Mercurial > hg > CbC > CbC_llvm
view llvm/lib/Target/Hexagon/RDFDeadCode.cpp @ 266:00f31e85ec16 default tip
Added tag current for changeset 31d058e83c98
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 14 Oct 2023 10:13:55 +0900 |
parents | 1f2b6ac9f198 |
children |
line wrap: on
line source
//===--- RDFDeadCode.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // RDF-based generic dead code elimination. #include "RDFDeadCode.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RDFGraph.h" #include "llvm/CodeGen/RDFLiveness.h" #include "llvm/Support/Debug.h" #include <queue> using namespace llvm; using namespace rdf; // This drastically improves execution time in "collect" over using // SetVector as a work queue, and popping the first element from it. template<typename T> struct DeadCodeElimination::SetQueue { SetQueue() : Set(), Queue() {} bool empty() const { return Queue.empty(); } T pop_front() { T V = Queue.front(); Queue.pop(); Set.erase(V); return V; } void push_back(T V) { if (Set.count(V)) return; Queue.push(V); Set.insert(V); } private: DenseSet<T> Set; std::queue<T> Queue; }; // Check if the given instruction has observable side-effects, i.e. if // it should be considered "live". It is safe for this function to be // overly conservative (i.e. return "true" for all instructions), but it // is not safe to return "false" for an instruction that should not be // considered removable. bool DeadCodeElimination::isLiveInstr(NodeAddr<StmtNode *> S) const { const MachineInstr *MI = S.Addr->getCode(); if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn()) return true; if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() || MI->isPosition()) return true; if (MI->isPHI()) return false; for (auto &Op : MI->operands()) { if (Op.isReg() && MRI.isReserved(Op.getReg())) return true; if (Op.isRegMask()) { const uint32_t *BM = Op.getRegMask(); for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) { if (BM[R/32] & (1u << (R%32))) continue; if (MRI.isReserved(R)) return true; } } } return false; } void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA, SetQueue<NodeId> &WorkQ) { if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) return; if (!isLiveInstr(IA)) return; for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) { if (!LiveNodes.count(RA.Id)) WorkQ.push_back(RA.Id); } } void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA, SetQueue<NodeId> &WorkQ) { NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { if (!LiveNodes.count(UA.Id)) WorkQ.push_back(UA.Id); } for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA)) LiveNodes.insert(TA.Id); } void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA, SetQueue<NodeId> &WorkQ) { for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) { if (!LiveNodes.count(DA.Id)) WorkQ.push_back(DA.Id); } } // Traverse the DFG and collect the set dead RefNodes and the set of // dead instructions. Return "true" if any of these sets is non-empty, // "false" otherwise. bool DeadCodeElimination::collect() { // This function works by first finding all live nodes. The dead nodes // are then the complement of the set of live nodes. // // Assume that all nodes are dead. Identify instructions which must be // considered live, i.e. instructions with observable side-effects, such // as calls and stores. All arguments of such instructions are considered // live. For each live def, all operands used in the corresponding // instruction are considered live. For each live use, all its reaching // defs are considered live. LiveNodes.clear(); SetQueue<NodeId> WorkQ; for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) scanInstr(IA, WorkQ); while (!WorkQ.empty()) { NodeId N = WorkQ.pop_front(); LiveNodes.insert(N); auto RA = DFG.addr<RefNode*>(N); if (DFG.IsDef(RA)) processDef(RA, WorkQ); else processUse(RA, WorkQ); } if (trace()) { dbgs() << "Live nodes:\n"; for (NodeId N : LiveNodes) { auto RA = DFG.addr<RefNode*>(N); dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n"; } } auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool { for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG)) if (LiveNodes.count(DA.Id)) return false; return true; }; for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) if (!LiveNodes.count(RA.Id)) DeadNodes.insert(RA.Id); if (DFG.IsCode<NodeAttrs::Stmt>(IA)) if (isLiveInstr(IA) || DFG.hasUntrackedRef(IA)) continue; if (IsDead(IA)) { DeadInstrs.insert(IA.Id); if (trace()) dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n"; } } } return !DeadNodes.empty(); } // Erase the nodes given in the Nodes set from DFG. In addition to removing // them from the DFG, if a node corresponds to a statement, the corresponding // machine instruction is erased from the function. bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) { if (Nodes.empty()) return false; // Prepare the actual set of ref nodes to remove: ref nodes from Nodes // are included directly, for each InstrNode in Nodes, include the set // of all RefNodes from it. NodeList DRNs, DINs; for (auto I : Nodes) { auto BA = DFG.addr<NodeBase*>(I); uint16_t Type = BA.Addr->getType(); if (Type == NodeAttrs::Ref) { DRNs.push_back(DFG.addr<RefNode*>(I)); continue; } // If it's a code node, add all ref nodes from it. uint16_t Kind = BA.Addr->getKind(); if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) { append_range(DRNs, NodeAddr<CodeNode*>(BA).Addr->members(DFG)); DINs.push_back(DFG.addr<InstrNode*>(I)); } else { llvm_unreachable("Unexpected code node"); return false; } } // Sort the list so that use nodes are removed first. This makes the // "unlink" functions a bit faster. auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool { uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind(); if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def) return true; if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use) return false; return A.Id < B.Id; }; llvm::sort(DRNs, UsesFirst); if (trace()) dbgs() << "Removing dead ref nodes:\n"; for (NodeAddr<RefNode*> RA : DRNs) { if (trace()) dbgs() << " " << PrintNode<RefNode*>(RA, DFG) << '\n'; if (DFG.IsUse(RA)) DFG.unlinkUse(RA, true); else if (DFG.IsDef(RA)) DFG.unlinkDef(RA, true); } // Now, remove all dead instruction nodes. for (NodeAddr<InstrNode*> IA : DINs) { NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); BA.Addr->removeMember(IA, DFG); if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) continue; MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); if (trace()) dbgs() << "erasing: " << *MI; MI->eraseFromParent(); } return true; }