Mercurial > hg > Gears > GearsAgda
annotate RedBlackTree.agda @ 594:4bbeb8d9e250
add comment
author | ryokka |
---|---|
date | Wed, 15 Jan 2020 20:50:50 +0900 |
parents | 0ddfa505d612 |
children | 8df36383ced0 |
rev | line source |
---|---|
417 | 1 module RedBlackTree where |
2 | |
575 | 3 |
4 open import Level hiding (zero) | |
5 | |
6 open import Data.Nat hiding (compare) | |
7 open import Data.Nat.Properties as NatProp | |
8 open import Data.Maybe | |
9 open import Data.Bool | |
10 open import Data.Empty | |
11 | |
12 open import Relation.Binary | |
13 open import Relation.Binary.PropositionalEquality | |
14 | |
417 | 15 open import stack |
564
40ab3d39e49d
using strict total order
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
551
diff
changeset
|
16 |
511 | 17 record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where |
18 field | |
575 | 19 putImpl : treeImpl → a → (treeImpl → t) → t |
20 getImpl : treeImpl → (treeImpl → Maybe a → t) → t | |
511 | 21 open TreeMethods |
22 | |
23 record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where | |
417 | 24 field |
25 tree : treeImpl | |
513 | 26 treeMethods : TreeMethods {n} {m} {a} {t} treeImpl |
575 | 27 putTree : a → (Tree treeImpl → t) → t |
28 putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} )) | |
29 getTree : (Tree treeImpl → Maybe a → t) → t | |
30 getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d ) | |
427 | 31 |
478 | 32 open Tree |
33 | |
513 | 34 data Color {n : Level } : Set n where |
425 | 35 Red : Color |
36 Black : Color | |
37 | |
512 | 38 |
575 | 39 record Node {n : Level } (a : Set n) (k : ℕ) : Set n where |
513 | 40 inductive |
425 | 41 field |
575 | 42 key : ℕ |
512 | 43 value : a |
513 | 44 right : Maybe (Node a k) |
45 left : Maybe (Node a k) | |
514 | 46 color : Color {n} |
512 | 47 open Node |
425 | 48 |
575 | 49 record RedBlackTree {n m : Level } {t : Set m} (a : Set n) (k : ℕ) : Set (m Level.⊔ n) where |
417 | 50 field |
514 | 51 root : Maybe (Node a k) |
543 | 52 nodeStack : SingleLinkedStack (Node a k) |
575 | 53 -- compare : k → k → Tri A B C |
425 | 54 |
417 | 55 open RedBlackTree |
56 | |
543 | 57 open SingleLinkedStack |
512 | 58 |
575 | 59 compTri : ( x y : ℕ ) -> Tri ( x < y ) ( x ≡ y ) ( x > y ) |
60 compTri = IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) | |
61 where open import Relation.Binary | |
62 | |
518
c9f90f573efe
add more reblack tree in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
515
diff
changeset
|
63 -- put new node at parent node, and rebuild tree to the top |
c9f90f573efe
add more reblack tree in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
515
diff
changeset
|
64 -- |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
65 {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html |
575 | 66 replaceNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t |
543 | 67 replaceNode {n} {m} {t} {a} {k} tree s n0 next = popSingleLinkedStack s ( |
575 | 68 \s parent → replaceNode1 s parent) |
570 | 69 module ReplaceNode where |
575 | 70 replaceNode1 : SingleLinkedStack (Node a k) → Maybe ( Node a k ) → t |
71 replaceNode1 s nothing = next ( record tree { root = just (record n0 { color = Black}) } ) | |
72 replaceNode1 s (just n1) with compTri (key n1) (key n0) | |
73 replaceNode1 s (just n1) | tri< lt ¬eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { value = value n0 ; left = left n0 ; right = right n0 } ) next | |
74 replaceNode1 s (just n1) | tri≈ ¬lt eq ¬gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { left = just n0 } ) next | |
75 replaceNode1 s (just n1) | tri> ¬lt ¬eq gt = replaceNode {n} {m} {t} {a} {k} tree s ( record n1 { right = just n0 } ) next | |
478 | 76 |
525 | 77 |
575 | 78 rotateRight : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → |
79 (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t | |
80 rotateRight {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext) | |
530 | 81 where |
575 | 82 rotateRight1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → |
83 (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t | |
543 | 84 rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 |
575 | 85 ... | nothing = rotateNext tree s nothing n0 |
86 ... | just n1 with parent | |
87 ... | nothing = rotateNext tree s (just n1 ) n0 | |
88 ... | just parent1 with left parent1 | |
89 ... | nothing = rotateNext tree s (just n1) nothing | |
90 ... | just leftParent with compTri (key n1) (key leftParent) | |
91 rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent | |
92 rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent | |
93 rotateRight1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just leftParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent | |
530 | 94 |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
95 |
575 | 96 rotateLeft : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → |
97 (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t | |
98 rotateLeft {n} {m} {t} {a} {k} tree s n0 parent rotateNext = getSingleLinkedStack s (\ s n0 → rotateLeft1 tree s n0 parent rotateNext) | |
530 | 99 where |
575 | 100 rotateLeft1 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → |
101 (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t) → t | |
543 | 102 rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext with n0 |
575 | 103 ... | nothing = rotateNext tree s nothing n0 |
104 ... | just n1 with parent | |
105 ... | nothing = rotateNext tree s (just n1) nothing | |
106 ... | just parent1 with right parent1 | |
107 ... | nothing = rotateNext tree s (just n1) nothing | |
108 ... | just rightParent with compTri (key n1) (key rightParent) | |
109 rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri< a₁ ¬b ¬c = rotateNext tree s (just n1) parent | |
110 rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri≈ ¬a b ¬c = rotateNext tree s (just n1) parent | |
111 rotateLeft1 {n} {m} {t} {a} {k} tree s n0 parent rotateNext | just n1 | just parent1 | just rightParent | tri> ¬a ¬b c = rotateNext tree s (just n1) parent | |
112 -- ... | EQ = rotateNext tree s (just n1) parent | |
113 -- ... | _ = rotateNext tree s (just n1) parent | |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
114 |
530 | 115 {-# TERMINATING #-} |
575 | 116 insertCase5 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t |
117 insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = pop2SingleLinkedStack s (\ s parent grandParent → insertCase51 tree s n0 parent grandParent next) | |
530 | 118 where |
575 | 119 insertCase51 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → Maybe (Node a k) → (RedBlackTree {n} {m} {t} a k → t) → t |
543 | 120 insertCase51 {n} {m} {t} {a} {k} tree s n0 parent grandParent next with n0 |
575 | 121 ... | nothing = next tree |
122 ... | just n1 with parent | grandParent | |
123 ... | nothing | _ = next tree | |
124 ... | _ | nothing = next tree | |
125 ... | just parent1 | just grandParent1 with left parent1 | left grandParent1 | |
126 ... | nothing | _ = next tree | |
127 ... | _ | nothing = next tree | |
128 ... | just leftParent1 | just leftGrandParent1 | |
129 with compTri (key n1) (key leftParent1) | compTri (key leftParent1) (key leftGrandParent1) | |
130 ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) | |
131 ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) | |
132 -- ... | EQ | EQ = rotateRight tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) | |
133 -- ... | _ | _ = rotateLeft tree s n0 parent (\ tree s n0 parent → insertCase5 tree s n0 parent1 grandParent1 next) | |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
134 |
575 | 135 insertCase4 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t |
543 | 136 insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next |
528 | 137 with (right parent) | (left grandParent) |
575 | 138 ... | nothing | _ = insertCase5 tree s (just n0) parent grandParent next |
139 ... | _ | nothing = insertCase5 tree s (just n0) parent grandParent next | |
140 ... | just rightParent | just leftGrandParent with compTri (key n0) (key rightParent) | compTri (key parent) (key leftGrandParent) -- (key n0) (key rightParent) | (key parent) (key leftGrandParent) | |
141 -- ... | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) | |
142 -- (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next)) | |
143 -- ... | _ | _ = insertCase41 tree s n0 parent grandParent next | |
144 ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateLeft tree s (left n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 rightParent grandParent next)) | |
145 ... | _ | _ = insertCase41 tree s n0 parent grandParent next | |
530 | 146 where |
575 | 147 insertCase41 : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t |
543 | 148 insertCase41 {n} {m} {t} {a} {k} tree s n0 parent grandParent next |
575 | 149 with (left parent) | (right grandParent) |
150 ... | nothing | _ = insertCase5 tree s (just n0) parent grandParent next | |
151 ... | _ | nothing = insertCase5 tree s (just n0) parent grandParent next | |
152 ... | just leftParent | just rightGrandParent with compTri (key n0) (key leftParent) | compTri (key parent) (key rightGrandParent) | |
153 ... | tri≈ ¬a b ¬c | tri≈ ¬a1 b1 ¬c1 = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next)) | |
154 ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next | |
155 -- ... | EQ | EQ = popSingleLinkedStack s (\ s n1 → rotateRight tree s (right n0) (just grandParent) | |
156 -- (\ tree s n0 parent → insertCase5 tree s n0 leftParent grandParent next)) | |
157 -- ... | _ | _ = insertCase5 tree s (just n0) parent grandParent next | |
527 | 158 |
575 | 159 colorNode : {n : Level } {a : Set n} {k : ℕ} → Node a k → Color → Node a k |
532 | 160 colorNode old c = record old { color = c } |
527 | 161 |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
162 {-# TERMINATING #-} |
575 | 163 insertNode : {n m : Level } {t : Set m } {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → (RedBlackTree {n} {m} {t} a k → t) → t |
543 | 164 insertNode {n} {m} {t} {a} {k} tree s n0 next = get2SingleLinkedStack s (insertCase1 n0) |
518
c9f90f573efe
add more reblack tree in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
515
diff
changeset
|
165 where |
575 | 166 insertCase1 : Node a k → SingleLinkedStack (Node a k) → Maybe (Node a k) → Maybe (Node a k) → t -- placed here to allow mutual recursion |
519
0a723e418b2a
add some more directives in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
518
diff
changeset
|
167 -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html |
575 | 168 insertCase3 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t |
518
c9f90f573efe
add more reblack tree in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
515
diff
changeset
|
169 insertCase3 s n0 parent grandParent with left grandParent | right grandParent |
575 | 170 ... | nothing | nothing = insertCase4 tree s n0 parent grandParent next |
171 ... | nothing | just uncle = insertCase4 tree s n0 parent grandParent next | |
172 ... | just uncle | _ with compTri ( key uncle ) ( key parent ) | |
173 insertCase3 s n0 parent grandParent | just uncle | _ | tri≈ ¬a b ¬c = insertCase4 tree s n0 parent grandParent next | |
174 insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c with color uncle | |
175 insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( | |
176 record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) | |
177 insertCase3 s n0 parent grandParent | just uncle | _ | tri< a ¬b ¬c | Black = insertCase4 tree s n0 parent grandParent next | |
178 insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c with color uncle | |
179 insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) | |
180 insertCase3 s n0 parent grandParent | just uncle | _ | tri> ¬a ¬b c | Black = insertCase4 tree s n0 parent grandParent next | |
181 -- ... | EQ = insertCase4 tree s n0 parent grandParent next | |
182 -- ... | _ with color uncle | |
183 -- ... | Red = pop2SingleLinkedStack s ( \s p0 p1 → insertCase1 ( | |
184 -- record grandParent { color = Red ; left = just ( record parent { color = Black } ) ; right = just ( record uncle { color = Black } ) }) s p0 p1 ) | |
185 -- ... | Black = insertCase4 tree s n0 parent grandParent next --!! | |
186 insertCase2 : SingleLinkedStack (Node a k) → Node a k → Node a k → Node a k → t | |
518
c9f90f573efe
add more reblack tree in agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
515
diff
changeset
|
187 insertCase2 s n0 parent grandParent with color parent |
538
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
188 ... | Black = replaceNode tree s n0 next |
532 | 189 ... | Red = insertCase3 s n0 parent grandParent |
575 | 190 insertCase1 n0 s nothing nothing = next tree |
191 insertCase1 n0 s nothing (just grandParent) = next tree | |
192 insertCase1 n0 s (just parent) nothing = replaceNode tree s (colorNode n0 Black) next | |
193 insertCase1 n0 s (just parent) (just grandParent) = insertCase2 s n0 parent grandParent | |
528 | 194 |
531 | 195 ---- |
549 | 196 -- find node potition to insert or to delete, the path will be in the stack |
575 | 197 -- |
198 findNode : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → (Node a k) → (Node a k) → (RedBlackTree {n} {m} {t} a k → SingleLinkedStack (Node a k) → Node a k → t) → t | |
199 findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushSingleLinkedStack s n1 (\ s → findNode1 s n1) | |
570 | 200 module FindNode where |
575 | 201 findNode2 : SingleLinkedStack (Node a k) → (Maybe (Node a k)) → t |
202 findNode2 s nothing = next tree s n0 | |
203 findNode2 s (just n) = findNode tree s n0 n next | |
204 findNode1 : SingleLinkedStack (Node a k) → (Node a k) → t | |
205 findNode1 s n1 with (compTri (key n0) (key n1)) | |
206 findNode1 s n1 | tri< a ¬b ¬c = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) ) | |
207 findNode1 s n1 | tri≈ ¬a b ¬c = findNode2 s (right n1) | |
208 findNode1 s n1 | tri> ¬a ¬b c = findNode2 s (left n1) | |
209 -- ... | EQ = popSingleLinkedStack s ( \s _ → next tree s (record n1 { key = key n1 ; value = value n0 } ) ) | |
210 -- ... | GT = findNode2 s (right n1) | |
211 -- ... | LT = findNode2 s (left n1) | |
212 | |
213 | |
214 | |
215 | |
216 leafNode : {n : Level } { a : Set n } → a → (k : ℕ) → (Node a k) | |
217 leafNode v k1 = record { key = k1 ; value = v ; right = nothing ; left = nothing ; color = Red } | |
218 | |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
575
diff
changeset
|
219 putRedBlackTree : {n m : Level} {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} a k → ℕ → ℕ → (RedBlackTree {n} {m} {t} a k → t) → t |
575 | 220 putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next with (root tree) |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
575
diff
changeset
|
221 putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | nothing = next (record tree {root = just (leafNode val k1) }) |
575 | 222 putRedBlackTree {n} {m} {t} {a} {k} tree val k1 next | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode {!!} {!!}) n2 (λ tree1 s n1 → insertNode tree1 s n1 next)) |
223 -- putRedBlackTree {n} {m} {t} {a} {k} tree value k1 next with (root tree) | |
224 -- ... | nothing = next (record tree {root = just (leafNode k1 value) }) | |
225 -- ... | just n2 = clearSingleLinkedStack (nodeStack tree) (\ s → findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 → insertNode tree1 s n1 next)) | |
226 | |
227 | |
228 -- getRedBlackTree : {n m : Level } {t : Set m} {a : Set n} {k : ℕ} → RedBlackTree {n} {m} {t} {A} a k → k → (RedBlackTree {n} {m} {t} {A} a k → (Maybe (Node a k)) → t) → t | |
229 -- getRedBlackTree {_} {_} {t} {a} {k} tree k1 cs = checkNode (root tree) | |
230 -- module GetRedBlackTree where -- http://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html | |
231 -- search : Node a k → t | |
232 -- checkNode : Maybe (Node a k) → t | |
233 -- checkNode nothing = cs tree nothing | |
234 -- checkNode (just n) = search n | |
235 -- search n with compTri k1 (key n) | |
236 -- search n | tri< a ¬b ¬c = checkNode (left n) | |
237 -- search n | tri≈ ¬a b ¬c = cs tree (just n) | |
238 -- search n | tri> ¬a ¬b c = checkNode (right n) | |
239 | |
425 | 240 |
241 | |
575 | 242 -- compareT : {A B C : Set } → ℕ → ℕ → Tri A B C |
243 -- compareT x y with IsStrictTotalOrder.compare (Relation.Binary.StrictTotalOrder.isStrictTotalOrder <-strictTotalOrder) x y | |
244 -- compareT x y | tri< a ¬b ¬c = tri< {!!} {!!} {!!} | |
245 -- compareT x y | tri≈ ¬a b ¬c = {!!} | |
246 -- compareT x y | tri> ¬a ¬b c = {!!} | |
247 -- -- ... | tri≈ a b c = {!!} | |
248 -- -- ... | tri< a b c = {!!} | |
249 -- -- ... | tri> a b c = {!!} | |
417 | 250 |
575 | 251 -- compare2 : (x y : ℕ ) → CompareResult {Level.zero} |
252 -- compare2 zero zero = EQ | |
253 -- compare2 (suc _) zero = GT | |
254 -- compare2 zero (suc _) = LT | |
255 -- compare2 (suc x) (suc y) = compare2 x y | |
515 | 256 |
575 | 257 -- -- putUnblanceTree : {n m : Level } {a : Set n} {k : ℕ} {t : Set m} → RedBlackTree {n} {m} {t} {A} a k → k → a → (RedBlackTree {n} {m} {t} {A} a k → t) → t |
258 -- -- putUnblanceTree {n} {m} {A} {a} {k} {t} tree k1 value next with (root tree) | |
259 -- -- ... | nothing = next (record tree {root = just (leafNode k1 value) }) | |
260 -- -- ... | just n2 = clearSingleLinkedStack (nodeStack tree) (λ s → findNode tree s (leafNode k1 value) n2 (λ tree1 s n1 → replaceNode tree1 s n1 next)) | |
533 | 261 |
575 | 262 -- -- checkT : {m : Level } (n : Maybe (Node ℕ ℕ)) → ℕ → Bool |
263 -- -- checkT nothing _ = false | |
264 -- -- checkT (just n) x with compTri (value n) x | |
265 -- -- ... | tri≈ _ _ _ = true | |
266 -- -- ... | _ = false | |
545 | 267 |
575 | 268 -- -- checkEQ : {m : Level } ( x : ℕ ) -> ( n : Node ℕ ℕ ) -> (value n ) ≡ x -> checkT {m} (just n) x ≡ true |
269 -- -- checkEQ x n refl with compTri (value n) x | |
270 -- -- ... | tri≈ _ refl _ = refl | |
271 -- -- ... | tri> _ neq gt = ⊥-elim (neq refl) | |
272 -- -- ... | tri< lt neq _ = ⊥-elim (neq refl) | |
564
40ab3d39e49d
using strict total order
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
551
diff
changeset
|
273 |
545 | 274 |
575 | 275 createEmptyRedBlackTreeℕ : {n m : Level} {t : Set m} (a : Set n) (b : ℕ) |
276 → RedBlackTree {n} {m} {t} a b | |
277 createEmptyRedBlackTreeℕ a b = record { | |
278 root = nothing | |
543 | 279 ; nodeStack = emptySingleLinkedStack |
575 | 280 -- ; nodeComp = λ x x₁ → {!!} |
281 | |
545 | 282 } |
575 | 283 |
284 -- ( x y : ℕ ) -> Tri ( x < y ) ( x ≡ y ) ( x > y ) | |
285 | |
286 -- test = (λ x → (createEmptyRedBlackTreeℕ x x) | |
287 | |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
575
diff
changeset
|
288 -- ts = createEmptyRedBlackTreeℕ {ℕ} {?} {!!} 0 |
575 | 289 |
290 -- tes = putRedBlackTree {_} {_} {_} (createEmptyRedBlackTreeℕ {_} {_} {_} 3 3) 2 2 (λ t → t) |