Mercurial > hg > Gears > GearsAgda
changeset 533:2d6ccbf429ad
add test
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 10 Jan 2018 00:47:17 +0900 |
parents | ccf98ed4a4f7 |
children | 7059fa504a7e |
files | RedBlackTree.agda |
diffstat | 1 files changed, 50 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/RedBlackTree.agda Tue Jan 09 23:56:42 2018 +0900 +++ b/RedBlackTree.agda Wed Jan 10 00:47:17 2018 +0900 @@ -1,7 +1,7 @@ module RedBlackTree where open import stack -open import Level +open import Level hiding (zero) record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field @@ -210,3 +210,52 @@ search n | LT = checkNode (left n) search n | GT = checkNode (right n) search n | EQ = cs tree (Just n) + +open import Data.Nat hiding (compare) + +createEmptyRedBlackTreeℕ : { m : Level } (a : Set Level.zero) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ ( SingleLinkedStack (Node a ℕ ) ) +createEmptyRedBlackTreeℕ {m} a {t} = record { + root = Nothing + ; nodeStack = createSingleLinkedStack + ; compare = compare1 + } where + compare1 : ℕ → ℕ → CompareResult {Level.zero} + compare1 x y with Data.Nat.compare x y + ... | less _ _ = LT + ... | equal _ = EQ + ... | greater _ _ = GT + + + +-- tests + +putTree1 : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +putTree1 {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) +... | Nothing = next (record tree {root = Just (leafNode k1 value) }) +... | Just n2 = clearStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n2 n1 next)) + +open import Relation.Binary.PropositionalEquality +open import Relation.Binary.Core + + +check1 : {m : Level } (n : Maybe (Node ℕ ℕ)) -> ℕ -> Bool {m} +check1 Nothing _ = False +check1 (Just n) x with Data.Nat.compare (value n) x +... | equal _ = True +... | _ = False + +test1 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> getRedBlackTree t 1 ( \t x -> check1 x 1 ≡ True )) +test1 = refl + +test2 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( + \t -> putTree1 t 2 2 ( + \t -> getRedBlackTree t 1 ( + \t x -> check1 x 1 ≡ True ))) +test2 = refl + +test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( + \t -> putTree1 t 2 2 ( + \t -> getRedBlackTree t 2 ( + \t x -> check1 x 2 ≡ True ))) +test3 = {!!} +