangeList) if (F == P.second.Map.end() || F->second.empty()) continue; HexagonBlockRanges::IndexRange &IR = F->second.front(); if (IR.start() == IndexType::Entry) LoxFIs.insert(P.first); BlockFIMap[&B].push_back(P.first); } } LLVM_DEBUG({ dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; for (auto &P : BlockFIMap) { auto &FIs = P.second; if (FIs.empty()) continue; dbgs() << " " << printMBBReference(*P.first) << ": {"; for (auto I : FIs) { dbgs() << " fi#" << I; if (LoxFIs.count(I)) dbgs() << '*'; } dbgs() << " }\n"; } }); #ifndef NDEBUG bool HasOptLimit = SpillOptMax.getPosition(); #endif // eliminate loads, when all loads eliminated, eliminate all stores. for (auto &B : MF) { auto F = BlockIndexes.find(&B); assert(F != BlockIndexes.end()); HexagonBlockRanges::InstrIndexMap &IM = F->second; HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" << HexagonBlockRanges::PrintRangeMap(DM, HRI)); for (auto FI : BlockFIMap[&B]) { if (BadFIs.count(FI)) continue; LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; for (auto &Range : RL) { LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); if (!IndexType::isInstr(Range.start()) || !IndexType::isInstr(Range.end())) continue; MachineInstr &SI = *IM.getInstr(Range.start()); MachineInstr &EI = *IM.getInstr(Range.end()); assert(SI.mayStore() && "Unexpected start instruction"); assert(EI.mayLoad() && "Unexpected end instruction"); MachineOperand &SrcOp = SI.getOperand(2); HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), SrcOp.getSubReg() }; auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); // The this-> is needed to unconfuse MSVC. Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC); LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) << '\n'); if (FoundR == 0) continue; #ifndef NDEBUG if (HasOptLimit) { if (SpillOptCount >= SpillOptMax) return; SpillOptCount++; } #endif // Generate the copy-in: "FoundR = COPY SrcR" at the store location. MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; MachineInstr *CopyIn = nullptr; if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { const DebugLoc &DL = SI.getDebugLoc(); CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) .add(SrcOp); } ++StartIt; // Check if this is a last store and the FI is live-on-exit. if (LoxFIs.count(FI) && (&Range == &RL.back())) { // Update store's source register. if (unsigned SR = SrcOp.getSubReg()) SrcOp.setReg(HRI.getSubReg(FoundR, SR)); else SrcOp.setReg(FoundR); SrcOp.setSubReg(0); // We are keeping this register live. SrcOp.setIsKill(false); } else { B.erase(&SI); IM.replaceInstr(&SI, CopyIn); } auto EndIt = std::next(EI.getIterator()); for (auto It = StartIt; It != EndIt; It = NextIt) { MachineInstr &MI = *It; NextIt = std::next(It); int TFI; if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) continue; Register DstR = MI.getOperand(0).getReg(); assert(MI.getOperand(0).getSubReg() == 0); MachineInstr *CopyOut = nullptr; if (DstR != FoundR) { DebugLoc DL = MI.getDebugLoc(); unsigned MemSize = HII.getMemAccessSize(MI); assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); unsigned CopyOpc = TargetOpcode::COPY; if (HII.isSignExtendingLoad(MI)) CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; else if (HII.isZeroExtendingLoad(MI)) CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) .addReg(FoundR, getKillRegState(&MI == &EI)); } IM.replaceInstr(&MI, CopyOut); B.erase(It); } // Update the dead map. HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) DM[RR].subtract(Range); } // for Range in range list } } } void HexagonFrameLowering::expandAlloca(MachineInstr *AI, const HexagonInstrInfo &HII, Register SP, unsigned CF) const { MachineBasicBlock &MB = *AI->getParent(); DebugLoc DL = AI->getDebugLoc(); unsigned A = AI->getOperand(2).getImm(); // Have // Rd = alloca Rs, #A // // If Rs and Rd are different registers, use this sequence: // Rd = sub(r29, Rs) // r29 = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = and(r29, #-A) ; if necessary // Rd = add(Rd, #CF) ; CF size aligned to at most A // otherwise, do // Rd = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = Rd // Rd = add(Rd, #CF) ; CF size aligned to at most A MachineOperand &RdOp = AI->getOperand(0); MachineOperand &RsOp = AI->getOperand(1); Register Rd = RdOp.getReg(), Rs = RsOp.getReg(); // Rd = sub(r29, Rs) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) .addReg(SP) .addReg(Rs); if (Rs != Rd) { // r29 = sub(r29, Rs) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) .addReg(SP) .addReg(Rs); } if (A > 8) { // Rd = and(Rd, #-A) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) .addReg(Rd) .addImm(-int64_t(A)); if (Rs != Rd) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(A)); } if (Rs == Rd) { // r29 = Rd BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) .addReg(Rd); } if (CF > 0) { // Rd = add(Rd, #CF) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) .addReg(Rd) .addImm(CF); } } bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); if (!MFI.hasVarSizedObjects()) return false; // Do not check for max stack object alignment here, because the stack // may not be complete yet. Assume that we will need PS_aligna if there // are variable-sized objects. return true; } const MachineInstr *HexagonFrameLowering::getAlignaInstr( const MachineFunction &MF) const { for (auto &B : MF) for (auto &I : B) if (I.getOpcode() == Hexagon::PS_aligna) return &I; return nullptr; } /// Adds all callee-saved registers as implicit uses or defs to the /// instruction. void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, const CSIVect &CSI, bool IsDef, bool IsKill) const { // Add the callee-saved registers as implicit uses. for (auto &R : CSI) MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); } /// Determine whether the callee-saved register saves and restores should /// be generated via inline code. If this function returns "true", inline /// code will be generated. If this function returns "false", additional /// checks are performed, which may still lead to the inline code. bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, const CSIVect &CSI) const { if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) return true; if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) return true; if (!hasFP(MF)) return true; if (!isOptSize(MF) && !isMinSize(MF)) if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) return true; // Check if CSI only has double registers, and if the registers form // a contiguous block starting from D8. BitVector Regs(Hexagon::NUM_TARGET_REGS); for (const CalleeSavedInfo &I : CSI) { Register R = I.getReg(); if (!Hexagon::DoubleRegsRegClass.contains(R)) return true; Regs[R] = true; } int F = Regs.find_first(); if (F != Hexagon::D8) return true; while (F >= 0) { int N = Regs.find_next(F); if (N >= 0 && N != F+1) return true; F = N; } return false; } bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, const CSIVect &CSI) const { if (shouldInlineCSR(MF, CSI)) return false; unsigned NumCSI = CSI.size(); if (NumCSI <= 1) return false; unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs : SpillFuncThreshold; return Threshold < NumCSI; } bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, const CSIVect &CSI) const { if (shouldInlineCSR(MF, CSI)) return false; // The restore functions do a bit more than just restoring registers. // The non-returning versions will go back directly to the caller's // caller, others will clean up the stack frame in preparation for // a tail call. Using them can still save code size even if only one // register is getting restores. Make the decision based on -Oz: // using -Os will use inline restore for a single register. if (isMinSize(MF)) return true; unsigned NumCSI = CSI.size(); if (NumCSI <= 1) return false; unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 : SpillFuncThreshold; return Threshold < NumCSI; } bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); auto &HST = MF.getSubtarget<HexagonSubtarget>(); // A fairly simplistic guess as to whether a potential load/store to a // stack location could require an extra register. if (HST.useHVXOps() && StackSize > 256) return true; // Check if the function has store-immediate instructions that access // the stack. Since the offset field is not extendable, if the stack // size exceeds the offset limit (6 bits, shifted), the stores will // require a new base register. bool HasImmStack = false; unsigned MinLS = ~0u; // Log_2 of the memory access size. for (const MachineBasicBlock &B : MF) { for (const MachineInstr &MI : B) { unsigned LS = 0; switch (MI.getOpcode()) { case Hexagon::S4_storeirit_io: case Hexagon::S4_storeirif_io: case Hexagon::S4_storeiri_io: ++LS; [[fallthrough]]; case Hexagon::S4_storeirht_io: case Hexagon::S4_storeirhf_io: case Hexagon::S4_storeirh_io: ++LS; [[fallthrough]]; case Hexagon::S4_storeirbt_io: case Hexagon::S4_storeirbf_io: case Hexagon::S4_storeirb_io: if (MI.getOperand(0).isFI()) HasImmStack = true; MinLS = std::min(MinLS, LS); break; } } } if (HasImmStack) return !isUInt<6>(StackSize >> MinLS); return false; }